文档库 最新最全的文档下载
当前位置:文档库 › 多GNSS融合的北斗卫星精密定轨

多GNSS融合的北斗卫星精密定轨

多GNSS融合的北斗卫星精密定轨
多GNSS融合的北斗卫星精密定轨

北斗终端安装及货运平台入网操作流程

星软北斗终端安装、入网及货运平台操作说明 安装设备:制造商ID和终端型号要在货运平台备案过,未备案的设备是不能使用的 接线:按照国家交通部要求必须接9线,分别是1、常通电源线,2、ACC,3、搭铁线,4、速度线,5、刹车线,6、左转向灯,7、右转向灯,8、近光灯,9、远光灯 1、安装时的资料准备: 1)车辆登记证扫描图片或清晰数码照 2)车辆行驶证扫描图片或清晰数码照 3)车身照片,左前方45角度,且车牌号清晰可见。 2、设置: 需要设置的项目: 1)车牌号; 2)终端手机号; 3)车辆VIN码/车架号; 4)省域ID和市县域ID,要和实际情况相符。例如:安徽省省域ID是34,合肥的市县域ID是0100 5)主/备域名或主/备IP、端口(查看已默认正确不需设置,一定要注意主和备都要设置正确); 6)车牌颜色(一般默认黄色,如正确可不用设置); 7)特征系数(就是车辆的速度脉冲系统,需要根据不同的车型,出厂已默认

但不同的车型是不一样的,可找车厂或根据经验积累,要么安装入网后根据GPS速度和行驶记录仪速度进行远程发指令修正,修正值的计算方法:行驶记录仪速度/GPS速度*当前特征系统); 8)平台选择(以星软设备举例:进货运平台的选择“货运平台”;只进星软平台或通过星软平台转发到省联网联控平台的选择“星软平台”;通过其他服务商代接货运平台又要使用星软平台监控功能的,选择“货运+星软双平台”,注意此方式要消耗平常2倍的数据流量。 需要查看的项目:1)终端ID(一般会贴在设备外面,但还是以菜单里面的参数为准) 2)确认车牌和终端手机号都已经设置成功 3)主屏幕界面查看通讯信号和卫星型号是否正常 星软设备操作说明:

【CN109785587A】一种基于北斗卫星定位的监测装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910184431.0 (22)申请日 2019.03.12 (71)申请人 湖南联智桥隧技术有限公司 地址 410019 湖南省长沙市望城经开区沿 河路二段168号 (72)发明人 梁晓东 邱志勇 杨振武 周雨峰  丁磊  (74)专利代理机构 长沙七源专利代理事务所 (普通合伙) 43214 代理人 郑隽 吴婷 (51)Int.Cl. G08B 21/10(2006.01) G01B 21/02(2006.01) G01S 19/14(2010.01) (54)发明名称 一种基于北斗卫星定位的监测装置 (57)摘要 本发明提供了一种基于北斗卫星定位的监 测装置,包括监控装置、数据处理箱以及反馈装 置,其中监控装置和数据处理箱连接,数据处理 箱和反馈装置连接;所述监控装置用于监测滑坡 位移;所述数据处理箱根据监控装置所监测到的 滑坡位移的情况控制反馈装置进行动作,实现滑 坡监测。应用本发明的技术方案,效果是:可以实 时对坡体进行监测,经过将滑坡位移进行放大处 理使得微小的滑坡量也可以直接监测出来,监测 的精度高,同时将监测的数据及时的传送给监测 人员以便及时采取相应的处理措施,起到保护人 们生命和财产安全的作用。权利要求书1页 说明书5页 附图1页CN 109785587 A 2019.05.21 C N 109785587 A

权 利 要 求 书1/1页CN 109785587 A 1.一种基于北斗卫星定位的监测装置,其特征在于,包括监控装置、数据处理箱以及反馈装置,其中监控装置和数据处理箱连接,数据处理箱和反馈装置连接;所述监控装置用于监测滑坡的位移;所述数据处理箱根据监控装置所监测到的滑坡位移的情况控制反馈装置进行动作,实现滑坡监测。 2.根据权利要求1所述的基于北斗卫星定位的监测装置,其特征在于,所述数据处理箱包括拉力传感器模块(31)、处理模块(32)、控制模块(33)以及输出模块(34)且各模块之间电连接;所述拉力传感器模块(31)用于接收监控装置的滑坡位移信号,所述处理模块(32)用于放大滑坡位移信号,所述控制模块用于根据放大信号控制输出模块(34)动作,所述输出模块通过牵引绳(4)连接所述反馈装置实现反馈装置根据放大信号动作。 3.根据权利要求2所述的基于北斗卫星定位的监测装置,其特征在于,所述反馈装置包括电机(5)、安装箱(6)、北斗定位天线(7)以及安装座(8);所述安装座(8)上设有用于安装电机(5)的型腔,所述电机设置于型腔内,所述安装箱(6)设置于电机(5)上,所述北斗定位天线(7)由电机(5)驱动进行运动;所述安装箱(6)内相对设置第一导体(61)和第二导体(62),其中第一导体(61)与电机(5)电连接,第二导体通过弹簧设置于所述安装箱上,所述牵引绳(4)和第二导体连接实现牵引绳(4)带着第二导体与第一导体贴合或者分开,从而实现电机通电或断电,进而实现电机(5)带着北斗定位天线(7)运动,所述北斗定位天线将运动前和运动后的位置信息传输给监测人员,从而实现滑坡检测。 4.根据权利要求3所述的基于北斗卫星定位的监测装置,其特征在于,所述反馈装置还包括传送带(9)和支架(10),所述传送带(9)两端均设置转轴且其中的一个转轴与电机(5)的输出轴连接,从而实现电机驱动传送带(9)运动;所述支架(10)设置于安装座(8)上,用于支撑所述传送带和转轴;所述北斗定位天线(7)设置于传送带上且跟随所述传送带运动。 5.根据权利要求3或4所述的基于北斗卫星定位的监测装置,其特征在于,所述安装电机(5)的型腔的侧面设有检修口(51)。 6.根据权利要求2所述的基于北斗卫星定位的监测装置,其特征在于,所述监控装置包括用于监测滑坡位移的定位器(1),所述定位器的顶部设有信号发射头(11),侧面设有拉环(12);所述拉环(12)通过拉绳(2)与所述拉力传感器模块(31)连接实现将监测到的滑坡位移传递给数据处理箱。 7.根据权利要求6所述的基于北斗卫星定位的监测装置,其特征在于,所述拉绳(2)包括拉绳本体和安装套(21),所述拉绳本体设置于安装套内且所述拉绳本体可以相对于安装套运动。 8.根据权利要求7所述的基于北斗卫星定位的监测装置,其特征在于,所述拉绳精度为毫米级别。 2

北斗车载终端技术说明书

通讯模块: 通讯模块采用HUAWEI EM660 通讯方式:TCP/IP、UDP/IP ; 工作电压:3.9V; 工作电流:最大峰值280MA; 工作频段:900MHZ、1800MHZ、GPRS Class 8; 工作环境:-20℃~ +70℃; 定位模块: 定位模块采用:UBLOX- 5S; 输出格式:0183(GPRMC、GPGGA、GPVGT); 波特率:9600; 工作电压:3V; 工作电流:<30mA; GPS通道:16通道; 启动参数:热启动:<5秒;温启动:<38秒;冷启动:<45S; 刷新率:1次/秒; 定度精度:<15米; 整机参数: 型号:BE-910C 品牌:贝尔科技 体积:长120mm 宽155mm 高45mm;颜色:棕红色; 重量:1.2KG; 工作电压:宽电压DC 9V~34V 工作环境:-20℃~ +70℃ 过压保护门阀:32V~100V 通讯方式:SMS、UDP、TCP 操作系统:嵌入式RTOS操作系统; 视频压缩标准:H.264 预览分辨率:PAL:704×576(4CIF);NTSC:704×480(4CIF) 回放分辨率:4CIF/DCIF/2CIF/CIF/QCIF 视频输入:1/4路(PAL/NTSC自动识别;电平:1.0Vp-p,阻抗:75Ω),视频输出:1路(PAL/NTSC可选;电平:1.0Vp-p,阻抗:75Ω) 视频帧率:PAL:1/16 ~ 25帧/秒;NTSC:1/16 ~ 30帧/秒 视频压缩码率:32K ~ 2M可调,也可自定义,上限8M(单位:bps) 音频压缩标准:OggVorbis 音频输入:1/2路(电平:2.0~2.4Vp-p,阻抗:1000Ω) 音频输出:1路(电平:2.0~2.4Vp-p,阻抗:600Ω) 码流类型:可选择单一视频流或复合流 报警输入:7路电平信号输入,1路脉冲信号输入 报警输出:2路开关量或干节点号输出 无线网络传输:模块内置,SMA天线接口 GPS定位:内置高灵敏度GPS模块,SMA天线接口 数据存储:SD卡存储,支持最大容量16GB 数据备份:SD卡备份、USB备份

北斗卫星导航信号串行捕获算法MATLAB仿真报告(附MATLAB程序)

北斗卫星导航信号串行捕获算法MATLAB仿真报告 一、原理 卫星导航信号的串行捕获算法如图1所示。 图1 卫星导航信号的串行捕获算法 接收机始终在本地不停地产生对应某特定卫星的本地伪码,并且接收机知道产生的伪码的相位,这个伪码按一定速率抽样后与接收的GPS中频信号相乘,然后再与同样知晓频率的本地产生的载波相乘。GPS中频信号由接收机的射频前端将接收到的高频信号下边频得到。实际产生对应相位相互正交的两个本地载波,分别称为同相载波和正交载波,信号与本地载波相乘后的信号分别成为,产生同相I支路信号和正交的Q 支路信号。 两支路信号分别经过一个码周期时间的积分后,平方相加。分成两路是因为C/A码调制和P码支路正交的支路上,假设是I支路。当然由于信号传输过程中引入了相位差,解调时的I支路不一定是调制时的I支路,Q支路也一样,二者不一定一一对应,因此为了确定是否检测到接收信号,需要同时对两支路信号进行研究。相关后的积分是为了获取所有相关数据长度的值的相加结果,平方则是为了获得信号的功率。最后将两个支路的功率相加,只有当本地伪码和本地载波的频率相位都与中频信号相同时,最后得到的功率才很大,否则结果近似为零。根据这个结论考虑到噪声的干扰,在实际设计时应该设定一个判定门限,当两路信号功率和大于设定的门限时则判定为捕获成功,转入跟踪过程,否则继续扫描

其它的频率或相位。 二、 MATLAB 仿真过程及结果 仿真条件设置:抽样频率16MHz ,中频5MHz ,采样时间1ms ,频率搜索步进1khz ,相位搜索步进1chip ,信号功率-200dBW ,载噪比55dB (1) 中频信号产生 卫星导航信号采用数字nco 的方式产生,如图2所示。 载波nco 控制字为:carrier_nco_word=round(f_carrier*2^N/fs); 伪码nco 控制字为:code_nco_word=round(f_code*2^N/fs); 图 2 其中载波rom 存储的是正弦信号的2^12个采样点,伪码rom 存储长度为2046的卫星伪码。这样伪码采用2psk 的方式调制到射频,加性噪声很小是理想接收中频信号如图3所示。 图3 理想中频信号 (2)噪声功率估计 实际接收机接收到的导航信号淹没在噪声中, 本程序对接收到的信号进行了 -10

基于北斗卫星导航定位系统的气象水文信息系统

基于北斗卫星导航定位系统的气象水文信息系统 【摘要】气象水文信息与工农业生产、百姓生活、军事活动、科学试验息息相关,构建一个科学合理、运行高效的气象水文信息系统,提高气象水文信息传输的实时性、信息处理的准确性、决策参考的科学性,从而使气象水文信息保障优质、高效。本文构建一个基于北斗卫星导航定位系统的气象水文信息系统,主要介绍系统组成、主要功能和应用情况。 【关键词】北斗卫星导航系统;气象水文信息系统;信息采集 气象水文信息与工农业生产、百姓生活、军事活动、科学试验息息相关,构建一个科学合理、运行高效的气象水文信息系统,提高气象水文信息传输的实时性、信息处理的准确性、决策参考的科学性,为优质、高效的气象水文信息保障提供有力的支持。北斗卫星导航定位系统是我国自主研发的卫星导航定位系统,集定位、短报文通信和授时三大功能于一体,基于北斗卫星导航定位系统的气象水文信息系统能较好地担当气象水文信息保障职责。 一、系统组成 气象水文信息系统主要由气象水文信息自动采集系统、信息传输系统、信息综合应用系统组成。 1.气象水文信息自动采集系统 气象水文信息自动采集系统由气象水文监测室及其所辖自动气象水文监测站、卫星遥测站、移动式气象水文数据采集终端、固定式气象水文数据采集终端和测量船等自动气象要素终端采集设备组成。 2.信息传输系统 数据传输系统由北斗卫星及定位总站组成。北斗卫星接收到采集终端发来的数据后,将其发送给定位总站。总站进行分拣后将数据通过北斗卫星发送到相应气象水文监测室的指挥型用户机;同时将所有数据通过地面链路发送到指控中心。定位总站通过逆向流程将指控中心发出的远程终端配置指令通过卫星发送到相应普通型用户机,由普通型用户机发送数据采集终端,进行系统识别码、采集频率等参数的修改。 3.信息综合应用系统 信息综合应用系统由信息分析处理机、信息显示设备、信息存储设备、信息应用工作站、网络互联设备、网络安全设备、信息交换处理机等组成。 二、系统功能

北斗卫星导航系统测量型终端通用规范(预)要点

北斗卫星导航系统测量型终端通用规范(预) 2014.08.14 1 范围 本标准规定了北斗卫星导航系统测量型终端(以下简称北斗测量型终端)的技术要求、检验方法、检验规则以及标志、包装、运输和贮存等。 本标准适用于利用载波相位观测值进行静态测量、后处理动态测量、RTK测量的北斗测量型终端的研制、生产和使用。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ?GB/T 191 包装储运图标志 ?GB/T 2828.1—2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 ?GB 4208—2008 外壳防护等级(IP代码) ?GB/T 4857.5 包装运输包装件跌落试验方法 ?GB/T 5080.1—1986 设备可靠性试验总要求 ?GB/T 5080.7—1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案 ?GB/T 5296.1—1997 消费品使用说明总则 ?GB/T 6388 运输包装收发货标志 ?GB 9254—2008 信息技术设备的无线电骚扰限值和测量方法 ?GB/T 9969—2008 工业产品使用说明书总则 ?GB/T 12267-1990 船用导航设备通用要求和试验方法 ?GB/T 12858-1991 地面无线电导航设备环境要求和试验方法 ?GB/T 13384—2008 机电产品包装通用技术条件 ?GB/T 15868—1995 全球海上遇险与安全系统(GMDSS)船用无线电设备和海上导航设备通用要求、测试方法和要求的测试结果 ?GB/T 16611—1996 数传电台通用规范 ?GB/T 17626.3—2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 ?GB/T 19391—2003 全球卫星定位系统(GPS)术语及定义 ?GB/T 20512 GPS接收机导航定位数据输出格式

北斗卫星导航信号串行捕获算法MATLAB仿真报告(附MATLAB程序)

北斗卫星导航信号串行捕获算法MATLAB仿真报告(附MATLAB 程序)

北斗卫星导航信号串行捕获算法MATLAB仿真报告 一、原理 卫星导航信号的串行捕获算法如图1所示。 × × ∑∫( )2 本地PRN发生器 ∫( )2 本地载波发 生器 GPS中频信号 × 判决检 波 器 ≥VT? Yes 转跟 踪 NO 继续搜索 图1 卫星导航信号的串行捕获算法 接收机始终在本地不停地产生对应某特定卫星的本地伪码,并且接收机知道产生的伪码的相位,这个伪码按一定速率抽样后与接收的GPS中频信号相乘,然后再与同样知晓频率的本地产生的载波相乘。GPS中频信号由接收机的射频前端将接收到的高频信号下边频得到。实际产生对应相位相互正交的两个本地载波,分别称为同相载波和正交载波,信号与本地载波相乘后的信号分别成为,产生同相I支路信号和正交的Q 支路信号。 两支路信号分别经过一个码周期时间的积分后,平方相加。分成两路是因为C/A码调制和P码支路正交的支路上,假设是I支路。当然由于信号传输过程中引入了相位差,解调时的I支路不一定是调制时的I支路,Q支路也一样,二者不一定一一对应,因此为了确定是否检测到接收信号,需要同时对两支路信号进行研究。相关后的积分是为了获取所有相关数据长度的值的相加结果,平方则是为了获得信号的功率。最后将两个支路的功率相加,只有当本地伪码和本地载波的频率相位都与中频信号相同时,最后得到的功率才很大,否则结果近似为零。根据这个结论考虑到噪声的干扰,在实际设计时应该设定一个判定门限,当两路信号功率和大于设定的门限时则判定为捕获成功,转入跟踪过程,

否则继续扫描其它的频率或相位。 二、 MATLAB 仿真过程及结果 仿真条件设置:抽样频率16MHz ,中频5MHz ,采样时间1ms ,频率搜索步进1khz ,相位搜索步进1chip ,信号功率-200dBW ,载噪比55dB (1) 中频信号产生 卫星导航信号采用数字nco 的方式产生,如图2所示。 载波nco 控制字为:carrier_nco_word=round(f_carrier*2^N/fs); 伪码nco 控制字为:code_nco_word=round(f_code*2^N/fs); 32位Adder 12位载波rom 模2046计数器 伪码rom 32位Adder Divide by 2^20 溢出时输出 脉冲 carrier_nco_word code_nco_word fsample × × + 幅度 加性噪声 图 2 其中载波rom 存储的是正弦信号的2^12个采样点,伪码rom 存储长度为2046的卫星伪码。这样伪码采用2psk 的方式调制到射频,加性噪声很小是理想接收中频信号如图3所示。

基于北斗卫星导航定位系统的水利监控管理系统

基于北斗卫星导航定位系统水利监控管理方案 北京长缨神舟科技有限公司

目录 1引言 (6) 1.1 概述 (6) 1.2 项目必要性 (7) 1.3 设计依据 (9) 1.3.1 参考资料 (9) 1.3.2 可行性分析 (10) 2任务与功能 (12) 2.1 实现任务 (12) 2.2 功能需求 (14) 2.2.1 气象水文数据的实时采集 (14) 2.2.2 水利水情信息实时查询 (15) 2.2.3数据的实时传输 (15) 2.2.4电子地图 (15) 2.2.5 路线规划 (16) 2.2.6 修改远端测站参数 (16) 2.2.7终端设备安装、维护简易 (16) 2.2.8接收报警信息 (16) 2.2.9 通信回执 (16) 2.2.10 实时通信 (17) 2.2.11数据库查询 (17) 2.2.12历史数据回放 (17)

2.2.13数据分发和共享 (17) 2.2.14 短信通信 (17) 3性能指标要求 (18) 3.1中心基本技术要求 (18) 3.1.1 功能要求 (18) 3.1.2 其它技术要求 (19) 3.2 接口技术要求 (20) 4系统总体设计 (21) 4.1系统的设计目的、思路与原则 (21) 4.1.1 设计目的 (21) 4.1.2 研制思路与关键技术策略 (21) 4.1.3 设计原则 (22) 4.2系统组成结构 (23) 4.2.1 系统总体结构 (23) 4.2.2 子系统的组成及配置 (25) 4.2.2.1气象水文数据自动采集子系统 (25) 4.2.2.2 数据传输子系统 (30) 4.2.2.3 数据综合应用子系统 (32) 4.3系统工作原理 (35) 4.3.1 系统工作模式 (35) 4.3.2北斗信号上行工作原理 (36) 4.3.3北斗信号上行工作原理 (37)

北斗数据采集终端安装

北斗一号数据采集终端安装手册 1.设备简介 目前用于数据采集业务的北斗设备主要有:XDCZ-YX-III/G型用户机(简称海岛机)和北斗一号一体式通用型用户机两种,如下图。这两种设备都具有北斗定位、通信功能,可实现独立组网,也可与多种传感器相连,从而实现水文,气象,地质,森林防火等各类大型管线行业的数据传输和实时监控。适用于常规通信无法实现的场所及长期无人值守的基站工作。 设备的组成: ?天线 ?馈线(线缆) 图1-1 XDCZ-YX-III/G型用户机

图1-2 XDCZ-YX-III/G型用户机 图1-3 北斗一号一体式通用型用户机

2.设备安装 1)安装地点的选择:天线可以安装在地面或建筑物顶部的开阔地,可视用户所在 场地具体情况而定,但是应保证卫星信号传递链路上没有遮挡与电磁干扰。 2)确定有无遮挡的原则:以拟定的安装点的正南方为0度,在偏西50度,偏东 50度内的扇区内应无高大建筑(即图一中阴影区),详见图一;确定扇区内建 筑不超高的标准是:建筑物最高点与天线安装点间的连线,与地平线的夹角应 小于15度,详见图二。 3)天线安装点应尽量远离高压线路、变电所、广播电台、微波基站等干扰源,最 小距离应保持在1公里以上,以减少电磁干扰对卫星信号的影响;两侧、后方 5米内无面状金属物或金属栅栏等其他可能造成电磁反射干扰的物体。 4)避雷:在多雷电地区,要装避雷针。避雷针应高于天线,确保天线位于避雷针 的有效保护之下(避雷针顶点与天线顶点的连线同避雷针垂直方向的夹角要小 于45°,见图三,避雷针务必连接大地,接地电阻越小越好。

5)天线安装位置周围要有足够的活动空间。2x2米范围内无墙壁、树木、机器等 障碍物,以便于天线及卫星室外设备的安装。 6)天线安装位置应高于地面或支架于空中,以免天线附近形成积水。 7)应安装在人和动物难以接触到的地方,或有一定的保护措施,以防人为或意外 损坏。 图四 图五

基于北斗卫星通信的电力公司弱信号地区电能量数据采集系统解决方案

基于北斗卫星通信的 电力公司弱信号地区电能量数据采集系统 解决方案 2017年3月

目录 1项目背景 (3) 1.1项目需求 (3) 1.2北斗通信应用概况 (4) 2北斗卫星通讯系统技术特点 (6) 3系统解决方案 (7) 3.1系统架构 (7) 3.1.1系统构成 (7) 3.1.2厂站端子系统功能 (7) 3.1.3主站端接入系统功能 (8) 3.2电力集抄协议与北斗通信协议规约转换 (10) 3.3长报文传输 (10) 3.4拆、组包原理 (11) 3.5系统技术特点 (11) 3.5.1现场施工方便、便于维护 (11) 3.5.2不占用其它网络资源 (12) 3.5.3北斗通信通道免费、后期维护成本低 (12) 3.5.4通信带宽 (12) 4系统组成 (13) 4.1设备配置清单 (13) 4.2附件 (13) 详见北斗一体机终端规格书 (13) 详见北斗指挥机终端规格书 (13) 详见北斗多卡机终端规格书 (13)

1项目背景 1.1项目需求 在2011年,国网公司对各网省电力公司提出了对居民用电信息,各厂站电能量数据实现“全覆盖、全采集”的要求。 根据国网公司的要求,各网省公司需逐步加强对各类厂站的管控力度,对其发、售电量,供电可靠性等实时数据信息都急需了解,以利于全面掌握电力公司的经营情况。 目前电网行业的数据通信应用方式中,主要采用光纤、微波或手机公网(GPRS、3G等)通道进行通信,而对于广大人烟稀少山区、牧区、深山中的峡谷水电站等,其既无光纤通路,也尚无法保证稳定的公网信号覆盖,这种地区上述通信方式则显得无能为力,而新建设通信通道存在着成本高昂、通信架构受限、建设与维护等问题。 据初步调研的两个案例如下: 案例一:四川省内共有小型水电站3000余座,其中弱信号(无线公网信号较弱或未覆盖地区)的电站有800余座,主要分布在雅安、阿坝、凉山、攀枝花、甘孜等地区,地理位置较为偏僻。另外,在这些地区(以及在其它地区若干地点),尚有涉及电能量采集业务的其它应用方式同样存在弱信号的情况,影响了省公司对发电、用电信息的及时掌控。 案例二:青海省内共有600多个自然村庄因通信手段匮乏无法完成自动抄表,需依靠每月一次的人工方式进行走抄,有些村庄甚至开车进去,当天无法往返。这种方式下不仅数据的实时性不强,还极大的浪费了人力物力。 以上的案例描述几乎是中国1/3地区的共同需求,其它省份如云南、贵州、新疆、西藏、甘肃等。因此,如何获得一种行之有效的通信通道来解决众多项目的主要通信需求。 这样的地区信号非常弱或根本没有信号,而且长期得不到解决,导致两个问题:一是远方采集设备不能正常工作,数据采集成功率很低,仍然需要人工现场补充抄取,不能满足营销运营管理的要求;二是现有采集设备由于通信通道的瓶颈得不到

北斗终端与室内外定位方案

项目实施方案 项目名称:北斗多模行业手持终端与室内外无缝定位服务平台研制与产业化 项目申报单位(制造商):北京东方联星科技有限公司 (用户):易程科技股份有限公司 项目联系人:柳进宇 联系电话:传真: 电子邮箱: 二○一三年二月一日 项目基本情况表

目录 一、项目研制背景 (9) (一)国内外发展现状 (15) (1)行业对位置服务通信调度需求现状 (15) (2)卫星导航国外产业现状 (16) (2)卫星导航国内产业现状 (20) (3)室内外无缝覆盖定位技术发展现状 (22) (二)项目研制意义 (25) 二、项目研制内容 (28) (一)主要研制和示范应用 (28)

(1)项目研制目标 (28) (2)项目研制内容 (29) (3)项目应用示范内容 (33) (二)主要性能指标及先进性 (35) (1)主要性能指标 (35) (2)先进性 (41) 三、项目研制方案 (44) (一)技术方案 (44) (1)北斗多模卫星导航芯片OTrack-32A技术方案 (44) (2)项目终端技术方案 (49) (3)室内外无缝定位系统技术方案 (61) (4)多媒体协同通信调度系统技术方案.....................69(二)关键技术及解决途径 (78) (三)项目研制基础 (86) (1)研制方北京东方联星科技有限公司介绍 (86) (2)应用方易程科技股份有限公司 (95) (3)项目研制相关基础 (104) (4)项目应用相关基础 (121) (四)研制进度及实施周期 (130) 四、项目投资测算 (132) (一)编制依据 (132) (二)投资规模汇总分析表 (132) (三)资金来源及使用范围 (135) (四)年度投资计划 (136) 五、项目组织实施方案 (139) (一)合作模式 (115)

(完整版)北斗卫星导航系统常识简介

北斗卫星导航系统常识简介 一、北斗卫星导航系统现状 中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 北斗卫星导航系统空间段由5颗静止轨道卫星(又称24小时轨道,指轨道平面与赤道平面重合,卫星的轨道周期等于地球在惯性空间中的自转周期,且方向亦与之一致,即卫星与地面的位置相对保持不变,故这种轨道又称为静止卫星轨道。一般用作通讯、气象等方面)和30颗非静止轨道卫星组成,2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。中国正在实施北斗卫星导航系统建设,截止2016年10月已成功发射16颗北斗导航卫星。 2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。北斗导航系统是覆

盖中国本土的区域导航系统,覆盖范围东经约70°-140°,北纬5°-55°。北斗卫星系统已经对东南亚实现全覆盖。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。 北斗产业应用前景广阔,预计到2020年,仅北斗卫星导航市场将达到年产值4000亿元人民币,年复合增长率达到40%以上。”中国科学院院士、中国工程院院士、著名测量与遥感学家李德仁介绍说 二、卫星定位原理 北斗卫星导航系统35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。

北斗授时终端现状概述

北斗授时终端现状概述 近些年来,北斗卫星导航系统的逐渐崛起使得北斗授时终端应时而生。毫无疑问,北斗授时终端相关产业和方向的研究也必将会成为一大热门。 一、北斗授时终端简介 授时技术一般来说主要包括短波授时、长波授时、网络授时和卫星授时。其中卫星导航授时因为其具有精度高、覆盖范围广、全天时、全天候和设备成本低等诸多优点,越来越受到各类用户的青睐。 利用所接收导航信号解算的高精度时间信息综合实现了NTP、B码、PTP和串口等的高精度授时服务的设备即为授时终端。 电力、金融、电信是与国家安全和人民利益息息相关的重要领域,它们对时间系统的同步性往往都有着很高的要求。之前我国在这些领域使用的都是美国GPS授时技术,不但受制于人,还存在着极大的安全隐患。但是随着我国北斗卫星导航系统(BDS)和北斗授时技术的快速发展,北斗授时产品目前正在逐步替代着GPS授时产品。 二、北斗授时原理 北斗授时根据其授时方式的不同,大致可以分为单向授时和双向授时两种。 1、单向授时 单向授时是由授时终端接收卫星信号,解算出基本观测量信息和导航电文信息,进而获得钟差修正本地时间,使得本地时间与UTC同步。当然,单向授时细分之下也可分为RNSS 单向授时与RDSS单向授时两种模式。鉴于文章篇幅原因,这里不再赘述。 简单来说,单向授时是北斗授时终端可以自主实现的一种定时功能。 2、双向授时 相对于单向授时而言,双向授时具有较高的授时精度。 首先,双向授时设备具备出站信号接收和应答发射入站信号的能力。它通过与地面中心站进行往返测量,由中心站获得授时终端与地面中心站的时间差值。这样它就可以避免授时终端天线位置误差、电离层/对流层改造残差等诸多不确定因素引起的单向授时偏差。 授时终端发起授时申请,与地面中心站进行交互,向地面中心站发送定时申请,地面中心站计算其与授时终端的时间差,并通过出站信号播发给该授时终端,授时终端返回的正向传播时延信息T正向及出站电文获得的RDSS系统时间与UTC时间差值?T(GNT-UTC),修正本地时间使其与UTC时间同步完成双向授时。?TJST-UTC=T测量-T正向-T接收零值+?TGNT-UTC(5)。

基于北斗卫星系统的远程数据传输与控制技术研究

CSNC2010 第一届中国卫星导航学术年会 北京
基于北斗卫星系统的远程数据传输与控制技术研究
朱永辉 白征东 过静珺
(清华大学地球空间信息研究所,北京,100084) 摘 要:本文介绍了北斗卫星系统通信的流程与特点,分析比较了远程数据传输与控制模式,在此基础上结合北斗卫星
通信的特点,重点阐述了基于北斗卫星系统的远程数据传输与控制模式以及系统应用层协议开发原则,最后结合项目背 景给出了技术应用情况及结论。 关键词:北斗卫星;数据传输;应用层协议
1 前言
北斗卫星系统可以为覆盖范围内的授权用户提供全天候、全天时的导航定位、通信和授时服务,应 用领域十分广泛。目前,北斗卫星系统应用的一个很重要方面就是利用其通信功能建立远程数据传输与 控制系统,如水文预报、气象预报、地质灾害监测、海洋渔业监控等应用系统。
2 北斗卫星通信
2.1 工作流程
如图 1 所示,北斗卫星系统通信的工作流程为:短报文发送方首先将包含接收方 ID 号和通信内容的 通信申请信号加密后通过卫星转发至地面中心站(入站信号);地面中心站处理接收到的入站信号,并将 其发送到地面网管中心;地面网管中心接收到通信申请信号后,经解密和再加密后发送至地面中心站; 地面中心站将其加入持续广播的出站电文中,经卫星广播给用户;用户机接收出站信号,解调解密出站 电文,完成一次通信。
图 1 北斗卫星系统通信示意图
2.2 北斗卫星通信技术优势与限制
北斗卫星通信除了覆盖范围大、没有通信盲区、安全、可靠等优点外,北斗卫星系统采用一级指挥 的通信方式,用户终端可以根据功能不同分配不同的角色,分为指挥型接收机和通信型接收机,这是北
1 — 1 —

北斗卫星导航系统导航型终端通用规范

北斗卫星导航系统导航型终端通用规范 范围本标准规定了北斗卫星导航系统导航型终端(以下简称为导航型终端)的技术要求、测试方法、检验规则、标志、包装、运输和贮存等内容。本标准适用于地面和船舶使用导航型终端的研制和生产,也是制定产品规范和检验产品质量的依据。2 规范性引用文件下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。· GB/T1912003计数抽样检验程序 第1部分:按接收质量限(AQL)检索的逐批检验抽样计划· GB42081992包装运输包装件跌落试验方法· GB/T50 80、11986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案· GB/T52 96、11990 船用导航设备通用要求和试验方 法· GB/T12858xx机电产品包装通用技术条 件· GB15842xx电磁兼容试验和测量技术射频电磁场辐射抗扰度试验3 术语、定义和缩略语 3、1 术语和定义北斗卫星导航系统用户终端通用技术要求确立的以及下列术语和定义适用于本文件。

3、1、1 首次定位时间 time to first fixTTFF 用户终端从开机到第一次解算出位置结果所需时间。通常包括用户终端初始化时间、测量时间、星历接受时间和定位解算时间。 3、1、2 重捕时间 re-acquisition time卫星信号重捕时间,是指接收设备在信号满足灵敏度要求的条件下,短时间(30 s内)失锁后重新捕获卫星信号并获得满足精度要求的位置信息所需的时间。 3、1、3 电子地(海)图数据库 map database for navigation按特定格式存储的,并与导航信息有关的数字地(海)图信息数据库。通常与地(海)图有关的信息包括编码数据、航线计算数据、背景数据和参考数据等。 3、1、4 电子地(海)图匹配 map matching从定位模块获取到的位置(轨迹)与电子地(海)图数据库所提供的地(海)图的位置(路径)进行匹配来确定用户在地(海)图上位置的一种技术。 3、1、5 航线计算 route calculating利用电子地(海)图数据库所提供的地(海)图帮助用户行进前或行进中规划航线的过程。 3、1、6 航线引导 route guidance用户沿着规划出的航线行进的过程。 3、1、7 机动引导 maneuver guidance在航线中遇到交叉口时,不是直行通过时提供的引导。

北斗卫星导航系统测量型终端通用规范

北斗卫星导航系统位置报告/短报文型终端通用规 范(预) 2014.08.14 1 范围 本通用规范规定了北斗卫星导航系统位置报告/短报文型终端(简称为北斗通信终端)的技术要求(包括一般要求、功能要求、性能要求、环境适应性要求)、试验方法、检验规则、以及包装、运输和储存等要求。 本标准适用于北斗通信终端的研制、生产和使用,也是制定北斗通信终端产品标准、检验产品质量和产品应用选型的依据。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ?GB/T 191 包装储运图示标志 ?GB 2312—1980 信息交换用汉字编码字符集基本集 ?GB/T 2828.1—2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 ?GB 4208—2008 外壳防护等级(IP代码) ?GB/T 4857.5 包装运输包装件跌落试验方法 ?GB/T 5080.1—1986 设备可靠性试验总要求 ?GB/T 5080.7—1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案 ?GB/T 5296.1—1997 消费品使用说明总则 ?GB/T 12267—1990 船用导航设备通用要求和试验方法 ?GB/T 12858—1991 地面无线电导航设备环境要求和试验方法 ?GB/T 13384—2008 机电产品包装通用技术条件 ?GB 15702—1995 电子海图技术规范

?GB 15842—1995 移动通信设备安全要求和试验方法 ?GB/T 17626.3—2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 3 术语、定义和缩略语 3.1 术语和定义 下列术语和定义适用于本标准。 3.1.1 北斗卫星导航系统 BeiDou navigation satellite system 中国的全球卫星导航系统,简称北斗系统(BeiDou)。具有卫星无线电测定(RDSS)和卫星无线电导航(RNSS)两种业务,可以提供导航、定位、授时、位置报告和短报文服务。 3.1.2 北斗终端 BeiDou terminal 北斗系统各种用户应用终端的总称。北斗终端按照应用北斗卫星业务的不同服务模式,分为北斗RDSS终端和北斗RNSS终端两种类型;按其用途主要分为导航型终端、测量型终端、定时型终端和位置报告/短报文型终端。 3.1.3 北斗RDSS终端 BeiDou RDSS terminal 利用北斗RDSS业务,可以提供定位、导航、定时、位置报告和短报文通信全部或部分功能的终端。 3.1.4 指挥管理型终端 command and management terminal 利用北斗RDSS业务兼收下属用户的定位和通讯信息的多用户地址码,一般具有用户信息管理、通播、组播、单播、查询、调阅、指挥调度和管理功能的北斗通信终端。

基于北斗卫星技术

基于北斗卫星技术 在一个快速发展的信息社会,导航定位系统在军事,民用各方面都起着至关重要的作用,它作为强国的基础设施之一,也是未来发展的必然趋势。美国俄罗斯欧洲相继建立和发展了自己定位导航系统,中国也不甘落后,成为发展导航系统的后起之秀,成功建立了北斗卫星导航系统,该系统的发展和应用不仅对其他定位导航系统产生了强有力的竞争,更重要是使中国在世界提高了地位,有着重要的战略意义。 北斗卫星导航系统是中国自主研发、独立运行的全球卫星导航系统。中国历经几十年的发展,成功建立和应用了北斗卫星导航系统,标志着中国成拥有自主卫星导航系统的国家。“北斗”卫星导航系统包括35颗卫星,其中包括27颗中高度圆轨道卫星,5颗地球静止轨道卫星,3颗倾斜地球同步轨道卫星。它们能提供持续而实时的被动三维地理空间定位和速度测算。它由三部分组成,分别是空间端,地面端和用户段组成。 GPS是美国开发和应用的定位导航系统。20世纪70年代的新一代卫星定位系统,它以实时精确和全球性的服务为特点,主要为陆海空提供服务,可以搜集情报。紧急通讯和各点检测等。经过20多年的发展和应用,到1994年,美国的GPS覆盖已经达到98%,这表明美国在世界上占有绝对的优势和主动权。GPS发射的信号有精码和粗码之分,精码的定位信息精度高于粗码,主要用于本国或盟国的军事的保密码。粗码供全世界使用,不限制用户数量。 格洛纳斯GLONASS”是俄罗斯的定位导航系统,开始于70年代中期。到21世纪初期格洛纳斯随着俄罗斯经济好转快速发展,更新了定位系统,于2011年1月在全球正式运行。格洛纳斯系统使用频分多址(FDMA)的方式,每颗格洛纳斯卫星广播两种信号,L1和L2信号,很大程度上提高了它的定位精度。系统提供全球导航和定时服务,用户不受数量限制的免费试用。 欧洲“伽利略”系统为了摆脱对美国GPS系统的依赖,于1999年合作启动了“伽利略”项目。它的系统具有定位导航授时服务,并有救援与搜索等特殊服务。伽利略系统是世界上第一个基于民用的,用户可以用多制式接收机来获得更多信号,使导航定位精度大大提高。 北斗卫星导航系统是中国自主研发、独立运行的全球卫星导航系统。2000年,中国建成北斗导航试验系统,并于2011年12月开始向中国及周边地区提供服务。它由30颗非精致轨道卫星和5颗静止轨道卫星组成,为用户提供免费的导航、定位、授时服务。 综上所述,全球的4大定位导航系统,都由三部分组成,分别是用户端。地面端和空间端。用户端是用户装置部分,由各种定位接收模块与卫星天线组成的,也是用户进行数据接收分析及传送相关定位数据的终端。地面端是由一个主控制站几个监测站。天线和通讯系统组成的,他们负责对每一颗卫星进行监视、跟踪、遥测及控制。空间端是由静止卫星和非静止卫星组成,每个定位系统卫星数量稍有不同,他们负责发射一定频率的无线电信号供定位模块接收数据使用。 每个定位导航系统都提供定位、导航和授时服务,为本国及全球用户提供免费服务。它们每个有各自的优势,GPS为美国研发,现在它的应用已经覆盖全球绝大部分的用户,在定位系统之中占有绝对的优势;格洛纳斯系统使用频分多址(FDMA)的方式,抗干扰能力很强;伽利略系统是世界上第一个基于民用的,定位精度能达到1米,是现有导航系统中精度最高的;而中国的北斗卫星导航系统

北斗卫星定位车载终端技术方案

北斗卫星定位车载终端技术方案 三、技术原理 北斗卫星导航系统是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),是除美国的全球定位系统(GPS)、俄罗斯的GLONASS之后第三个成熟的卫星导航系统。北斗卫星导航系统为用户提供高质量的定位、导航和授时服务,其建设与发展则遵循开放性、自主性、兼容性、渐进性。北斗卫星定位车载终端采用了多模块化、组合式优化设计,内置高性能芯片,各模块之间的接口采用标准接口,充分利用系统平台、移动通讯网络、因特网络,将汽车行驶记录仪、卫星定位、卫星导航、油耗检测功能集于一体,通过无线数据通讯接口(GSM、GPRS、CDMA)和GPS接口,能与监控中心系统进行数据通信和移动位置的定位,能够满足用户的多种需求。 除具有传统行驶记录仪的功能外增加了定位导航、监控跟踪、数据实时传送、油耗检测等功能,并且能够实现对车辆实时监管、调度,遇险报警远程网络监控,彻底改变了现有汽车行驶记录仪只能实地监管、事后监督的弊端;GPS/北斗2双模卫星定位模块,可以灵活配置信号处理通道工作于单GPS模式,或单北斗2模式,或GPS/北斗2混合模式;兼容目前现有的GPS单模定位,且能实现双模捕获、双模跟踪更加智能化、集成化。因此,基于以上原理设计的卫星车载终端监控系统,大大超出了传统行驶记录仪的功能,具有极为光明的发展前景。 四、设计方案 (一)设计原则 1、先进性和适用性相结合 系统采用成熟的高新科技,以目前较为先进的方法实现需要的功能,保证系统具有深厚的发展潜力,在相当长的时间内具有领先水平。 2、通用性和安全性相结合 在系统设计过程中,均留有相应的通信接口,系统的各个模块构成一个有机的整体。系统数据库中的各种数据在交换和共享的过程中,充分考虑到了系统的安全性。对每一个用户的权限有严格的认证(司机卡身份识别)体制,对每一个用户的权限进行分级控制和限定。

相关文档
相关文档 最新文档