文档库 最新最全的文档下载
当前位置:文档库 › 组播基础

组播基础

组播基础
组播基础

一、什么是组播

1.什么是组播?

组播是一种数据包传输方式,当有多台主机同时成为一个数据包的接受者时,出于对带宽和CPU负担的考虑,组播成为了一种最佳选择。

2.组播如何进行工作?

组播通过把224.0.0.0-239.255.255.255的D类地址作为目的地址,有一台源主机发出目的地址是以上范围组播地址的报文,在网络中,如果有其他主机对于这个组的报文有兴趣的,可以申请加入这个组,并可以接受这个组,而其他不是这个组的成员是无法接受到这个组的报文的。

3.组播和单播的区别?

为了让网络中的多个主机可以同时接受到相同的报文,如果采用单播的方式,那么源主机必须不停的产生多个相同的报文来进行发送,对于一些对时延很敏感的数据,在源主机要产生多个相同的数据报文后,在产生第二个数据报文,这通常是无法容忍的。而且对于一台主机来说,同时不停的产生一个报文来说也是一个很大的负担。

如果采用组播的方式,源主机可以只需要发送一个报文就可以到达每个需要接受的主机上,这中间还要取决于路由器对组员和组关系的维护和选择。

4.组播和广播的区别?

如同上个例子,当有多台主机想要接收相同的报文,广播采用的方式是把报文传送到局域网内每个主机上,不管这个主机是否对报文感兴趣。这样做就会造成了带宽的浪费和主机的资源浪费。而组播有一套对组员和组之间关系维护的机制,可以明确的知道在某个子网中,是否有主机对这类组播报文感兴趣,如果没有就不会把报文进行转发,并会通知上游路由器不要再转发这类报文到下游路由器上。

众所周知的D类IP地址

D类地址用途

224.0.0.1 在一个子网上的所有主机

224.0.0.2 在一个子网上的所有路由器

224.0.0.4 所有DVMRP协议的路由器

224.0.0.5 所有开放最短路径优先(OSPF)路由器

224.0.0.6 所有OSPF指定路由器

224.0.0.9 所有RIPv2路由器

224.0.0.13 所有PIM协议路由器

224.0.0.0-224.0.0.255 保留作本地使用,做管理和维护任务

239.0.0.0-239.255.255.255 留用做管理使用

二、组播协议的要素

通过和广播,单播的数据传输方式的比较,我们可以发现组播中最关键的两个部分:1.组的管理和维护

在组播这套协议中,在网络设备和所连接的子网需要有一套协议或机制来保证网络设备知道所连接的子网中,有多少台主机属于一个特定的组。

组播地址的分配

组播地址的动态分配:

SDR (Session Directory Tool)技术允许应用程序在建立新的会话时随意选用组播地址,通过冲突检测技术避免地址的重复使用,这种方法适用于初期应用较少的MBONE

MASC(Multicast Address Set-Claim)是 IETF 设计的新的组播分配方案,首先将组播地址段静态分配到不同的地区,在每个地区内仍然采用动态租用的方案使用组播地址,想法是好的,实现起来的难度较大,周期较长。

MADCAP(Multicast Address Dyna)与DHCP相似

组播地址的静态分配

目前的解决方案多采用静态组地址分配技术

SGAA(Static Group Address Assignment)是在 MASC 方案得以实现之前的应急之道。采

用 233/8 地址段用于静态地址分配,中间两节包含网络自治系统号,最后一节用于组分配。

2.组播报文的路由

*指定源组播地址

可以用于跨域组播应用,简化源组播地址维护,接收者需要指明要接收的源(S,G)加入

*不指定源组播地址

支持(*,G)加入方式

主播分发树:

最短路径树(基于源的分发树):是发现上游接口,离源最近的接口。因为组播路由协议只关心到源的最短路径。

通过(S,G)对来决定真正的下游接口,当所有的路由器都知道了他们的上下游接口,那么一颗多播树就已经建立完成。根是源主机直连的路由器,而树枝是通过IGMP发现有组员的子网直连的路由器

(3)管理多播树

单播路由只需要知道下一跳的地址,就可以进行报文得转发。而组播,是把从一个由源产生得报文发送给一组目的。在一个特定的路由器上,一个包要多个备份可能从多个接口上发出。如果有环路得存在,那么一个或多个包会返回到其输入的接口,而且这个包也会经复制发到其他的端口上。这一结果可能导致多播风暴,这个包不断在路由器与交换机间复制,直到TTL减为0。由于这是个复制过程,它的危害会比单播环路严重的多,所以所有的多播路由器必须知道多播包的源,并且需要保证多播包不能从源接口发出。所以他必须知道哪些是上游接口和下游接口,可以分辨出数据包的流向。如果在不是在源的上游接口收到数据包,就会把它丢弃掉。而多播路由协议必须关心到源的最短路径,或者说它关心到源的上游接口。同时,除了关心上游接口,但是在转发的时候,不能把数据包从除了上游接口的其他接口发送出去。所以,另外,他还要关心(S,G)下游接口。当关于一个(S,G)的上下游接口都被判断出来了,那么一颗多播树就形成了。

共享分发树(*,G):

组员可以在多播会话存活的时候,加入或退出一个组,而其相连的路由器必须动态的根据直连子网内组员的存在或退出来决定要加入或剪除多播树的树枝。这就是通过显式或隐式加入两种方式来完成。

隐式加入试用于密集模式,它是采用广播/剪除模式来去除多播树上的没有组播成员的树枝,也就是说,它是通过先把网际网络上的所有路由器都加入到多播树上,然后由每个路由器通过IGMP来查询是否有组员在直连的子网上,如果没有,就发出一条剪除消息,来剪除多余的树枝

而显示加入适用于稀疏模式,它是由每个路由器先查询子网内有无组员,然后才看是否

要发加入信息给上游路由器。

基于源的树和共享树的比较?

基于源的树是针对一个源就会有一颗多播树构成,也就说,如果网络中有多个可以产生组播报文的源主机,那么就会有多少颗组播树组成,在组播表里,会有组数×每组的成员数的项目条数。这种拓扑主要适用于密集模式。

共享树是在整个网络中选一个RP,或叫集中点,所有的组播报文都需要从这个点来进行传送,所以它没有(S,G)项,只有(*,G)项,表明所有有多个源。RP是预先设定的一个路由器,承担转发所有的多播报文的责任。所有要发送组播报文的源主机在发送组播报文前,都需要到RP上进行注册,然后通过直连的路由器来确定到RP的最短路径,通过RP 路由器来确定到目的地的最短路径。RP成为了多播树的根结点。

相对于基于源的树,共享树的多播表项更为精简,适合在稀疏模式下使用。但是也有一些缺点。共享树在RP上的选择,会导致从源主机到各个组地址的路由并非最优路径。

如果在整个局域网里同时有多条耗带宽的组播链路,会导致RP成为整个网络的瓶颈。并且在共享树中,采用选取RP来转发组播报文,会增加产生单点故障的可能。

三、如何来维护组成员

现在有IGMP和CGMP(Cisco专有的)两种协议,可以进行主机和网络设备之间的组员关系的维护。

IGMP是路由器和内部子网之间通信的方式,用于局域网中路由器或三层设备查询组播成员,也就是说它是三层设备对直连子网的组关系的维护机制。它可以分成两个部分,主机部分和路由器部分,每个部分可以完成不同的工作。但是它有一个限制,就是IGMP报文只能在本地子网内传送,使三层设备不能前转到其他的设备上,它的TTL总是1。

IGMP(Internet Group Management Protocol)有三个版本:

v1 RFC 1112 支持Windows95

v2 RFC 2236 支持Windows98后的各版本及大多数Linux系统,兼容IGMP v1((RFC 1112) v3 RFC 3376 支持Windows XP,2003即少数Linux系统

-对于IGMP v1,主机离开组播组不需要发送任何报告

-对于IGMP v2,主机离开组播组需要发送…leave?的报告

-对于IGMP v3,在原有的组地址上增加了Include/exxclude源地址列表

IGMPv2主机部分的功能:

运行IGMPv2的主机会产生以下3种信息:

* Member Report消息

用来指示一台主机想要加入一个组播组,这个消息在一个主机第一次加入组的时候会发出,也可以用来响应三层设备发出Membership Query消息。由于Membership Query消息的目的地址是组地址,除了路由器,网内其他的组员主机都会收到这个报文,一旦其他主机收到报文,他们将会抑制自己的Membership Query报文,避免了内部局域网充斥了Membership Query报文。它只需要让路由器知道网内还有一个组员。

* Version 1 Membership Report消息

是为了IGMPv2主机的向后兼容性,用于检测和支持子网中IGMPv1主机和路由器

* Leave Group消息

主机发出的,目的地址为224.0.0.2(所有路由器),告诉路由器主机离开了一个组。 *主机也可不必等待一个查询才能加入一个组,它可主动发送224.0.0.2以加入组。

IGMPv2路由器功能:

主要是查询功能,它会有两种查询报文,General Query和Group-Specific Query

General Query每隔一段时间就会向局域网内发送,目的地址是224.0.0.1(网内所有主机),所以子网里的每一个主机都会收到这个报文,并且会以Member Report报文回应,如果在一定的时间间隔内设备没有收到任何Member Report,它就会认为子网内没有组员。

Group-Specific Query报文,当路由器收到一个Leave Group报文的时候,它会发送这样一个具体包含有组地址的报文来查询这个组是否有组成员存在。

当如果在一个子网上同时有两个多播路由器,他们一开始都会认为自己是组播成员的查询者,当他们发送General Query报文时,通过比较从对端收到的报文源IP地址的大小来决定谁是查询者谁不是查询者,IP地址大的成为查询者。如果在一段时间内没有收到查询的报文,就会认为查询者down掉了,它就会充当起查询者的角色。

-二层交换机承担了IGMP的代理(Snooping)作用:保证组播数据流被正确的发送给组播成员,实现IGMP报告查询的功能以及抑制其他成员的功能。

CGMP(Cisco专有)

考虑到了如果有交换机存在的情况,考虑到了在三层设备和主机中有二层设备,而IGMP 是一个三层协议,二层设备如果收到这样一个类型的报文,只会向除了源端口以外的所有端口进行转发,这样会对网络的带宽和整体性能造成影响。解决的方法是希望交换机可以对有组播成员的端口进行组播报文的转发。

在交换式网络上,对组播流的控制有三种方法:

(1)手工配置的交换式多播树

在交换机的桥接表上配置静态的组播MAC地址和端口映射。

(2)GMRP(802.1p)

他让MAC层的多播组地址动态地在交换机上注册和取消。

(3)IGMP侦听

通过在交换机端口上配置,可以使交换机进行IGMP消息地检查,可以知道多播路由器和组员地位置。但是,检测IGMP消息意味着所有地IP包都要进行检查。尤其当这些如果是在软件地方式来实施,会严重降低交换机的性能。

CGMP的做法是通过路由器来告诉交换机,组播成员的组MAC地址和主机MAC地址,让交换机可以知道在那个端口上有组员,并且可以进行转发。

四、组播报文如何来进行路由

存在多个路由时,多点广播路由选择协议维护着整个广播生成树。现下常用的组播路由协议有一下几种,由于现在主流的路由器产品只支持PIM,其他的路由器协议都不支持,所以只会对PIM做个详细的解释。

稀疏和密集模式的比较?

稀疏模式-它是指在一个整体网络中,参与组播的主机相对来少的一种拓扑,主要出现在WAN中。

密集模式-和以上相反,主要出现在交换式LAN或校园网中参与组播主机相对集中的一种拓扑。

*密集模式路由选择协议

DVMRP(距离矢量多点广播路由选择协议)Distance Multicast Routing Protocal 它是通过RIP来发现到源的最短路径,采用广播/剪除的方式来构建一颗多播树。

MOSPF(多点广播开放最短路径优先协议) Multicast Open shortest path first 它是通过OSPF协议来发现到源的最短路径,也是用在密集方式的拓扑下。

PIM DM(独立于协议的多点广播密集模式) Protocol independent Multicast Dense Mode PIM-DM 使用了和 DVMRP 及其它密集模式一样的溢出和修剪机

制。 DVMRP 和 PIM-DM 之间的主要不同在于 PIM-DM 主要引入协议独立的观

念。 PIM-DM 可以使用由任意底层单播路由协议产生的路由表执行反向路径转发(RPF)检查。PIM-DM假定网络中的每一个路由器都想接收组播数据包,一个发自组播源的数据包会被转发到组播路由器所有的下游路由器上,如果下游路由器不需要此组播组的数据,会向上游路由器发送剪枝要求,停止在此路径的转发。在这些网络中发送者和接收者非常接近,且只有一小部分发送者却有大量的接收者,组播的流量大,而且是持续的。所以PIM-DM主要是为部署小规模的网络

*稀疏模式路由选择协议

PIM SM(独立于协议的多点广播稀疏模式) Protocol independent Multicast Sparse Mode

它采用汇聚点(RP)收集并记录对组播数据有需求的路由器,并通过汇聚点将源发出的组播数据转发到这些路由器。而且PIM-SM还允许接收者切换到更优的转发路径来接受组播数据。主要用于帮助运营商实现大型网络(如Internet)中发送者和接收者距离远,且组播流持续性差的点到多点的组播服务。

CBT(基于核心的树) Centtral Base Tree

是一个与协议无关的,基于稀疏模式的,共享树协议。他和DVMRP和MOSPF的区别有两点:它无需要在组播中在加入一个路由协议,可以在现有的任何协议上查找到到源的最短路径;它是基于共享树的协议,所以必须要在网络里设置一个网络的核心来确保组播包的前转;更适合使用在稀疏模式下。

组播路由使用“反向路径转发”机制(RPF,Reverse Path Fording)

路由器在接收到由源S 向组播组G 发送的组播报文后,首先查找组播转发表。

如果存在对应(S,G)表项,且该组播报文实际到达接口与Incoming interface 一致,则向所有的outgoing interfaces 执行转发;

如果存在对应(S,G)表项,但是报文实际到达接口与Incoming interface 不一致,则对此报文执行RPF 检查。如果检查通过,则将Incoming interface 修改为报文实际到达接口,然后向所有的outgoinginterfaces 执行转发。

如果不存在对应(S,G)表项,则对此报文执行RPF 检查。如果检查通过,则根据相关路由信息,创建对应路由表项,然后向所有的outgoinginterfaces 执行转发。

RPF 检查执行过程如下:

在单播路由表中查找RPF接口。单播路由表中汇集了到达各个目的地址的最短路径。

如果当前组播路径沿袭从组播源S 到客户端的SPT 或组播源S 到RP的源树,则路由器以源S 的IP 地址为目的地址查找单播路由表,对应表项中的出接口为RPF接口。路由器认为由该RPF 接口接收到的组播报文所经历的路径是从源S 到本地的最短路径。

如果当前组播路径沿袭从RP 到客户端的RPT,则路由器以RP 的IP 地址为目的地址查找单播路由表,对应表项中的出接口为RPF 接口。路由器认为由该RPF 接口接收到的组播报文所经历的路径是从RP 到本地的最短路径。

将RPF 接口与组播报文的实际到达接口相比较,判断到达路径的正确性,从而决定是否进行转发。

如果两接口相一致,那么就认为这个组播包是从正确路径而来,RPF 检查成功。

如果两接口不一致,将该组播报文丢弃。作为路径判断依据的单播路由信息可以来源于任何一种单播路由协议、组播静态路由或者MBGP 路由协议。

RPF 的作用除了可以正确地按照组播路由的配置转发报文外,还能避免由于各种原因造成的环路。

组播是通过(S,G,V)来标识的,只要端口属于对应组播的VLAN就可以划分到组播组,一个端口当然可以属于多个组,限制就是VLAN,VLAN配置好了就OK了,至于静态不静态倒没有什么关系。

组播原理详解

组播原理 第一章概述 随着数据通信技术的不断发展,各项基于数据通信技术的业务层出不穷,FTP,HTTP, SMTP等传统的数据通信业务已经不能满足人们对信息的需求,视频点播,远程教学,新闻发布,网络电视等新型业务也逐渐发展起来,并被引入数据通信网络。 这些新型业务的特点是,有一个服务器(我们把这个服务器称为媒体流服务器)在发布信息,而接收端数量很大,可能有成千上万个,而且具体数目不固定。在这种方式下,我们可以使用传统的客户服务器 (C/S )模型解决,按照下面的思路: 1。在媒体流服务器上启动媒体流播放进程,作为服务器; 2。客户端每当想接受某个媒体流服务器的数据的时候,通过给出该媒 体流服务器的IP 地址,来跟该媒体流服务器建立连接(比如,TCP 连接等); 3。媒体流服务器维护一个客户列表,采用轮循的方式向每个客户发送 媒体流。 可以看出,这样的解决方案有两个缺陷: 1。客户数目很大的时候,媒体流服务器就有可能承受不了,因为这种 媒体流跟传统的窄带业务(比如HTTP等)不同,它需要很高的带宽 来传输,而且服务器还必须维护每个客户的信息; 2。严重浪费网络资源,相同的数据可能在网上传播了很多次,在一些 带宽较低的链路上,可能引起严重的通信瓶径。 在这个时候,我们自然而然的想起了组播。这种技术最适合上面的这些新型业务。因为组播通信有下列优点: 1。媒体流服务器不必知道某个客户端的存在,它只管把媒体流以组播 地址播放出去即可,而且仅仅播放一份; 2。媒体流数据在网上仅仅传送一份即可,即使有成千上万个客户端;

3。客户端不必向媒体流服务器注册,如果想接收某个媒体流服务器的 数据,仅仅加入该媒体流服务器所播放的数据所在的多播组即可。 组播技术从提出到现在,它的一些标准和技术已经相当完善了,但推广还不是十分广 泛,尤其是在我国,人们对组播的认识还处于一个朦胧的阶段,更谈不上规模应用。为了让 大家尽快的了解组播技术,我们在本文中给出一些学习指引,主要有下列内容: 1。组播基础概念,这些概念是深入学习组播的最基础的东西,如果对这些基础概念不 了解,学习组播将是一句空话; 2。流行组播协议,在文中我们不具体分析哪种组播协议,而给出组播协议的一些共性, 并列举了目前比较流行的组播协议和它的应用场合; 3。列举了一些参考资料,这些资料按照不同的读者层次列举,既有面向组播专家的高级论题,也有面向初学者的入门文章。 总之,本文是面向组播初学者的,如果你从没有接触过组播技术,那么仔细的阅读本文并掌握介绍的一些基本概念,然后参考文中列举的其他文章,将会是一种良好的学习路径。如果您是一位组播技术方面的专家,阅读本文也不无裨益,您可以从不同的角度来了解组播的基础概念,也可以参考文中提到的其他组播文章,相信对您也是有好处的。

IPTV系统中的IP组播技术

IPTV又称为网络电视、宽带电视,是利用宽带网络为用户提供交互式服务的一种业务。通过IPTV业务,用户可以得到高质量(接近DVD水平)的数字媒体服务,可以自由选择宽带IP网的视频节目,实现媒体提供者和媒体消费者的实质性互动。 IP组播 在ADSL上实现IPTV业务是基于IP组播技术的。组播技术是一种点到多点的网络技术,其目的是减轻网络负载和媒体服务器的负担。组播方式分为静态组播和动态组播,由于实际应用中用户的需求总是变化的,所以在IPTV中一般采用动态组播。 1. 组播协议 从协议角度讲,在IP组播中用到的协议由两部分组成:运行在主机与组播路由器之间的路由协议IGMP (Internet Group Management Protocol)和运行在各个组播路由器之间的组播路由协议,如PIM-SM、PIM-DM、MSDP和DVMRP等。 IP组播的实现主要是基于IGMP协议的,IGMP协议是第三层协议,是TCP/IP的标准之一,所有接收IP组播的机器都需要IGMP。 2. 组播地址 从通信层次上讲,IP组播分为两个层面:IP组播和以太网组播。根据IANA(Internet Assigned Number Authority)规定,组播报文的地址使用D类IP地址,其范围从224.0.0.0到239.255.255.255。组播MAC地址的高24bit固定为0x015e,同时需要注意的是组播地址都只能作为目的地址,而不能作为源地址来使用。IP组播地址和MAC地址以一种映射关系相关联,MAC地址的低23位映射为组播MAC的低23位,如图一所示。组播MAC 地址和组播IP地址的这种映射关系不是唯一对应的,因为在32位IP组播地址可以变化的28bit中只映射了其中的23bit,还剩下5bit是可以自由变化的,所以每32个IP组播地址映射一个组播MAC地址。 DSLAM上实现IP组播基本原理 1. DSLAM简介 DSLAM(数字用户线路接入复用器)是ADSL系统中的局端设备,其功能是接纳所有的DSL线路,汇聚流量,相当于一个二层交换机。 DSLAM从产生到现在大致经历了三个阶段,各阶段的区别在于交换内核,上联口以及由此引起的不同QoS,具体如表一所示。 2. IGMP Proxy和IGMP Snooping 由于采用了不同的交换内核和上联口,因此在DSLAM上进行IP组播可以采用IGMP Proxy和IGMP Snooping 两种方式。 IGMP Proxy的实现机理:DSLAM靠拦截用户和路由器之间的IGMP报文建立组播表,Proxy设备的上联端口执行主机的角色,下联端口执行路由器的角色; IGMP Snooping的实现机理:DSLAM以侦听主机发向路由器IGMP成员报告消息的方式,形成组成员和交换机端口的对应关系,DSLAM则根据该对应关系,将收到的组播数据包转发到组成员的端口。

大型园区网络设计方案

xxx有限公司 大型园区网络设计方案 文件编号: 受控状态: 分发号: 修订次数:第 1.0 次更改持有者:

西南交通大学组网设计方案 大 型 园 区 网 络

西南交大一队 第一章概述 前言 在二十一世纪教育改革中,世界各国都在加快教育现代化的步伐,其信息化程度的高低已成为当今世界衡量一个国家综合国力的重要标志。 中国教育信息化在经过过去几年的建设后,国家教育科研网(CERNET)骨干已基本建成。大部分高校也已建设了自己的校园网络,对校内提供ISP服务。国家要求在今后5年内完成教育上网,即所有高校、职业学校、中学和小学拥有自己的校园网,并建设校园网将各个校区互联并提供与国家教育科研网和各运营商互联的接口。 总体设计原则 1.先进性原则:计算机网络的先进性将通过网络构架的先进性、硬件设备的先进性、传输速率和协议选择、信息系统的先进性来体现。 2.实用性原则:采用的技术路线、产品应经过实践检验,被证明是成熟可靠的,设计结果能满足客户的需求并且行之有效。 3.可靠性原则:校园计算机网络的可靠性将通过选择能可靠运行的网络结构、选择可靠的网络和计算机硬件设备,以及选择可靠的网络操作系统和信息应用系统来体现。 4.安全性原则:通过加强内部访问控制和外部访问控制两方面来保证网络和信息安全。 5.开放性原则:采用标准通用的网络协议和信息传递方式,保证系统的开放性。 6.易管理性原则:从网络的结构和网络设备的易管理性来体现。网管员可以在网络的任意端口通过Web对设备进行管控,设备的所有端口的状态都会实时地显示出来。控制整个网络安全高效地运行。

7.经济性原则:相对国防、金融等机构,学校对网络建设的投入显然较低,这就要求建成的网络经济实用,具备很高的性能价格比;在技术性能和价格的平衡中,技术性能优先,兼顾价格校园网网络设计需求 1网络的应用 1、大容量的教学资源库、课件资源库。 2、Web、E-MAIL、FTP、BBS视频服务器、数据库服务器的应用。 3、办公自动化及办公收发文系统。 4、远程教育服务。 5、各种流媒体和各种应用平台服务 6、Intranet以及Internet技术应用。 2校园网络主干 校园网络主要涉及40栋大楼:网络中心设在大楼1。 集团共20个部门,分别在A、B、C、D楼各5各,每个部门用户数在100个左右。 1.主干采用千兆以太网,到桌面10/100兆自适应连接; 2.接入交换机至大楼交换机之间采用1000M互连; 3.大楼交换机至核心交换机之间采用1000M互联; 4.分别通过两个路由器连接到教育科研网CERNET和chinanet,实现与INTERNET的互联。 5.内部网络采用Intranet应用模式架构整个应用信息系统 6.骨干网技术要求 1) 满足对多媒体数据的要求,避免主干网络瓶颈的出现; 2) 提供子网划分、虚拟网技术和能力,解决内部网络的路由,实现较高的内部路由性能; 3) 具有高可靠性; 4) 保证传输的服务质量,提供必要的服务质量(QOS)、服务级别(COS)和服务类型(TOS)等; 5) 主干交换机的背叛交换容量不小于50G; 6) 高性能价格比。 7.布线系统技术要求

组播ip与组播mac的映射

组播ip与组播mac的映射 IP组播和单播的目的地址不同,IP组播的目的地址是组地址——D类地址. D类地址是从224.0.0.0到239.255.255.255之间的IP地址 其中224.0.0.0到224.0.0.255是被保留的地址 224.0.0.1表示子网中所有的组播组 224.0.0.2表示子网中的所有路由器 224.0.0.5表示OSPF(Open Shortest Path First)路由器 224.0.0.6表示OSPF指定路由器 224.0.0.12表示DHCP(Dynamic Host Configuration Protocol)服务器. D类地址是动态分配和恢复的瞬态地址.每一个组播组对应于动态分配的一个D类地址;当组播组结束组播时,相对应的D类地址将被回收,用于以后的组播.在D类地址的分配中,IETF建议遵循以下的原则: 全球范围:224.0.1.0~238.255.255.255; 有限范围:239.0.0.0~239.255.255.255; 本地站点范围:239.253.0.0~239.253.0.16; 本地机构范围:239.192.0.0~239.192.0.14. 2层的MAC地址是如何与3层的IP地址进行映射的呢?通过将MAC地址的前25位强行规定位0100.5e,而后23位对应IP地址的后23位,而组播IP地址的前4位均相同如:IP地址:1110yyyy.yxxxxxxx.xxxxxxx.xxxxxxxx MAC地址:00000001.00000000.01011110.0xxxxxxx.xxxxxxx.xxxxxxxx 例如:组播IP地址224.215.145.230应该映射到下列哪个组播MAC地址?( ) (A)01-00-5e-57-91-e6(B)01-00-5e-d7-91-e6 (C)01-00-5e-5b-91-e6(D)01-00-5e-55-91-e6 用二进制来换算,将215.145.230换算成1101,0111,1001,0001,1110,0110,取最后23位放到MAC地址中的23位可以计算得出答案是A。 显然有32个IP地址(有5个y可以不一样)对应一个MAC地址,所以要避免在同

中型企业网络解决方案的设计与实施

中型企业网络解决方案的设计与实施 班级:08网络4班 学号:08104018 姓名:罗树灶 课程:高级路由技术 指导老师:梁广民

前言 中小企业信息化是指在企业经营管理的各个活动环节中,充分利用现代信息技术建立信息网络系统,使企业的信息流、资金流、物流、工作流集成和整合,不断提高企业管理的效率和水平,实现资源的优化配置,进而提高企业经济效益和竞争能力的过程。 中小企业信息化的内容主要有: (1)、企业网络建设(Network)。包括局域网和internet接入,规模大的还有广域网建设; (2)、企业的办公自动化(OA)。主要是利用电子文档尽可能地实现无纸办公,加快企业内部的办事效率; (3)、各部门或单位的管理信息系统(MIS)。典型的有销售部门的购销存系统,人事部门的员工档案管理,财务部门的财务软件等; (4)、为加强各部门和单位协作,整合企业资源,还有企业资源计划管理(ERP), 供应链管理(SCM),客户关系管理(CRM); (5)、企业网站建设。利用网站宣传企业及企业产品;利用网站实现企业员工的远程办公或移动办公;利用网站可以更好的和合作伙伴沟通,和客户沟通,从而实现电子商务。 一、网络功能 1、同满足300~500台主机同时连上互联网,使员工能及时与外部联系; 2、办公室里采用无线网络方式实现联网; 3、可以灵活方便升级网络; 4、在公司内部可以方便快捷地共享各种资料和数据;

5、使用性价比较高的ADSL 宽带接入,实现低成本的接入; 6、方便管理。 二、拓扑结构 三、设计思想 核心层主要实现大容量的数据交换,保证整个网络的冗余能力、可靠性和高速传输。Cisco 公司三层

组播综合实验

组播源发现协议(MSDP:MulticastSourceDiscoveryProtocol)描述了一种连接多PIM-SM(PIM-SM: PIMSparseMode)域的机制。每种PIM-SM域都使用自己独立的RP,它并不依赖于其它域内的RP。该优点 在于: 1. 不存在第三方(Third-party)资源依赖域内RP。 2. PIM-SM域只依靠本身的RP。 3. 接收端域:只带接受端的域可以获取数据而不用全局通告组成员。MSDP可以和其它非PIM-SM 协议一起使用。 PIM-SM域内的MSDP发话路由器与其它域内的MSDP对等设备之间存在一种MSDP 对等关系,这种关系 通过TCP连接形成,在其中控制信息进行交换。每个域都有一个或多个连接到这个虚拟拓扑结构。这种 拓朴结构使得域能从其它域发现组播源。如果组播源想知道含有接收端的域,那么PIM-SM中的标准源 树建立机制就会被用于在域内分配树上传送组播数据。 MSDP使用TCP639端口建立对等连接(高ip侦听,低ip连接),和BGP一样,对等间连接必须明确配 置,当PIMDR在RP注册源时,RP向所有的MSDP对等体发送源激活消息,然后其他MSDP路由器将SA泛洪, 为防止环回,现检查MBGP,再检查BGP Message-Type 23.16.2 实现域间组播策略 对于一个多ISP的域间组播设计,需要考虑很多问题,如下图是一个常见的多ISP域,每个自治系 统间BGP路由器使用了RR。

建立域间的组播策略分为如下3个步骤 1.建立整体的域内组播策略 2.建立整体的域间组播策略 3.建立将客户连接到网络基础设施的实施策略 23.16.2 建立整体的域内组播策略 在4个ISP相互之间部署组播服务之前,必须在各自的网络中实现域内组播。域内组播实现一般 采用PIM-SM协议。 常规的配置流程如下: 1.首先在全局启用组播 在全局配置 Ip multicast-routing [distributed] 后面的distributed参数是用在Cisco 7500 12000等支持分布式交换的路由器上面的, 同时需要启用 Ip multicast multipath 该命令用于:如果存在针对某个单播路由前缀的代价相等的路径,对于匹配 该单播前缀的各个组播数据包,路由器可以使用不同的逆向路径转发接口进 行数据转发,负载均衡基于(S,G)而不是基于包。

组播基础

一、什么是组播 1.什么是组播? 组播是一种数据包传输方式,当有多台主机同时成为一个数据包的接受者时,出于对带宽和CPU负担的考虑,组播成为了一种最佳选择。 2.组播如何进行工作? 组播通过把224.0.0.0-239.255.255.255的D类地址作为目的地址,有一台源主机发出目的地址是以上范围组播地址的报文,在网络中,如果有其他主机对于这个组的报文有兴趣的,可以申请加入这个组,并可以接受这个组,而其他不是这个组的成员是无法接受到这个组的报文的。 3.组播和单播的区别? 为了让网络中的多个主机可以同时接受到相同的报文,如果采用单播的方式,那么源主机必须不停的产生多个相同的报文来进行发送,对于一些对时延很敏感的数据,在源主机要产生多个相同的数据报文后,在产生第二个数据报文,这通常是无法容忍的。而且对于一台主机来说,同时不停的产生一个报文来说也是一个很大的负担。 如果采用组播的方式,源主机可以只需要发送一个报文就可以到达每个需要接受的主机上,这中间还要取决于路由器对组员和组关系的维护和选择。 4.组播和广播的区别? 如同上个例子,当有多台主机想要接收相同的报文,广播采用的方式是把报文传送到局域网内每个主机上,不管这个主机是否对报文感兴趣。这样做就会造成了带宽的浪费和主机的资源浪费。而组播有一套对组员和组之间关系维护的机制,可以明确的知道在某个子网中,是否有主机对这类组播报文感兴趣,如果没有就不会把报文进行转发,并会通知上游路由器不要再转发这类报文到下游路由器上。 众所周知的D类IP地址 D类地址用途 224.0.0.1 在一个子网上的所有主机 224.0.0.2 在一个子网上的所有路由器 224.0.0.4 所有DVMRP协议的路由器 224.0.0.5 所有开放最短路径优先(OSPF)路由器 224.0.0.6 所有OSPF指定路由器 224.0.0.9 所有RIPv2路由器 224.0.0.13 所有PIM协议路由器 224.0.0.0-224.0.0.255 保留作本地使用,做管理和维护任务 239.0.0.0-239.255.255.255 留用做管理使用 二、组播协议的要素 通过和广播,单播的数据传输方式的比较,我们可以发现组播中最关键的两个部分:1.组的管理和维护 在组播这套协议中,在网络设备和所连接的子网需要有一套协议或机制来保证网络设备知道所连接的子网中,有多少台主机属于一个特定的组。 组播地址的分配 组播地址的动态分配: SDR (Session Directory Tool)技术允许应用程序在建立新的会话时随意选用组播地址,通过冲突检测技术避免地址的重复使用,这种方法适用于初期应用较少的MBONE

网络设计要点

1. 网络设计规范和方法 1.核心标准主要是ITU-T,IEEE,IETF三大系列。ITU-T接近于成语网物理层定义,IEEE系列标准则关注局域网物理和数据链路层,IETF标准则更加注重数据链路层以上的规范。 2.系统的复杂性:系统集成的复杂性体现在:技术、成员、环境、约束四个方面,它们之间互为依存关系 3.多种技术和产品的集成 系统集成不是选择最好的产品和技术的简单行为,而是要选择最适合用户需求和投资规模的产品和技术。 4.网络工程的特点 明确的设计目标,详细的设计方案,权威的设计依据,完备的技术文档,完善的实施机构5.物联网的定义是: 将物品通过射频识别信息、传感设备与互联网连接起来,实现物品的智能化识别和管理。6.在传送层中,感知数据的管理与处理是物联网的核心技术。 网络用户需求分析 1.IEEE软件工程定义的需求 1)用户解决问题或达到目标所需要的条件或要求。 2)系统满足合同、标准、规范或其它正式规定文档所需具有的条件或要求。 3)反映上面1)或2)所描述的条件或要求的文档说明。 2.IEEE的定义包括了从用户角度,以及从设计者角度来阐述用户需求。 3.内部网(Intranet)功能 资源共享,数据管理,文件管理,信息发布,协同工作,OA系统 3.网络拓扑结构设计 1.点对点网络将主机以点对点方式连接,主机通过单独的链路进行数据传输,并且两个节点之间可能会有多条单独的链路。 点对点网络优点: 网络性能不会随数据流量加大而降低。 点对点网络缺点: 网络中任意两个节点通信时,如果它们之间的中间节点较多,就需要经过多跳后才能到达,这加大了网络传输时延。 2.广播式网络仅有一条信道,网络上所有节点共享这个信道。 广播网络广泛用于局域网通信。 广播网络优点: 在一个网段内,任何两个节点之间的通信,最多只需要“2跳”的距离; 广播网络缺点: 网络流量很大时,容易导致网络性能急剧下降 3.链路形结构的优点 设备无关性。独立性。安全性。非中心化。 链路形结构的缺点 连接较多。时延较大。 4.环网络的优点:

IP组播基础 华为数通HCIP

单播:网络中传输的信息量与需要该信息的用户量成正比。多份内容相同的信息发送给不同用户,对信源及网络带宽都将造成巨大压力 广播:无需接收信息的主机也将收到该信息,这样不仅信息安全得不到保障,且会造成同一网段中信息泛滥 组播:有效地解决了单播和广播在点到多点应用中的问题。组播源只发送一份数据,数据在网络节点间被复制、分发,且只发送给需要该信息的接收者 传统点到点应用:(传统的电子邮件、WEB、网上银行等) 特点:1.服务提供端以单个用户为单位提供服务(同时只有一个数据发送者和接收者) 2.不同用户与服务提供端的通信数据存在差异 两个通信实体之间的通信过程如下: 1.Server封装数据包并发出,其中源IP为自身IP,目的IP为远端Client地址,源MAC为自身MAC地址,目的MAC为网关路由器的MAC地址。 2.网关路由器收到数据包,解封装后根据目的IP查找路由表,确定去往目的IP的下一跳地址及出接口。重新封装源数据包,从相应出接口发给下一跳设备继续转发。 3.经过路由器的多次逐条转发,数据包到达Client所在网络,Client收到数据后,对数据包进行解封装并交由本机上层应用协议处理。 新型点到多点应用:(在线直播、网络电视、视频会议等) 特点:1.服务提供端以一组用户为单位提供服务 2. 同组用户与服务提供端的通信数据无差异 3.对信息安全性、传播范围、网络带宽提出了较高的要求 部署方式: 1.单播:在一台源IP主机和一台目的IP主机之间进行(网络上绝大部分的数据都是以单播的形式传输的,例如电子邮件收发、网上银行都是采用单播实现的)(逐跳) 特点: 1.一份单播报文,使用一个单播地址作为目的地址,若网络中存在N个接收者,则Source需要发送N份单播报文 2.网络为每份单播报文执行独立的数据转发,形成一条独立的数据传送通路 缺陷: 1.重复流量过多 2.消耗设备和链路带宽资源 3.难以保证传输质量 2.广播:一台源IP主机和网络中所有其它的IP主机之间进行,属于一对所有的通讯方式,所有主机都可以接收到(不管是否需要) 特点:1.一份广播报文,使用一个广播地址作为目的地址。 2.不管是否有需求,保证报文被网段中的所有用户主机接收 缺点:只能在一个网段 1.地域范围限制 2.安全性无法保障 3.有偿性无法保障

基于C6000 DSP NDK的组播网络设计与实现

基于C6000 DSP NDK的组播网络设计与实现时间:2013-06-15 12:58:56 来源:电子科技作者:董博宇,毛晓丹,刘志哲,张伟峰,王平摘要:随着系统应用的复杂化,很多情况下需要将相同数据分发至不同的使用终端,这也促进了网络传输组播模式的应用。基于实际应用需求,以TMS320C6455芯片为核心处理平台,利用TI公司DSPC6000平台上的NDK(Net Developer’s Kit)开发包,对Marvell公司的88E6060(SWI TCH)芯片进行配置,实现了适用于多个终端进行组播方式网络通信的嵌入式系统设计。经过测试验证,该系统工作正常稳定,实现了百兆组播传输功能。 关键词:C6000;88E6060;嵌入式系统;NDK;组播网络 0 引言 嵌入式系统采用以太网接口传输数据相对于传统的串口、并口、1553B总线接口来说具有通用性强、传输速度快的特点,并且保证了较高的可靠性。TI公司在TMS320C6455(以下简称C6000系列高端的芯片中,大多提供了网络接口模块,DSP6455)就是其中典型的一款芯片。它的工作时钟可达1 GHz,片上集成以太网接口模块EMAC。结合TI公司推出的NDK(Net DevelopKit)网络资源开发包,可以大大缩短嵌入式系统中网络应用的开发周期,并且性能不逊于W5300等专业网口芯片。由于一片DSP6455只有一个EMAC接口以及MDIO管理模块,并且NDK的软件初始化只查询一个PHY口就停止,所以传统应用中,典型设计是在该DSP芯片外部接一个PHY芯片,连接一个终端设备,或者通过总线直接连接以太网专用芯片来实现点对点的网络连接。而现在越来越多的嵌入式系统应用需要连接多个终端设备进行组网,在网络中进行数据交换。本文选择利用DSP6455外接Marvell 公司的SWITCH芯片(88E6060),该芯片具备6个端口,每个端口都具备100M/10M 全双工的通信能力,最终实现该嵌入式系统与其他两个设备的100 MHz组播方式的网络通信。 1 电路原理设计 基于TI DSP6455的片内EMAC/MDIO模块、片外SWITCH(88E6060)芯片及其外围电路的接口设计,可以快速实现OSI七层模型中数据链路层和物理层(MAC+PHY)的组建。DSP6455支持三种接口连接方式,MII/RMII/GMII。MII接口(Media Independent Intetface)以及RMII(Reduced Media Independent Interface)接口分别为媒体独立接口和缩减媒体独立接口,它们支持10M/100M工作模式。GMII接口的全称是吉比特媒体独立接口(Gigabil Media Independent Interface),它支持10M/100M/1 000M三种工作模式。因为选取的88E6060只支持百兆MII/RMII的接口方式,本设计采用MII 的接口方式进行连接,信号连接框图如图1所示。

GPON系统中组播VLAN的设计

必须在 GTC 层完成所有派发 。 由于 GTC 层支持 ATM 輰輥 中文核心期刊 GPON 系统中组播 VLAN 的设计 谭 锋,魏 弢,刘一非,傅 强 (中国移动集团设计院有限公司 重庆分公司,重庆 401121 ) 摘要:GPON 系统的高带宽和下行广播特性能够很好地支持多媒体组播业务。设计了 GPON 系统中基于 VLAN 的组播实现方案。该设计承接了 OLT 和 ONU 上的监听和代理的功能,充分利用 GPON 下行广播的特 性,使同一个 PON 口下的组播用户共享一条数据流。与其他组播方案相比,提高了系统的转发速度,减少 了组播控制报文的带宽开销。 关键词:光线路终端;光网络单元;GPON IGMP 协议;OMCI 协议;主控器 中图分类号:TN929.15 文献标识码:A 文章编号:1002-5561(2011)09-0012-03 Design of multicast VLAN in GPON system TAN Feng, WEI Tao, LIU Yi-fei ,FU Qiang (China Mobile Group Design Institute Co., LtD. Chongqing Branch, Chongqing 401121,China) Abstract:GPON system's high banDwiDth anD Downlink raDio features can support multimeDia multicast ser- Vices. This paper Designs GPON systems baseD on Multicast VLAN implementations. The Design of the OLT anD the ONU to unDertake monitoring anD agent on the function, take aDVantage of the characteristics of GPON Downlink broaDcast, so unDer the same multicast PON port users to share a Data stream. CompareD with other multicast programs to improVe the system's forwarD speeD, reDucing the banDwiDth of the multicast control message oVerheaD. Key words:optical line terminal; optical network unit; GPON IGMP protocol; OMCI protocol; master control 0 引言 随着多媒体业务的迅猛发展, 人们对带宽的需求 日益增长,尤其是“三网融合”政策的明朗,GPON 技术 因其强大的系统容量、较高的光链路预算、良好的多业 务承载能力和完善的 QoS 保障等独特优势, 成为运营 商越来越推崇的宽带光接入技术。 宽带业务中的不同 需求使得 GPON 必须满足不同客户群。 因此, 在实现 OLT 对 ONU 进行组播管控时所使用的 VLAN 技术显 得尤为重要。 与 EPON 相比,GPON 系统不仅能同时支 持以太网业务和 TDM 业务, 而且具有更高的传输速 度;不仅具有更远传输距离和更高分光比,而且它的管 理 协 议 OMCI 可 以 提 供 更 完 善 的 网 络 管 理 和 保 护 机 制。 从 GPON 系统的协议分层解析,GTC 层的作用是把 所有的业务都装在统一格式中传输。 那么组播 VLAN [1] 和 GEM 两种帧结构, 其中 GEM 帧可以传送以太网业 务 和 TDM 业 务,GEM 帧 使 用 Gemport 作 为 标 识, 通 过 收稿日期:2010-03-31。 作者简介:谭锋(1982-),男,传输部设计人员。 在 GEM 层的分片和重组机制封装和传送以太网数据 帧和 TDM 数据帧[2]。 因此,组播 VLAN 可以完成组播组 业务的自由 转 发 。 以 下 我 们 介 绍 GPON 系 统 中 基 于 VLAN 的组播实现方案 1 组播 VLAN 的功能 OLT 通过组播 VLAN 不仅可以针对不同的用户, 也能针对不同的业务对流经 ONU 的业务进行控制。 组 播 VLAN 是目前 PON 系统应用中功能的重要体现之 一。 组播 VLAN 在业务的运行和管理中可以进行的操 作有:建立组播组业务表、更新 MAC 组播组路由表、管 理组播数[3]。 在 PON 的拓扑结构中,采用 IGMP 协议对 IP 多播协议点到多点地传送各种格式的音视频业务, 包括直播、网络电视、远程教育、远程医疗、网络电台、 实时视频会议等。 媒体业务通常流量大,实时性强。 而 GPON 系统下行传输速率可高达 2.5Gb/s , 其高带宽和 低延时完全能够满足各种组播业务的需要 。 另外 , GPON 提供了完善的动态带宽分配和队列调度机制 , 能够为组播业务提供完善的 QoS 保障。 訛 2011 年第 9 期

组播模拟试题答案

组播技术模拟 试卷满分:100 一.单项选择题(单项选择题。每小题2.0分,共30分) 1.下列关于PIM-SM协议的说法,错误的是()。 A.PIM-SM网络里面,既有共享树,又有源树 B.BSR的作用是选举RP C.RP的作用的作为共享树的根,转发组播数据 D.RP和BSR不能是同一台路由器 正确答案:D; 自己得分:0.0 教师评述: 2.IP地址中,组播地址的前几位特定比特值是()。 A.1100 B.1110 C.1010 D.1011 正确答案:B; 自己得分:0.0 教师评述: 3.关于IGMPV2版本,下列哪个叙述是正确的? A.V2版本没有定义成员关系常规查询报文 B.V2版本没有定义成员关系报告报文 C.V2版本没有定义成员离开报文 D.V2版本定义了抑制机制 正确答案:D; 自己得分:0.0 教师评述: 4.在PIM-SM中,接收点是如何得知源组所在位置的? A.源将源组信息(S,G),组播到所有的PIM路由器 B.源向RP注册源组信息(S,G),接收端向RP申请加入组G,发送(*,G) 加入消息,在RP 处匹配 C.接收端向所有的端口发送加入组消息(*,G),消息到达提供组播组G数据的源端S,源将S的消息单播到接收端 D.源向RP注册源组信息(S,G),RP将所有(S,G)消息组播到所有PIM路由器 正确答案:B; 自己得分:2.0 教师评述: 5.在IGMPv2报文头中,下列哪个类型值标示这是一个成员关系查询消息?

A.0x11 B.0x16 C.0x17 D.0x12 正确答案:A; 自己得分:0.0 教师评述: 6.共享树的组播路由表项中,不包括哪个内容? A.(*,G) B.in-interface C.next-hop D.out-interface list 正确答案:C; 自己得分:0.0 教师评述: 7.PIM-SM的工作流程中,不包括()。 A.RP选举 B.共享树建立 C.扩散-剪枝 D.SPT切换 正确答案:C; 自己得分:0.0 教师评述: 8.下列关于PIM-DM和PIM-SM的叙述,正确的是()。 A.PIM-DM协议假设刚开始时网络中没有接收者 B.PIM-SM协议假设刚开始时网络中每个子网都有接收者 C.PIM-DM协议也适用于稀疏场景 D.PIM-SM协议也适用于密集场景 正确答案:D; 自己得分:0.0 教师评述: 9.关于IGMPv2查询器的选举机制正确的是()。 A.具有大的接口IP地址的路由器将成为查询器 B.具有小的接口IP地址的路由器将成为查询器 C.查询器的选举依据上层协议 D.IGMPv1和IGMPv2查询器的选举机制是一样的 正确答案:B; 自己得分:0.0 教师评述:

IP组播路由协议详细介绍

IP组播路由协议详细介绍 一、概述 1、组播技术引入的必要性 随着宽带多媒体网络的不断发展,各种宽带网络应用层出不穷。IP TV、视频会议、数据和资料分发、网络音频应用、网络视频应用、多媒体远程教育等宽带应用都对现有宽带多媒体网络的承载能力提出了挑战。采用单播技术构建的传统网络已经无法满足新兴宽带网络应用在带宽和网络服务质量方面的要求,随之而来的是网络延时、数据丢失等等问题。此时通过引入IP组播技术,有助于解决以上问题。组播网络中,即使组播用户数量成倍增长,骨干网络中网络带宽也无需增加。简单来说,成百上千的组播应用用户和一个组播应用用户消耗的骨干网带宽是一样的,从而最大限度的解决目前宽带应用对带宽和网络服务质量的要求。 2、IP网络数据传输方式 组播技术是IP网络数据传输三种方式之一,在介绍IP组播技术之前,先对IP网络数据传输的单播、组播和广播方式做一个简单的介绍: 单播(Unicast)传输:在发送者和每一接收者之间实现点对点网络连接。如果一台发送者同时给多个的接收者传输相同的数据,也必须相应的复制多份的相同数据包。如果有大量主机希望获得数据包的同一份拷贝时,将导致发送者负担沉重、延迟长、网络拥塞;为保证一定的

服务质量需增加硬件和带宽。 组播(Multicast)传输:在发送者和每一接收者之间实现点对多点网络连接。如果一台发送者同时给多个的接收者传输相同的数据,也只需复制一份的相同数据包。它提高了数据传送效率。减少了骨干网络出现拥塞的可能性。 广播(Broadcast)传输:是指在IP子网内广播数据包,所有在子网内部的主机都将收到这些数据包。广播意味着网络向子网每一个主机都投递一份数据包,不论这些主机是否乐于接收该数据包。所以广播的使用范围非常小,只在本地子网内有效,通过路由器和交换机网络设备控制广播传输。 二、组播技术 1、 IP组播技术体系结构 组播协议分为主机-路由器之间的组成员关系协议和路由器-路由 器之间的组播路由协议。组成员关系协议包括IGMP(互连网组管理协议)。组播路由协议分为域内组播路由协议及域间组播路由协议。域内组播路由协议包括PIM-SM、PIM-DM、DVMRP等协议,域间组播路由协议包括MBGP、MSDP等协议。同时为了有效抑制组播数据在链路层的扩散,引入了IGMP Snooping、CGMP等二层组播协议。 IGMP建立并且维护路由器直联网段的组成员关系信息。域内组播路由协议根据IGMP维护的这些组播组成员关系信息,运用一定的组播路

(完整版)视频监控网络设计方案

监控系统网络解决方案 建议方案一 网络架构 接入层 ——光纤链路 ---- 般绞线 匚二I比纤收发器 图一 网络设备 接入层设备 10/100/1000M交换机,至少有两个端口支持千兆网络,做级联时 使用。支持组播协议igmp snooping ,igmp v1/v2,多vlan划分和vlan下组播。 核心层设备 1000M 三层交换机,支持组播协igmp snooping,igmp v1/v2, pim-sim,pim-dm,多vlan 戈U分和vlan 下组播。 网络接口 以太网接口: 相对于普通的模拟监控,低成本,抗干扰。以太网接口之间用双

绞线连接,双绞线的传输距离为100 米。 光纤接口: 抗干扰,传输距离远。各层与上一层的级联链路使用光纤传输,交换机配置光模块或使用光纤收发器。前端摄像机与配电机房的距离大于100 米的,使用光纤传输,摄像机与接入层交换机之间使用一对光纤收发器进行光电转换。 冗余链路: 网络分层为接入层,核心层,每台设备与上一层级联时,都级联至少两台上层设备,避免某一链路或者某台设备故障时,传输中断,图像丢失。 网络流量 组播:实时监控组播数据流。 单播:存储数据流,信令控制,TCP传输。 码流:高清视频码流6M/bps 。 网络设计 建议使用监控专网 构建监控专网优势 对网络安全要求较低,便于今后开展其它IP 业务,无需额外的 QoS支持。 网络排错 组播表查看

线路排查 建议方案二 网络架构 网络设备 接入层设备 10/100/1000M 交换机,至少有两个端口支持千兆网络, 做级联时 使用。支持组播协议 igmp snooping , igmp v1/v2,多vlan 划分 和vlan 下组播。 核心层设备 1000M 三层交换机,支持组播协 igmp snooping , igmp v1/v2, pim-sim ,pim-dm ,多 vlan 戈U 分和 vlan 下组播。 网络接口 ---- 取绞线 =光纤收賢器 j~L q 图二

网络工程详细设计及实施方案

华北电力调度数据网工程 技术方案 (第四部分网络详细设计及实施方案 ) 华迪计算机有限公司

目录 第一章.综述 (4) 1.1.组网原则 (4) 1.2.工程需求 (5) 第二章.网络方案建议及设计 (7) 2.1.华北电力调度数据网工程设计原则 (7) 2.2.拓扑设计 (8) 2.3.选用设备 (10) 2.4.路由设计与路由策略 (17) 2.5.IP地址规划 (21) 2.6.组播路由协议及业务设计 (25) 2.7.流量工程实施方案 (26) 2.8.QoS服务质量保证实施 (31) 2.9.IPv6迁移方案 (39) 2.10.MPLS VPN (40) 第三章.网络可靠性 (52) 3.1.设备的可靠性保证 (52) 3.2.网络结构的可靠性 (53) 3.3.链路的冗余保护 (53) 3.4.MPLS LSP的可靠性 (53) 第四章.网络安全 (57) 4.1.网络安全概述 (57) 4.2.网络设备安全 (60) 4.3.网络管理系统的安全 (61) 4.4.网络业务的安全 (61) 4.5.数据传输的安全 (62) 4.6.用户网络的安全 (63) 4.7.安全实施建议 (64) 第五章.方案特点 (65) 5.1.高可用性、高性能 (65)

5.2.高安全性及防病毒防攻击的功能 (67) 5.3.先进的IPv6性能和商用经验 (68) 5.4.易维护 (68) 5.5.先进的面向未来应用的功能 (68) 5.6.灵活的扩展性 (69) 5.7.业界最完整的MPLS VPN支持 (69) 5.8.业界最完整的组播支持 (70) 5.9.支持丰富的业务 (70)

IP组播地址

IP组播地址 组播协议的地址在IP协议中属于D类地址。 D类地址是从224.0.0.0到239.255.255.255之间的IP地址其中224.0.0.0到224.0.0.255是被保留的地址。 组播协议的地址范围类似于一般的单播地址,被划分为两个大的地址范围, 239.0.0.0—239.255.255.255是私有地址,供各个内部网在内部使用,这个地址的组播不能上公网,类似于单播协议使用的192.168.X.X和10.X.X.X。 224.0.1.0—238.255.255.255是公用的组播地址,可以用于Internet上。 下面是一些常见的有特殊用途的IP组播地址 224.0.0.0 - Base address 224.0.0.1 -网段中所有支持多播的主机 224.0.0.2 -网段中所有支持多播的路由器 224.0.0.4 -网段中所有的DVMRP路由器 224.0.0.5 -所有的OSPF路由器 224.0.0.6 -所有的OSPF指派路由器 224.0.0.7 -所有的ST路由器 224.0.0.8 -所有的ST主机 224.0.0.9 -所有RIPv2路由器 224.0.0.10 -网段中所有支的路由器 224.0.0.11 - Mobile-Agents 224.0.0.12 - DHCP server / relay agent服务专用地址 224.0.0.13 -所有的PIM路由器 224.0.0.22 -所有的IGMP路由器 224.0.0.251 -所有的支持组播的DNS服务器

224.0.0.9 RIPv2支持组播更新。 224.0.0.22 IGMPv2使用此地址,这个协议的本意是减少广播,让组员以组播形式通信。 224.0.0.5 224.0.0.6这两个是ospf协议使用的组播地址。 在broadcast network不论是DR,BDR,DRother,大家发送hello packet的时候目标地址都是AllSPFRouter(224.0.0.5);DRother向DR,BDR发送DD,LSA request或者LSA UPdate时目标地址是AllDRouter(224.0.0.6);DR,BDR向DRother发送DD,LSA Request或者LSA Update 时目标地址是AllSPFRouter(224.0.0.5);retransmit的LSA都是unicast,LSA ACK要看是explicit ack(unicast)还是implicit ack(multicast 224.0.0.6); 组播IP地址与以太网二层MAC地址的映射: IP组播地址用于标识一个IP组播组。IANA把D类地址空间分配给IP组播,范围从224.0.0.0到239.255.255.255,IP组播地址前四位均为1110。 从224.0.0.0至224.0.0.255被IANA保留为网络协议使用。例如:244.0.0.1 全主机组244.0.0.2 全多播路由器组244.0.0.3 全DVMRP路由器组244.0.0.5 全OSPF路由器组。在这一范围的多播包不会被转发出本地网络,也不会考虑多播包的TTL值。 地址从239.0.0.0至239.255.255.255作为管理范围地址,保留为私有内部域使用。 如下图所示,以太网和FDDI的MAC地址01:00:5E:00:00:00到01:00:5E:7F:FF:FF用于将三层IP组播地址映射为二层地址,即IP组播地址中的低23位放入IEEE MAC地址的低23位。IP组播地址有28位地址空间,但只有23位被映射到IEEE MAC地址,这样会有32个IP 组播地址映射到同一MAC地址上。 组播的应用和实现 一、引言 1.1 、问题的引出 近年来,随着网络技术的发展,使得各种单一媒体相继成为网络传输中的数据,进而各种媒体的融合使得网络多媒体运用层出不穷。目前,在 Internet 上产生了许多新的应用,其中不少是高带宽的多媒体应用,譬如网络视频会议 ( 可视化 IP 电话会议系统 ) 、网络音频 / 视频广播、多媒体远程教育、远程会诊,而传统网络最初是为数据传输而设计的,是典型的点点通信模式,是为保证数据可靠传输而设计的,所用的传输协议多为点到点的协议。其所具有的特点将增加

相关文档