文档库 最新最全的文档下载
当前位置:文档库 › 数学物理方程结课论文

数学物理方程结课论文

数学物理方程结课论文
数学物理方程结课论文

N-S方程在平板间脉冲流动中的应用

摘要

粘性流体力学是一个历史悠久而又富有新生命力的学科。它与人们日常生活、健康和旅行无不息息相关。早在纪元前希腊学者阿基米德即建立了液体载物的浮力理论,其领先远超于力学建基之始。二千二百年前在冰父子创导下,我国也建利灌舒洪的都江堰,这个伟大工程当时确已掌握现今的水力学原则和近代的工程设计理论。在流体粘性效应的问题上,不乏先进接连攻关,终难胜克,足见其艰困之甚。

近数年代里,由于工业发展的迫切需求,已促进不少新学科的萌芽滋长。诸如能源发展;海洋、大气和陆地交应干扰和持恒;农林牧业的生物科技新探索;城市、河流和山岳的环境保护;疾病防治的医疗科学以及自然灾害的消减和救援等都赋予流体力学新的生命。

纳维-斯托克斯方程又称为N-S方程,是描述实际流体运动的微分方程式,纳维-斯托克斯方程在流体力学中有十分重要的意义。本文将在阐述粘性流体力学的基本方程的基础上,借助于数学软件MAPLE,应用N-S方程解决平行平板间的脉冲流动问题。

关键词:N-S方程,平行平板,脉冲流动,Maple

第一章数学及物理背景

数学物理方程以具有物理背景的偏微分方程(组)作为研究的主要对象,主要是指力学、天文学、物理学及工程技术中提出来的偏微分方程,它是随着17世纪工业生产的发展,伴随着天文学、物理学等自然科学的发展而逐步形成的一门独立学科。描述许多自然现象的数学形式都可以是偏微分方程式,特别是很多重要的物理力学及工程过程的基本规律的数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。所以数学物理方程在推动数学理论发展对于推动数学理论的发展,加强理论与实际的联系,帮助人们认识世界和改造世界都起着重要作用。但是在使用函数和解方程中,针对表达式和符号运算的问题一直困扰着我们,只能依赖铅笔和演草纸进行纯手工计算,现在这些工作都可以借助计算机代数系统来完成。

计算机代数系统包括数值计算、符号计算、图形演示和编程等四部分。在科学研究、教育教学等各个领域得到广泛应用。Maple是一种计算机代数系统,是目前广泛使用的数学计算工具之一。用Maple不但可以进行简单的加减乘除运算,也可以求解代数方程、微分方程,进行微分运算或处理线性代数问题。

纳维—斯托克斯方程是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率和作用在液体部的压力的变化和耗散粘滞力以及引力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维—斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。纳维—斯托克斯方程依赖于微分方程来描述流体的运动。这些方程和代数方程不同,不寻求建立所研究的变量的关系,而是建立这些变量的变化率或通量之间的关系。用数学术语来讲,这些变化量对应于变量的导数。这表示对于给定的物理问题的纳维—斯托克斯方程的解必须用微积分的帮助才能取得。

第二章 纳维—斯托克斯方程

纳维—斯托克斯方程为一组非线性二阶偏微分方程组,一般情况下在数学上求其精确解是非常困难的。只有在某些特殊流动情况下,例如当非线性的迁移项为零的情况下,可以求得精确解。

N —S 方程

dt

du z u y u x u x p X x x x x =??+??+??+??-)(1222222υρ dt du z u y u x u y p Y y y y y =??+??+??+??-)(1222222ρμρ

dt du z u y u x u z p Z z z z z =??+??+??+??-)(1222222ρμρ

对于粘性不可压缩流体的N-S方程而言,压力项及粘性性是线性的,而惯性项却是非线性的。这一非线性项的存在使得在解方程时,碰到很大的困难。

在理想不可压缩流体的 Euler 方程,虽然也存在非线性的惯性项,但是因为相当一部分的实际问题是无旋的。对于无旋流动,问题可归结为求解线性的 Laplace 方程(运动学方程),速度势求出后,压力可由拉格朗日积分或伯努力积分求出(动力学问题),问题得到了很大的简化。

但是粘性不可压缩流体的运动中,运动都是有旋的,因而也不存在拉格朗日积分或伯努力积分,因此不得不求解原始的二阶偏微分方程组。

到目前为止,还没有求解非线性偏微分方程到普遍有效的方法,在流体力学中,求解上述非线性偏微分方程组通常有两种主要途径:

(1)准确解:

在一些简单到问题中,由于问题的特点,非线性的惯性项或者等于零,或者是非常简单的非线性方程组,此时基本方程组或者化为线性方程组,或者化为简单的非线性方程组,从而可以找出方程组的准确解来。但是具有准确解的问题为数很少,而且一般说来很少能直接地用到实际问题中去。

(2)近似解:

根据问题到特点,略去方程中某些次要项,从而得出近似方程。在某些情况下,可以得出近似方程的解。这种途径称为近似方法,可采用近似方法求解

的主要有下列两种情况:

(a)小雷诺数Re情况,此时粘性力较惯性力大得多。可以全部或部分地忽略惯性力得到简化的线性方程。

(b)大雷诺数Re情况,若将粘性力全部略去,并且在物面上相应地提滑移边界条件,这就是理想流体的近似模型。在这个近似模型中无法求出符合实际的阻力。进一步研究发现,在贴近物面很薄的一层"边界层"中,必须考虑粘性的影响,但此时根据问题的特点,可以略去粘性力中的某些项,从而得到简化的边界层方程(仍是非线性的)。而在边界层外,仍可将粘性全部忽略。

(c)对于中等雷诺数Re的情况,惯性力和粘性力都必须保留,此时只能通过其它途径简化问题,或者利用数值计算方法求N-S方程到数值解。

第三章 平行平面间的脉冲流动

平行平面间的脉冲流动是一个可以得到N —S 方程精确解的非恒定流动,它对研究血液流动是有意义的。图1两个固定的平行平面位于y = a ±处,x 处的压强梯度随时间振动,于是x 方向的流速也将随压强梯度而振动。在,y z 方向流

速均为零,即0v =,0w =从而由连续性方程可得0u x

?≡?。于是 ((,),0,0)u u y t = (0.1)

N —S 方程简化为

1*()u p u t x y y υρ????=-+????

(0.2) 边界条件

;0y a u =±= (0.3)

假设压强梯度的振动为以下形式:

()cos p P t A t t

ρρω?=-=-? (0.4) 式中,A 为实数常数,代表振动幅度,ω代表振动频率,则式(1)改写为 ()()cos ()u u u P t A t t y y y y υωυ?????=+=+?????

(0.5) 若流速u 可以表示为

图表 1 平行平板间的脉冲流动

(,)Re[()]i t u y t f y e ω= (0.6)

式中,“Re[]”表示括弧中量的实数部分。代入式(4),得

22Re[]Re[]Re[]i t i t

i t d f i fe Ae e dy ωωωων=+ (0.7) 从而''i f A f ων=+,或写为

''i A

f f ω

νν-=- (0.8) 为函数f 的非齐次线性方程。这个常微分方程的解是由一个常数的特解和齐次方程的通解所组成,即12()()()f y f y f y =+,其中特解为

1()A A f y i i ωω==- (0.9)

其次方程的通解为

2()cosh[(1]sinh[(1]f y M i N i =+++ (0.10)

式中,,M N 为待定系数,由边界条件(,)0,(,)0u a t u a t =-=,可以得出

0cosh[(1]sinh[(1]A i M i N i ν

=-++++ (0.11)

0cosh[(1]sinh[(1]A i M i N i ν=-++-+ (0.12) 从而定出常数,M N

:

M = (0.13) 0N = (0.14)

于是方程(3.8)的解为

()1]iA f y ω=- (0.15)

流速(,)u y t :

(,)Re{1]}i t iA u y t e ωω=- (0.16) 为了直观地分析结果,将,,A ων分别赋予相应的具体数值,并应用MAPLE 作出3D 图像(图像及MAPLE 语句见附录),可以看出,流速与压强梯度具有相同的振动频率ω,但存在随y 而变化的相位差。壁面附近的振幅与中心处振幅不同,由边界条件可以看出在避免处振幅趋近于零。

课程总结

再次接触数学物理方程这门课感触很深,虽然本科阶段对这门课程有过基本的学习,但当时的感觉只是学习从物理问题中抽象出来的数学问题,并没有将方法用于实践,现在更加注重理论与实践的结合,应用数学思想解决实际问题,尤其是解决专业相关的具体问题。数学物理方程这门课素来以“繁,难”著称,较之高等数学有过之而无不及。但是在本次的学习过程中,加入了数学软件MAPLE的学习与应用,使得单纯的数学物理方程的学习变得不再单调和枯燥,并且将所学容应用于专业知识的分析与处理,应用于实际的物理问题。本课程收获颇丰得益于教员鞭辟入里的剖析讲解、启发式的教学模式和团结合作、相互探讨的课堂氛围。在课程进行过程中仍存在一点瑕疵,学生自己准备章节时,部分基础性的理论并没有充分准备,例如行波法非齐次问题的处理这一节中,齐次化原理是求解的基础,但学生授课时并没有准备相关的理论与来由。

最后感田教员的悉心讲解和耐心指导,恭祝教员新年快乐、身体健康。

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0 z f z e d ζζζ= ? ,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)u x y = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y -

大一上学期高数论文

合肥学院 课程论文 专业酒店管理 班级一班 学生姓名张超 学号1514061036 论文题目微积分在生活中的应用 教师王后春

微积分在生活中的应用摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。主要集中几何,经济以及我们在生活中的应用 关键词:微积分,几何,经济学,物理学,极限,求导

绪论 作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。 我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。 希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。 一、微积分在几何中的应用 微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。顿觉微积分应用真的很广! 1.1求平面图形的面积 (1)求平面图形的面积 由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线2 和直线x=l,x=2及x轴所围成的图形的面积。 f x 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为

现代设计方法论文

武汉轻工大学 《现代设计方法》课程结业论文题目:现代设计方法在汽车设计中的应用 姓名 学号 班级 专业 院(系) 2017 年5月21 日

现代设计方法在汽车设计中的应用 宋家鹏 (武汉轻工大学机械工程学院,湖北武汉430070) 摘要:本文在分析汽丰设计方法发展的基础上,重点介绍了汽车设计中有待进一步推广应用的几种现代设计方法和技术。 关键词:现代设计方法;系统工程;模糊分析设计;计算机辅助设计(CAD) 0 引言 现代科学技术的发展对汽车的性能、可靠性、经济性等提出更高的要求同时也为汽车的设计、制造提供了改进和创新的设计方法。据统计,一般汽车的质量和性能有60%-70%取决于汽车设计。因此,在设计新产品时应研究和采用新的设计方法和技术,以适应现代汽车发展的要求。为了寻求保证设计质量、加快设计速度、避免和减少设计失误的方法和措施,引发了“汽车现代设计方法”的研究。 1现代设计和传统设计的比较 传统的设计方法是以经验总结为基础,运用力学和数学而形成的经验、公式、图表、设计手册等作为设计的依据,通过经验公式、近似系数或类比等方法进行设计。而现代设计方法则是强调创造性,在注重产品整体功能基础上以现代设计方法和计算机设计为工具的系统设计。这种设计不但可以大大提高设计的质量、精度和效率,而且可以将产品的适应性、经济性、可靠性统一起来,从而高效地设计出性能优良、经济效益显著的新型产品。目前,设计方法和技术正处于不断改善、不断创造的历史时期。可以预见,新的汽车产品将随着现代设计方法、技术和设计科学体系的完善而有新的突破。 2现代设计法的主要内容 现代设计法是在总结传统设计的经验与教训、吸收国外各设计流派的先进内容的基础上,以形态学为分类手段,以方法学为思想指导,具体形成以下十一论: 功能论:现代设计法的宗旨。是保证设计要求功能实现的方法论。 突变论:现代设计法的基石。是设计创新的基础,如创造性设计。 系统论:现代设计工作的前提。进行系统辩识、系统分析,如系统分析法、人机工程等。 信息论:现代设计的依据。进行信号处理,如信息分析法、技术预测法等。 对应论:现代设计的捷径。采用相似、模拟,如相似设计等。 优化论:现代设计的目标。如优化设计等。 智能论;现代设计的核心。发挥人的主动性,使用人工智能,促进设计自动化,如CAD等。 离散论:现代设计的细解。连续体离散求数值解,如有限元和边界元方法。 控制论:现代设计的深化。如动态分析设计法等。 模糊论:现代设计的发展。模糊性定量描述,如模糊综合评判和决策等。 艺术论:现代设计的美感。如造型设计等。

数学物理方程小结85856

数学物理方程小结 第七章 数学物理定解问题 数学物理定解问题包含两个部分:数学物理方程(即泛定方程)和定解条件。 §7.1数学物理方程的导出 一般方法: 第一确定所要研究的物理量u ,第二 分析体系中的任意一个小的部分与邻近部分的相互作用,根据物理规律, 抓住主要矛盾, 忽略次要矛盾。(在数学上为忽略高级小量.)第三 然后再把物理量u 随时间,空间的变为通过数学算式表示出来, 此表示式即为数学物理方程。 (一) 三类典型的数学物理方程 (1)波动方程: 0 :),(:),(:22222222==??-??=?-??→f 当无外力时t x f x u a t u 一维t r f u a t u 三维 此方程 适用于各类波动问题。(特别是微小振动情况.) (2)输运方程: 0 :).(:),(:2222==??-??=?-??→f 无外源时t x f x u a t u 一维t r f u a t u 三维 此方程 适用于热传导问题、扩散问题。

(3)Laplace 方程: . 0(:0 :).程时泊松方程退化拉氏方f f u 泊松方程u 拉氏方程t r ==?=?→ 稳定的温度和浓度分布适用的数学物理方程为Laplace 方程, 静电势u 在电荷密度为零处也满足Laplace 方程 。 §7.2定解条件 定解条件包含初始条件与边界条件。 (1) 初始条件的个数等于方程中对时间最高次导数 的次数。例如波动方程应有二个初始条件, 一般 选初始位移u (x,o )和初始速度u t (x,0)。而输 运方程只有一个初始条件选为初始分布u (x,o ), 而Laplace 方程没有初始条件。 (2) 三类边界条件 第一类边界条件: u( r ,t)|Σ = f (1) 第二类边界条件: u n |Σ = f (2) 第三类边界条件: ( u+Hu n )|Σ= f (3) 其中H 为常数. 7.3 二阶线性偏微分方程分类 判别式 , ,0,,0,,0221121222112122211212抛物型a a a 椭圆型a a a 双曲型a a a =-=?<-=?>-=? 波动方程是双曲型的,输运方程为抛物型的,而拉普拉斯方程为椭圆型的.

最新数学物理方程期末试卷

最新数学物理方程期末试卷 出卷人:欧峥 1、长度为 l 数学物理方程期末试卷sin A t ω的力的作用,右端系在弹性系数为 k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题.(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进 入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2x l x -,试 写出其定解问题.(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???? ???==??=??=+=-).()(002 22 22x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 222200, y 0, () , .y u u x y u f x x =???+=

浅谈大一微积分

浅谈大一微积分 姓名:龚文皓学号:1511010411 关键词:微积分,极限,求导,不定积分 什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。 微积分是每个大学生都必修的内容,而学习微积分,我们首先学习的就是极限,数列,函数都有极限,在没有进入大学之前,我们的知道了极限这个名词。但是一次没有介绍过,然而在我们的学习中一直在用到极限思想来解决一些数学问题。极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从直线形认识曲线形,从近似认识精确。所以学习极限对于学习微积分这一块是十分重要的,极限就是微积分学习的基础,盖房的砖瓦。 再接着我们学习的就是导数了,求导我们在高中的学习中已经无数次的用到了它,有时候解决一些物理问题,如天体的运动也要利用到求导。导数的概念是从良多现实的科学问题抽象而发生的,在经济剖析、经济抉择妄想、经济打点中,有着普遍的应用意义其作为数学剖析课程中最主要的根基概念之一,反映了一个变量对另一个变量的转变率。在经济学中,也存在转变率问题,如:边际问题和弹性问题。运用导数可以对经济活动中的实际问题进行边际分析、需求弹性分析和最值分析,从而为企业经营者科学决策提供量化依据。如今许多企业在判断一项经济活动对企业的利弊时,仅仅依据它的全部成本。而我认为还应当依据它所引起的边际收益与边际成本的比较。求导也就是求函数的变化率,它直观的反映出一种变化趋势,所以我们要学会求导,掌握好这一数学工具。 求导是微分运算,而不定积分是积分运算,微分运算和积分运算是互逆的。我们可以通过积分的形式可以求出路程,不规则图形面积,可以帮我们解决一些问题复杂问题,而求积分又涉及了多种方法,学习掌握好不定积分的求法很重要,也可以帮助我们更加深层次的理解理解微分,什么是微分以及为什么要微分。对于微积分的学习很有帮助。 总而言之,因为微积分是高等数学学习的入门,所有很有必要每个大学生都掌握好微积分的知识,以便今后的高等数学的学习。以为微积分还可以解决很多经济学上的问题,可以帮助我们从数学角度去分析经济学,对于之后所要学习的其他学科也有一定的帮助。以上是我关于微积分学习的一点收获。

现代设计方法3000字总结

现代设计方法 现代设计方法是随着当代科学技术的飞速发展和计算机技术的广泛应用而在设计领域发展起来的一门新兴的多元交叉学科。以满足市场产品的质量、性能、时间、成本、价格综合效益最优为目的,以计算机辅助设计技术为主体,以知识为依托,以多种科学方法及技术为手段,研究、改进、创造产品和工艺等活动过程所用到的技术和知识群体的总称。 现代设计方法有:并行设计、虚拟设计、绿色设计、可靠性设计、智能优化设计、计算机辅助设计、动态设计、模块化设计、计算机仿真设计、人机学设计、摩擦学设计、反求设计、疲劳设计。 一、并行设计 并行设计是一种对产品及其相关过程(包括设计制造过程和相关的支持过程)进行并行和集成设计的系统化工作模式。强调产品开发人员一开始就考虑产品从概念设计到消亡的整个生命周期里的所有相关因素的影响,把一切可能产生的错误、矛盾和冲突尽可能及早地发现和解决,以缩短产品开发周期、降低产品成本、提高产品质量。 二、虚拟设计 在达到产品并行的目的以后,为了使产品一次设计成功,减少反复,往往会采用仿真技术,而对机电产品模型的建立和仿真又属于是虚拟设计的范畴。所谓的虚拟制造(也叫拟实制造)指的是利用仿真技术、信息技术、计算机技术和现实制造活动中的人、物、信息及制造过程进行全面的仿真,发现制造过程中可能出现的问题,在真实制造以前,解决这些问题,以缩减产品上市的时间,降低产品开发、制造成本,并提高产品的市场竞争力。 三、绿色设计 绿色设计是指以环境资源保护为核心概念的设计过程,其基本思想就是在设计阶段就将环境因素和预防污染的措施纳人产品设计之中,将环境性能作为产品的设计目标和出发点,力求使产品对环境的影响为最小。 产品设计的基本流程为:市场调研--草图构思--方案设计。 四、可靠性设计 机电产品的可靠性设计可定义为:产品在规定的条件下和规定的时间内,完成规定功能的能力。可靠性设计是以概率论为数学基础,从统计学的角度去观察偶然事件,并从偶然事件中找出其某些必然发生的规律,而这些规律一般反映了在随机变量与随机变量发生的可能性(概率)之间的关系。用来描述这种关系的模型很多,如正态分布模型、指数分布模和威尔分布模型。 五、智能优化设计 随着与机电一体化相关技术不断的发展,以及机电一体化技术的广泛使用,我们面临的将是越来越复杂的机电系统。解决复杂系统的出路在于使用智能优化的设计手段。智能优化设计突破了传统的优化设计的局限,它更强调人工智能在优化设计中的作用。智能优化设计应该以计算机为实现手段,与控制论、信息论、决策论相结合,使现代机电产品具有自学习、自组织、自适应的能力,其创造性在于借助三维图形,智能化软件和多媒体工具等对产品进行开发设计。 六、计算机辅助设计 机械计算机辅助设计(机械CAD)技术,是在一定的计算机辅助设计平台上,对所设计的机械零、部件,输入要达到的技术参数,由计算机进行强度,刚度,稳定性校核,然后输出标准的机械图纸,简化了大量人工计算及绘图,效率比人工提高几十倍甚至更多。 七、动态设计 动态设计法是在计算参数难以准确确定、设计理论和方法带有经验性和类比性时,根据施工

数学物理方法学习心得

竭诚为您提供优质文档/双击可除数学物理方法学习心得 篇一:数学物理方程的感想 数学物理方程的感想 通过对数学物理方程一学期的学习,我深深的感受到数学的伟大与博大精深。 当应用数学发展到一定高度时,就会变得越来越难懂,越来越抽象,没有多少实际的例子来说明;物理正好也要利用数学来进行解释和公式推导,所以就出现了数学物理方法。刚开始到结束这门课程都成了我的一大问题。很难理解它的真正意义(含义),做题不致从何入手,学起来越来越费劲。让我很是绞尽脑汁。 后来由于老师耐心的指导与帮助下我开始有了点理解。用数学物理方法来解释一些物理现象,列出微分方程,当然这些微分方程是以物理的理论列出来的,如果不借助于物理方法,数学也没有什么好办法来用于教学和实践,而物理的理论也借助于数学方法来列出方程,解出未知的参数。这就是数学物理方法的根本实质所在。真正要学好数学物理方程

不仅要数学好物理也不能够太差。 接下来我想先对数学物理方程做一个简单的介绍与解 释说明。数学物理方程——描述许多自然现象的数学形式都可以是偏微分方程式 特别是很多重要的物理力学及工程过程的基本规律的 数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。这些反映物理及工程过程的规律的偏微分方程人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。 然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支(如泛函分析、拓扑学、群论、微分几何等等)也有了迅速发 展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势:

成都理工大学数学物理方程试题

《数学物理方程》模拟试题 一、填空题(3分10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 是第 ( )类边界条件,其中为边界. 5.设函数的傅立叶变换式为,则方程的傅立叶变换 为 ( ) . 6.由贝塞尔函数的递推公式有 ( ) . 7.根据勒让德多项式的表达式有= ( ). 8.计算积分 ( ) . 9.勒让德多项式的微分表达式为( ) . ?f u n u S =+??)(σS ),(t x u ),(t U ω2 2 222x u a t u ??=??=)(0x J dx d )(3 1)(3202x P x P +=?-dx x P 2 1 12)]([)(1x P

10.二维拉普拉斯方程的基本解是() . 二、试用分离变量法求以下定解问题(30分):1. 2.? ? ? ? ?? ? ? ? < < = ? ? = = = > < < ? ? = ? ? = = = = 3 0,0 , 3 ,0 0 ,3 0, 2 3 2 2 2 2 2 ,0 x t u x x t x x u t u t t x u u u ? ? ? ? ?? ? ? ? = = = > < < ? ? = ? ? = = = x t x x u t u u u u t x x 2 ,0 ,0 ,4 0, 4 2 2

3. ???? ? ????<<=??===><<+??=??====20,0,8,00,20,162002022 222x t u t x x u t u t t x x u u u

大一微积分论文

我的微积分之旅 微积分知识总结及学习体会 微积分是很多专业的一门基础学科,它在现代自然科学中占有十分重要的地位,是学生学习技术知识的基础。微积分作为一门挂科率较高的学科,具有严密的逻辑性和高度的抽象性,而老师在一堂课中所传授的知识,常常是穷尽一个科学家或几个科学家一代或几代的研究成果,其知识容量之大可想而知。那么怎样在短短的四十五分钟内尽可能多的掌握这些知识呢?我将浅谈一下自己的看法。 通过一年的高数学习,我们知道在大学好微积分是必要的,也是必须的。学习是一个长期的过程,不要总是想着考试前几天突击下就可以,我们中的人多数还都是普通人,没有能力达到一看就会的程度。所以一定要听好每节课,做好每一次作业,打好基础才能在复习中查缺补漏。 1、预习是必要的,在讲多元复合函数求导的那节课前,我因为准备其他考试而没预习,导致两节课像坐在飞机一样云里雾里,于是只能课下去看老师发的视频和课件。发现了重点是“串并联法则”,弄懂这个一切难题就迎刃而解,如果当初预习一下,听课效率就会高很多。 2、一定要保质保量的完成作业,不要以为作业很无所谓,可能有的题目是很难,但我们一定要自己做出来。如果实在做不出来的话,看看老师发的答案也是可以的,前提是自己之前思考过。公式定理一定要背,这些是学习微积分的基本工具,只有弄懂练熟公式与定理的使用,我们才能更好的应用到题目中去。 3、大学里的学习课后巩固很重要,光靠一周两次课的学习,远远不够。并且, 课上老师可能会因为进度问题而讲得很快, 很多时候我们会跟不上老师的速度, 这时, 如果课后不再看例题, 课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的。 那么我们具体该怎么学习微积分呢?在第一章的函数,我了解了什么是函数,如何求函数的定义域、奇偶性、周期性和数值,函数复合的计算。重点是充分理解复合函数、反函数和初等函数这些特殊的函数,熟悉它们的表达式、图像和计算方法。弄懂前面的基础,就到了函数在经济学中的应用,供给、需求、总成本、总收益、总利润函数,它们的计算和之间的关系。 第二章是极限与联系。内容有证明极限,证明连续,证明间断点,无穷大与无穷小等。我觉得最主要的是求函数的极限,方法有很多(1)消去零因子法;(2)同除最高次幂;(3)分子或分母有理化;(4)利用无穷小运算性质(有限个无穷小之和仍为无穷小,无穷小与有界函数的积仍为无穷小);(5)复合函数求极限法则; (6)利用左、右极限求分段函数极限;(7)利用两类重要极限;(8) 利用等价无穷小代换;(9) 利用连续函数的性质(代入法);(10) 利用洛必达法则。具体运用哪一种方法,还需要我们通过多做题来知晓。 第三章是导数与微分。最基础的就是背好公式,然后再多加练习。反函数、复合函数、隐函数、高阶导数是比较重要的,关键还是要牢记公式定理。在这一 章我们还学习到了经济应用“边际与弹性”,边际函数 平均函数 第四章中值定理与导数有点难度,首先是三个中值定理“罗尔定理”、“拉格朗日中值定理”、“柯西中值定理”,这三个定理分别满足的条件是必须背下来的。洛必达法则是求0/0型、∞/∞型、0*∞型等未定式的极限的一个重要方法。导

现代设计理论与方法论文

现代设计理论与方法 班级:材控1031 姓名:黄加全 学号:201020607157

反求工程技术 20世纪以来,由于科学和技术的发展与进步,对设计的基础理论研究得到加强,对着设计经验的积累,以及设计和工艺的结合,已经形成了一套半经验半理论的设计方法。依据这套设计方法进行机电产品设计,称为传统设计。 限于历史和科学发展的原因,传统设计方法基本上是一种以静态分析、近似计算、经验设计、手工劳动为特征的设计方法。显然,随着现代科学技术的飞速发展,生产技术的需要和市场的激烈竞争,以及先进设计科学技术的手段的出现,这种传统设计方法已经很难满足当今时代的需要,从而迫使设计领域不断研究和发展新的设计方法和技术。 现代设计是过去长期的传统设计活动的延伸和发展,它继承了传统设计的精华,吸收了当代科技成果和计算机技术。与传统设计相比,它则是一种以动态分析、精确计算、优化设计和CAD为特征的设计方法。 从20世纪60年代末开始,设计领域中就开始相继出现一系列新兴理论与方法。为了区别过去常用的传统设计理论与方法,把这些新兴的理论与方法称之为现代设计。现代设计理论与方法的内容众多而丰富,它们是功能论、优化论、离散论、对应论、艺术论、系统论、信息论控制论、突变论、智能论和模糊论等方法学构成。 现代设计方法包括可靠性设计方法、化设计方法、并行设计、虚拟设计、绿色设计、动态设计等,这里重点介绍反求工程设计。 1.反求工程技术的基本概述 反求工程(Reverse Engineering,简称:ER) 也称逆向工程,就是针对消化吸收先进技术的系列分析方法和应用技术的综合的一项新技术。反求工程类似

数学物理方程小结

数学物理方程小结 第七章 数学物理定解问题 数学物理定解问题包含两个部分:数学物理方程(即泛定方程)和定解条件。 §7.1数学物理方程的导出 一般方法: 第一确定所要研究的物理量u ,第二 分析体系中的任意一个小的部分与邻近部分的相互作用,根据物理规律, 抓住主要矛盾, 忽略次要矛盾。(在数学上为忽略高级小量.)第三 然后再把物理量u 随时间,空间的变为通过数学算式表示出来, 此表示式即为数学物理方程。 (一) 三类典型的数学物理方程 (1)波动方程: 0 :) ,(:) ,(:22 2222 22==??-??=?-??→f 当无外力时t x f x u a t u 一维t r f u a t u 三维 此方程 适用于各类波动问题。(特别是微小振动情况.) (2)输运方程: 0 :).(:) ,(:2 2 2 2 ==??-??=?-??→f 无外源时t x f x u a t u 一维t r f u a t u 三维 此方程 适用于热传导问题、扩散问题。

(3)Laplace 方程: . 0(:0 :) .程时泊松方程退化拉氏方f f u 泊松方程u 拉氏方程t r ==?=?→ 稳定的温度和浓度分布适用的数学物理方程为Laplace 方程, 静电势u 在电荷密度为零处也满足Laplace 方程 。 §7.2定解条件 定解条件包含初始条件与边界条件。 (1) 初始条件的个数等于方程中对时间最高次导数的次数。 例如波动方程应有二个初始条件, 一般选初始位移u (x,o )和初始速度u t (x,0)。而输运方程只有一个初始条件选为初始分布u (x,o ),而Laplace 方程没有初始条件。 (2) 三类边界条件 第一类边界条件: u( r ,t)|Σ = f (1) 第二类边界条件: u n |Σ = f (2) 第三类边界条件: ( u+Hu n )|Σ= f (3) 其中H 为常数. 7.3 二阶线性偏微分方程分类 判别式 , ,0,,0, ,022112 1222112 12 22112 12抛物型a a a 椭圆型a a a 双曲型a a a =-=?<-=?>-=? 波动方程是双曲型的,输运方程为抛物型的,而拉普拉斯方程为椭圆型的.

数学物理方程期末考试试题(A)答案

孝感学院

解:设)()(t T x X u =代于方程得: 0''=+X X λ,0)1(''2=++T a T λ(8’) x C x C X λλsin cos 21+=,t a C t a C T 22211sin 1cos λλ+++= 由边值条件得: 22)( ,0l n C πλ== l x n t a A t a B u n n n πλλcos )1sin 1cos (221+++=∑∞= ?= l n dx l x n x l B 0cos )(2π?,?+=l n dx l x n x a l A 02cos )(12πψλ(15’) 证明:设代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。(15’)

解:设),(ηξp 是第一象限内一点,在该点放置单位点电荷,其对称点),(ηξ-p 格林函数: 22)()(1ln 21),,,(ηξπηξ-+-= y x y x G 22)()(1ln 21ηξπ++--y x (8’) ] )[(22220ηξπη+-=??-=??=x y G n G y 方程的解:dx x x f u ?+∞∞-+-=22)()(),(ηξπ ηηξ(15’) 五、证明下列初边值问题解的唯一性.(20分) ),,,()(2t z y x f u u u a u zz yy xx tt =++- ),,,(0z y x u t ?== ),,,(0 z y x u t t ψ== ).,,,(t z y x g u =Γ 其中,),,(,0Ω∈>z y x t Γ为Ω的边界. 解:设21,u u 都是方程的解设21u u u -=代入方程得: 0)(2=++-zz yy xx tt u u u a u 00==t u 00 ==t t u .0=Γu 设dxdydz u u u a u t E z y x t ])([21)(22222???Ω +++= =dt t dE )(dxdydz u u u u u u a u u zt z yt y xt x tt t ])([22???Ω +++ dxdydz u u u a u u zz yy xx tt t ])([[2 2??? Ω++-= 0=(10’)

大一下高数论文(1)

大一下高数论文 大一下学期,我们主要学了微分方程,微分方程是数学的重要分支.在这里我重点介绍了几个利用微分方程常来解决的问 题的例子,从中我们可以了解到微分方程用的广泛性以及解决具体问题时常采用的一般步骤. 应用微分方程解决具体问题的主要步骤: (1)分析问题,将实际问题抽象,设出未知函数,建立微分方程,并给出合理的解; (2)求解微分方程的通解及满足定解条件的特解,或由方程讨论解的性质; (3)由所求得的解或解的性质,回到实际问题,解释该实际问题,得出客观规律. 微分方程的应用举例 几何问题 1.等角轨线 我们来求这样的曲线或曲线族,使得它与某已知曲线族的每一条曲线相交成给定的角度.这样的曲线轨线已知曲线的等角轨线.当所给定的角为直角时,等角轨线就轨线正交轨线.等角轨线在很多学科(如天文,气象等)中都有应用.下面就来介绍等角轨线的方法. 首先把问题进一步提明确一些. 设在(x,y )平面上,给定一个单参数曲线族(C ):()0,,=c y x ?求这样的曲线l ,使得l 与(C)中每一条曲线的交角都 是定角 α . 设l 的方程为 1y =)(1x y .为了求)(1x y ,我们先来求出)(1x y 所对应满足的微分方程,也就是要求先求得x , 1y ,' 1 y 的关系式.条件告诉我们l 与(C )的曲线相交成定角 α,于是,可以想象,1y 和'1y 必然应当与(C )中的曲线 y =)(x y 及其切线的斜率'y 有一个关系.事实上,当α≠ 2 π 时,有 k y y y y ==+-αtan 1' 1 '' ' 1 或 1 ' 1' 1' +-= ky k y y 当 α= 2 π 时,有 ' 1 '1y y - = 又因为在交点处, )(x y =)(1x y ,于是,如果我们能求得x , 1y ,' 1y 的关系 () 0,,'=y y x F 采用分析法.

现代设计方法论文

直齿轮强度的模糊可靠性设计 课程名称:现代设计方法 姓名: 学号:sssss 班级:ffffff 指导老师:vfffff

齿轮传动的可靠性优化设计 摘要:本文介绍可靠性设计与优化设计有机结合的理论和方法。并对可靠性优化设计如何应用于齿轮传动设计中进行了较详细地讨论,最后通过一个实例说明其实现方 法。 关键词:齿轮传动可靠性设计优化设计 0引言: 作用在零部件上的载荷和材料性能等都不是定值,而是随机变量,具有明显的离散性质,在数学上必须用分布函数来描述,由于载荷和材料性能都是随机变量,所以必须用概率统计的方法求解,可靠性设计认为所设计的任何产品都存在一定的失效可能性,并且可以定量地回答产品在工作中的可靠程度。 传统的机械设计中,很早就存在着“选优”的思想。设计人员可以同时提出几种方案,通过分析评价后,选出较好的方案加以采用,这种选优方案在很大程度上带有经验性,也有他的一定的局限性。而现代设计方法中的优化设计则可以避免以上弊端,充分发挥计算机强大的运算和编程功能,使优化算法与计算机相结合运用于机械设计中。 常规齿轮传动的设计是将齿轮所受载荷、应力和强度都视为定量,按一定的强度条件进行设计或校核,这种常规设计安全系数一般比较保守,不仅造成材料的浪费增加成本,往往由于一个参数的改变,而影响其它参数的确定,并且由于考虑齿轮传动的应力、强度及各几何参数的不确定性,引起的误差与实际不符,也不能保证绝对安全,设计出的齿轮传动质量差、可靠性低、承载能力小。因此,为了使齿轮传动设计既贴近实际工况,又有最优方案,提出将优化设计和可靠性设计理论有机结合起来的设计方法,该方法无论对缩小尺寸、减轻重量提高承载能力和保证设计可靠性均有现实意义,可靠性优化设计能给程界带来了巨大经济效益,随着技术更新和产品竞争的加剧,可靠性优化设计的发展前景非常的广阔。

数学物理方程总结

数学物理方程总结 Revised by Jack on December 14,2020

浙江理工大学数学系 第一章:偏微分方程的基本概念 偏微分方程的一般形式:221 1 (,,, ,,,)0n u u u F x u x x x ???=??? 其中12(,,...,)n x x x x =是自变量,12()(,,...,)n u x u x x x =是未知函数 偏微分方程的分类:线性PDE 和非线性PDE ,其中非线性PDE 又分为半线性PDE ,拟线性PDE 和完全非线性PDE 。 二阶线性PDE 的分类(两个自变量情形): 2221112222220u u u u u a a a a b cu x x y y x y ?????+++++=?????? (一般形式 记为 PDE (1)) 目的:可以通过自变量的非奇异变换来化简方程的主部,从而据此分类 (,) (,)x y x y ξξηη=?? =? 非奇异 0x y x y ξξηη≠ 根据复合求导公式最终可得到: 22211122222 20u u u u u A A A A B Cu ξξηηξη ?????+++++=??????其中: 考虑22111222( )2()0z z z z a a a x x y y ????++=????如果能找到两个相互独立的解 那么就做变换(,) (,)x y x y ξφηψ=??=? 从而有11220A A == 在这里要用到下面两个引理: 引理1:假设(,)z x y φ=是方程22111222( )2()0z z z z a a a x x y y ????++=???? (1)的特解,则关系式(,)x y C φ=是常微分方程:22111222()2()0a dy a dxdy a dx -+= (2)的一般积分。 主

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

现代设计方法 论文

现代设计方法论文 机电0902 093260206 赵学龙 摘要:随着以微电子技术为代表现代科学技术的发展,近30年来出现了一批新的设计学科和一系列新的设计理论和设计方法,诸如优化设计、可靠性设计、动态设计、计算机辅助设计,以及设计方法学和有限元分析等。这些方法的发展和应用,使得各个工程领域的设计工作从形式到效果都发生了根本性变化,产生了巨大的经济效益和社会效益。 关键词:微电子技术;设计方法;优化设计;可靠性设计; Abstract: with the development of microelectronics technology as the representative of the development of modern science and technology, for nearly 30 years there has been a number of new design discipline and a series of new design theory and design methods, such as the optimization design, reliability design, dynamic design, computer aided design, and the design method and the finite element analysis. Development and application of these methods, the various fields of engineering design work from the form to the effect produced essential sex to change, produced enormous economic benefits and social benefits. Key words: Microelectronics; design method; optimization design; reliability design; 工程设计和机电产品设计都需要经过调查分析、方案拟定、技术设计、结构设计、试制与实验后的修改完善等设计环节。在传统的设计中,这些环节的工作都是由设计者手工完成的,所用的设计方法大都是基于经验公式和实验数据的类比设计和经验设计。显然,这种设计方法不可能是设计质量有较大提高,而且设计周期一般较长。 现代商品经济的迅速发展,对于工程和产品的性能和质量的要求日益提高。一方面,工程和产品的结构日趋复杂和精密,功能日趋完备和通用;另一方面,工程和产品的更新周期日益缩短,工作可靠性要求日益提高。传统的设计方法已经不能完全满足这一发展的需要。因此这学期我们学习了优化设计和可靠性设计。 优化设计:所谓最优化设计,就是借助最优化数值计算方法和计算机技术,求取工程问题的最优设计方案。进行最优化设计时,首先必须将实际问题加以数学描述,形成一组数学表达式组成的最佳的设计参数。这组设计参数就是设计的最优解。数学模型是对实际问题的数学描述和概括,是进行优化设计的基础,因此,根据设计问题的具体要求和条件建立完备的数学模型是关系优化设计成败的关键。工程设计问题通常是相当复杂的,欲建立便于求解

数学物理方程总结材料

理工大学数学系 第一章:偏微分方程的基本概念 偏微分方程的一般形式:2211 (,,,,,,)0n u u u F x u x x x ???=???L L 其中12(,,...,)n x x x x =是自变量,12()(,,...,)n u x u x x x =是未知函数 偏微分方程的分类:线性PDE 和非线性PDE ,其中非线性PDE 又分为半线性PDE ,拟线 性PDE 和完全非线性PDE 。 二阶线性PDE 的分类(两个自变量情形): 2221112222220u u u u u a a a a b cu x x y y x y ?????+++++=?????? (一般形式 记为 PDE (1)) 目的:可以通过自变量的非奇异变换来化简方程的主部,从而据此分类 (,) (,)x y x y ξξηη=?? =? 非奇异 0x y x y ξξηη≠ 根据复合求导公式最终可得到: 22211122222 20u u u u u A A A A B Cu ξξηηξη ?????+++++=??????其中: 22111112221211 122222221112 22()2()()()2()A a a a x x y y A a a a x x x y x y y y A a a a x x y y ξξξξξηξηηξξη ηηηη ?????=++???????????????=+++?????????? ?????=++?????? 考虑22111222( )2()0z z z z a a a x x y y ????++=????如果能找到两个相互独立的解 (,)z x y φ= (,)z x y ψ= 那么就做变换(,) (,)x y x y ξφηψ=?? =? 从而有11220A A == 在这里要用到下面两个引理: 引理1:假设(,)z x y φ=是方程22111222( )2()0z z z z a a a x x y y ????++=???? (1)的特解,则关主部

相关文档
相关文档 最新文档