文档库 最新最全的文档下载
当前位置:文档库 › C++__attribute__详解

C++__attribute__详解

C++__attribute__详解
C++__attribute__详解

C++__attribute__详解

1.__attribute__ ((packed)) 的作用就是告诉编译器取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐,是GCC特有的语法。这个功能是跟操作系统没关系,跟编译器有关,gcc编译器不是紧凑模式的,我在windows 下,用vc的编译器也不是紧凑的,用tc的编译器就是紧凑的。例如:

在TC下:struct my{ char ch; int a;} sizeof(int)=2;sizeof(my)=3;(紧凑模式)

在GCC下:struct my{ char ch; int a;} sizeof(int)=4;sizeof(my)=8;(非紧凑模式)

在GCC下:struct my{ char ch; int a;}__attrubte__

((packed)) sizeof(int)=4;sizeof(my)=5

2.__attribute__关键字主要是用来在函数或数据声明中设置其属性。给函数赋给属性的主要目的在于让编译器进行优化。函数声明中的

__attribute__((noreturn)),就是告诉编译器这个函数不会返回给调用者,以便编译器在优化时去掉不必要的函数返回代码。

GNU C的一大特色就是__attribute__机制。__attribute__可以设置函数属性(Function Attribute)、变量属性(Variable Attribute)和类型属性(Type Attribute)。

__attribute__书写特征是:__attribute__前后都有两个下划线,并且后面会紧跟一对括弧,括弧里面是相应的__attribute__参数。

__attribute__语法格式为:

__attribute__ ((attribute-list))

其位置约束:放于声明的尾部“;”之前。

函数属性(Function Attribute):函数属性可以帮助开发者把一些特性添加到函数声明中,从而可以使编译器在错误检查方面的功能更强大。

__attribute__机制也很容易同非GNU应用程序做到兼容之功效。

GNU CC需要使用–Wall编译器来击活该功能,这是控制警告信息的一个很好的方式。

packed属性:使用该属性可以使得变量或者结构体成员使用最小的对齐方式,即对变量是一字节对齐,对域(field)是位对齐。

如果你看过GPSR协议在TinyOS中的实现,你一定会注意到下面的语句:typedef struct {

double x;

double y;

} __attribute__((packed)) position_t;

开始我们还可以理解,不久是定义一个结构体嘛!不过看到后面的语句,你可

能就会一头雾水了,’ __attribute__((packed))’是什么东西?有什么作用?一连串的疑问马上就会从你脑袋里冒出来。虽然这个对理解整个程序没有什么

影响,但我不想让这些疑问一直呆在我的脑子里,负担太重。省得以后念念不忘,而且也许有一天可以用的上呢。搞清楚这个问题吧!

GNU C的一大特色(却不被初学者所知)就是__attribute__机制。

__attribute__可以设置函数属性(Function Attribute)、变量属性(Variable Attribute)和类型属性(Type Attribute)。

__attribute__语法格式为:

__attribute__ ((attribute-list))

其位置约束为:放于声明的尾部“;”之前。

packed是类型属性(Type Attribute)的一个参数,使用packed可以减小对

象占用的空间。需要注意的是,attribute属性的效力与你的连接器也有关,

如果你的连接器最大只支持16字节对齐,那么你此时定义32字节对齐也是无

济于事的。

使用该属性对struct或者union类型进行定义,设定其类型的每一个变量的内存约束。当用在enum类型定义时,暗示了应该使用最小完整的类型(it indicates that the smallest integral type should be used)。

下面的例子中,my-packed-struct类型的变量数组中的值会紧凑在一起,但内

部的成员变量s不会被“pack”,如果希望内部的成员变量也被packed的话,my-unpacked-struct也需要使用packed进行相应的约束。

struct my_unpacked_struct

{

char c;

int i;

};

struct my_packed_struct

{

char c;

int i;

struct my_unpacked_struct s;

}__attribute__ ((__packed__));

在每个系统上看下这个结构体的长度吧。

内存对齐,往往是由编译器来做的,如果你使用的是gcc,可以在定义变量时,添加__attribute__,来决定是否使用内存对齐,或是内存对齐到几个字节,以上面的结构体为例:

1)到4字节,同样可指定对齐到8字节。

struct student

{

char name[7];

uint32_t id;

char subject[5];

} __attribute__ ((aligned(4)));

2)不对齐,结构体的长度,就是各个变量长度的和struct student

{

char name[7];

uint32_t id;

char subject[5];

} __attribute__ ((packed));

递推最小二乘法算法

题目: (递推最小二乘法) 考虑如下系统: )()4(5.0)3()2(7.0)1(5.1)(k k u k u k y k y k y ξ+-+-=-+-- 式中,)(k ξ为方差为0.1的白噪声。 取初值I P 610)0(=、00=∧ )(θ。选择方差为1的白噪声作为输入信号)(k u ,采用PLS 法进行参数估计。 Matlab 代码如下: clear all close all L=400; %仿真长度 uk=zeros(4,1); %输入初值:uk(i)表示u(k-i) yk=zeros(2,1); %输出初值 u=randn(L,1); %输入采用白噪声序列 xi=sqrt(0.1)*randn(L,1); %方差为0.1的白噪声序列 theta=[-1.5;0.7;1.0;0.5]; %对象参数真值 thetae_1=zeros(4,1); %()θ初值 P=10^6*eye(4); %题目要求的初值 for k=1:L phi=[-yk;uk(3:4)]; %400×4矩阵phi 第k 行对应的y(k-1),y(k-2),u(k-3), u(k-4) y(k)=phi'*theta+xi(k); %采集输出数据 %递推最小二乘法的递推公式 K=P*phi/(1+phi'*P*phi); thetae(:,k)=thetae_1+K*(y(k)-phi'*thetae_1); P=(eye(4)-K*phi')*P; %更新数据 thetae_1=thetae(:,k); for i=4:-1:2 uk(i)=uk(i-1); end uk(1)=u(k); for i=2:-1:2 yk(i)=yk(i-1);

几种最小二乘法递推算法的小结

一、 递推最小二乘法 递推最小二乘法的一般步骤: 1. 根据输入输出序列列出最小二乘法估计的观测矩阵?: ] )(u ... )1( )( ... )1([)(T b q n k k u n k y k y k ------=? 没有给出输出序列的还要先算出输出序列。 本例中, 2)]-u(k 1),-u(k 2),-1),-y(k -[-y(k )(T =k ?。 2. 给辨识参数θ和协方差阵P 赋初值。一般取0θ=0或者极小的数,取σσ,20I P =特别大,本例中取σ=100。 3. 按照下式计算增益矩阵G : ) ()1()(1)()1()(k k P k k k P k G T ???-+-= 4. 按照下式计算要辨识的参数θ: )]1(?)()()[()1(?)(?--+-=k k k y k G k k T θ?θθ 5. 按照下式计算新的协方差阵P : )1()()()1()(---=k P k k G k P k P T ? 6. 计算辨识参数的相对变化量,看是否满足停机准则。如满足,则不再递推;如不满足, 则从第三步开始进行下一次地推,直至满足要求为止。 停机准则:ε???<--) (?)1(?)(?max k k k i i i i 本例中由于递推次数只有三十次,故不需要停机准则。 7. 分离参数:将a 1….a na b 1….b nb 从辨识参数θ中分离出来。 8. 画出被辨识参数θ的各次递推估计值图形。 为了说明噪声对递推最小二乘法结果的影响,程序5-7-2在计算模拟观测值时不加噪 声, 辨识结果为a1 =1.6417,a2 = 0.7148,b1 = 0.3900,b2 =0.3499,与真实值a1 =1.642, a2 = 0.715, b1 = 0.3900,b2 =0.35相差无几。 程序5-7-2-1在计算模拟观测值时加入了均值为0,方差为0.1的白噪声序列,由于噪 声的影响,此时的结果为变值,但变化范围较小,现任取一组结果作为辨识结果。辨识结果为a1 =1.5371, a2 = 0.6874, b1 = 0.3756,b2 =0.3378。 程序5-7-2-2在计算模拟观测值时加入了有色噪声,有色噪声为 E(k)+1.642E(k-1)+0.715E(k-2),E(k)是均值为0,方差为0.1的白噪声序列,由于有色噪声的影响,此时的辨识结果变动范围远比白噪声时大,任取一组结果作为辨识结果。辨识结果为a1 =1.6676, a2 = 0.7479, b1 = 0.4254,b2 =0.3965。 可以看出,基本的最小二乘法不适用于有色噪声的场合。

递推算法

递推算法典型例题 一、教学目标 1、由浅入深,了解递推算法 2、掌握递推算法的经典例题 二、重点难点分析 1、重点:递推关系的建立 2、难点:如何将所求问题转化为数学模型 三、教具或课件 微机 四、主要教学过程 (一)引入新课 客观世界中的各个事物之间或者一个事物的内部各元素之间,往往存在(隐藏)着很多本质上的关联。我们设计程序前.应该要通过细心的观察、丰富的联想、不断的尝试推理.尽可能先归纳总结出其内在规律,然后再把这种规律性的东西抽象成数学模型,最后再去编程实现。递推关系和递归关系都是一种简洁高效的常见数学模型,我们今天先来深入研究一下递推算法如何实现。 (二)教学过程设计 递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。这种算法特点是:一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,这样的问题可以采用递推法来解决。从已知条件出发,逐步推出要解决的问题,叫顺推;从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为若干步重复的简单运算,充分发挥出计算机擅长于重复处理的特点。 递推算法的首要问题是得到相邻的数据项间的关系(即递推关系)。递推算法避开了通项公式的麻烦,把一个复杂的问题的求解,分解成了连续的若干步简单运算。一般说来可以将递推算法看成是一种特殊的迭代算法。(在解题时往往还把递推问题表现为迭代形式,用循环处理。所谓“迭代”,就是在程序中用同一个变量来存放每一次推算出来的值,每一次循环都执行同一个语句,给同一变量赋以新的值,即用一个新值代替旧值,

AIC法定阶的依阶次递推算法程序.

AIC 法定阶的依阶次递推算法程序 依阶次递推算法所得到估计θ ?,再按下式计算残差方差的估计值: ∑==N j j e N 122 )?,(1?θσ 由上式的结果计算AIC : )(2?lg AIC 2b a n n N ++=σ 在结果中找到AIC 最小的模型(阶次和参数)就是估计的模型。 由输出数据可知当k1=5时aic 的值最小。所以最后的辨识结果取阶次为5,参数为: –1.18394,0.813938,–0.518174,0.348744,–0.116818, 1.07998,–0.74386,0.475444,–0.253022,0.122781 判断的阶次的最小aic 值: aic= – 8981.58发生在阶次为5时。 源程序: #include #include #include #include //矩阵求逆函数 int brinv(double f[],int n) { int *is,*js,i,j,k,l,u,v; double d,p; is=(int *)malloc(n*sizeof(int)); js=(int *)malloc(n*sizeof(int)); for (k=0; k<=n-1; k++) { d=0.0; for (i=k; i<=n-1; i++) for (j=k; j<=n-1; j++) { l=i*n+j; p=fabs(f[l]); if (p>d) { d=p; is[k]=i; js[k]=j;} } if (d+1.0==1.0) { free(is); free(js); cout<<"err**not inv\n"; return(0); } if (is[k]!=k) for (j=0; j<=n-1; j++) { u=k*n+j; v=is[k]*n+j; p=f[u]; f[u]=f[v]; f[v]=p; }

实验一用递推公式计算定积分

实验一 用递推公式计算定积分 09信息 符文飞 07 1、实验目的: 由于一个算法是否稳定,十分重要。如果算法不稳定,则数值计算的结果就会严重背离数学模型的真实结果,因此,在选择数值计算公式来进行近似计算时,我们应特别注意选用那些在数值计算过程中不会导致误差迅速增长的公式。体会稳定性在选择算法中的地位.误差扩张的算法是不稳定的,是我们所不期望的;误差衰竭的算法是稳定的.是我们努力寻求的,这是贯穿本课程的目标.通过上机计算,了解舍入误差所引起的数值不稳定性。 2、实验题目: 对n =0,1,2,…,20,计算定积分dx x x y n n ?+=10 5 3、实验原理 由于y(n)= = – 在计算时有两种迭代方法,如下: 方法一: y(n)= – 5*y(n-1),n=1,2,3, (20) 取y(0)= = ln6-ln5 ≈ 0.182322 方法二:

利用递推公式:y(n-1)=-*y(n),n=20,19, (1) 而且,由 = * ≤≤* = 可取:y(20)≈*()≈0.008730. 4、实验内容: 算法1的程序: y0=log(6.0)-log(5.0); y1=0; n=1; while n<=30 y1=1/n-5*y0; fprintf('y[%d]=%-20f',n,y1); y0=y1; n=n+1; if mod(n,1)==0; fprintf('\n') end end 算法2的程序: y0=(1/105+1/126)/2;

y1=0; n=1; while n<=30 y1=1/(5*n)-y0/5; fprintf('y[%d]=%-20f',n,y1) y0=y1; n=n+1; if mod(n,1)==0 fprintf('\n') end end 5、实验结果 对于算法1: y[1]=0.088392 y[2]=0.058039 y[3]=0.043139 y[4]=0.034306 y[5]=0.028468 y[6]=0.024325 y[7]=0.021233 y[8]=0.018837 y[9]=0.016926

递推算法

递推算法 一、学习要点:(经典的五种递推关系) 1.fibonacci(斐波那契)数列 2.hanoi(汉诺)塔 3.平面分割 4.catalan数(卡特兰数) 5.第二类string数 二、重点提示 1.产生catalan数的参考程序: Const max=21; Var c:array[2..max] of longint; n,i,k:integer; total:longint; begin write(‘input n=’);readln(n); c[2]:=1; for i:=3 to n do begin c[i]:=0; for k:=2 to i-1 do c[i]:=c[i]+c[k]*c[i-k+1]; end; writeln(‘catalan=’,c[n]); end. Catalan数,从第二项开始为:1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012, 742900,2674440,9694545,35357670,129644790,477638700,1767263190 2.产生第二类的string数的参考程序: Var n,k:integer; Function s(n,k:integer):longint; Begin If (n

实用算法(基础算法-递推法)

实用算法(基础算法-递推法-01) 有一类试题,每相邻两项数之间的变化有一定的规律性,我们可将这种规律归纳成如下简捷的递推关系式: F n=g(F n-1) 这就在数的序列中,建立起后项和前项之间的关系,然后从初始条件(或最终结果)入手,一步步地按递推关系递推,直至求出最终结果(或初始值)。很多程序就是按这样的方法逐步求解的。如果对一个试题,我们要是能找到后一项与前一项的关系并清楚其起始条件(最终结果),问题就好解决,让计算机一步步算就是了,让高速的计算机做这种重复运算,可真正起到“物尽其用”的效果。 递推分倒推法和顺推法两种形式。一般分析思路: if求解条件F1 then begin{倒推} 由题意(或递推关系)确定最终结果Fa; 求出倒推关系式F i-1=g'(F i); i=n;{从最终结果Fn出发进行倒推} while 当前结果F i非初始值F1 do由F i-1=g(F1)倒推前项; 输出倒推结果F1和倒推过程; end {then} else begin{顺推} 由题意(或顺推关系)确定初始值F1(边界条件); 求出顺推关系式F1=g(Fi-1); i=1;{由边界条件F1出发进行顺推} while 当前结果Fi非最终结果Fn do由Fi=g(Fi-1)顺推后项; 输出顺推结果Fn和顺推过程; end; {else} 一、倒推法 所谓倒推法,就是在不知初始值的情况下,经某种递推关系而获知问题的解或目标,再倒推过来,推知它的初始条件。因为这类问题的运算过程是一一映射的,故可分析得其递推公式。然后再从这个解或目标出发,采用倒推手段,一步步地倒推到这个问题的初始陈述。 下面举例说明。 [例1] 贮油点 一辆重型卡车欲穿过1000公里的沙漠,卡车耗油为1升/公里,卡车总载油能力为500公升。显然卡车一次是过不了沙漠的。因此司机必须设法在沿途建立几个储油点,使卡车能顺利穿越沙漠,试问司机如何建立这些储油点?每一储油点应存多

递推算法解析集锦

递推算法集锦 一、编写程序求50以内的勾股弦数。即满足c*c=b*b+a*a的三个自然数,要求 b>a。将所有符合要求的a,b,c组合输出至屏幕。 解答: 采用穷举算法,在主函数中实现。 #include using namespace std; int main(){ int a,b,c,count=0; cout<<"勾股弦数有:"<

几种最小二乘法递推算法的小结

递推最小二乘法的一般步骤: 1. 根据输入输出序列列出最小二乘法估计的观测矩阵?: ] )(u ... )1( )( ... )1([)(T b q n k k u n k y k y k ------=? 没有给出输出序列的还要先算出输出序列。 本例中, 2)]-u(k 1),-u(k 2),-1),-y(k -[-y(k )(T =k ?。 2. 给辨识参数θ和协方差阵P 赋初值。一般取0θ=0或者极小的数,取σσ,20I P =特别 大,本例中取σ=100。 3. 按照下式计算增益矩阵G : ) ()1()(1)()1()(k k P k k k P k G T ???-+-= 4. 按照下式计算要辨识的参数θ: )]1(?)()()[()1(?)(?--+-=k k k y k G k k T θ?θθ 5. 按照下式计算新的协方差阵P : )1()()()1()(---=k P k k G k P k P T ? 6. 计算辨识参数的相对变化量,看是否满足停机准则。如满足,则不再递推;如不满足, 则从第三步开始进行下一次地推,直至满足要求为止。 停机准则:ε???<--) (?)1(?)(?max k k k i i i i 本例中由于递推次数只有三十次,故不需要停机准则。 7. 分离参数:将a 1….a na b 1….b nb 从辨识参数θ中分离出来。 8. 画出被辨识参数θ的各次递推估计值图形。 为了说明噪声对递推最小二乘法结果的影响,程序5-7-2在计算模拟观测值时不加噪声, 辨识结果为a1 =1.6417,a2 = 0.7148,b1 = 0.3900,b2 =0.3499,与真实值a1 =1.642, a2 = 0.715, b1 = 0.3900,b2 =0.35相差无几。 程序5-7-2-1在计算模拟观测值时加入了均值为0,方差为0.1的白噪声序列,由于噪声 的影响,此时的结果为变值,但变化范围较小,现任取一组结果作为辨识结果。辨识结果为a1 =1.5371, a2 = 0.6874, b1 = 0.3756,b2 =0.3378。 程序5-7-2-2在计算模拟观测值时加入了有色噪声,有色噪声为 E(k)+1.642E(k-1)+0.715E(k-2),E(k)是均值为0,方差为0.1的白噪声序列,由于有色噪声的影响,此时的辨识结果变动范围远比白噪声时大,任取一组结果作为辨识结果。辨识结果为a1 =1.6676, a2 = 0.7479, b1 = 0.4254,b2 =0.3965。 可以看出,基本的最小二乘法不适用于有色噪声的场合。

根据递推公式求数列通项公式的常用方法总结归纳(新)

求递推数列通项公式的常用方法归纳 目录 一、概述·································· 二、等差数列通项公式和前n项和公式·································· 1、等差数列通项公式的推导过程································ 2、等差数列前n项和公式的推导过程·································· 三、一般的递推数列通项公式的常用方法·································· 1、公式法·································· 2、归纳猜想法·································· 3、累加法·································· 4、累乘法·································· 5、构造新函数法(待定系数法)·································· 6、倒数变换法·································· 7、特征根法·································· 8、不动点法································· 9、换元法································· 10、取对数法·································· 11、周期法··································

相关文档