文档库 最新最全的文档下载
当前位置:文档库 › 2(3).二重积分的换元法

2(3).二重积分的换元法

积分换元法解题技巧研究

华北水利水电大学 课题名称:积分换元法解题技巧研究 专业:岩土工程 班级: 小组成员: 联系方式: 2013年6月09日

摘要:换元法是积分应用中的一种重要解题方法,也是一种重要的数学思想。论文主要讨论了第一换元法、第二类换元法、二重积分换元法以及三重积分换元法的解题方式与技巧,同时也介绍了解题中应该注意的事项,以便能够准确而高效地运用积分换元法的解题技巧。关键词:积分换元法、解题技巧、应用举例 英文题目 Reasearch on Problem Solving Skills Change Element Method Integration Abstract:Change element method is an important method of solving the integral application ,also is a kind of important mathematics thought .This paper mainly discuss the first element method ,second kinds of method, the double integral method and the method of three integral problem-solving methods and techniques, and items that should be noticed in problem solving is also introduced, in order to problem-solving skills to accurately and efficiently using integral method. Key words:for example, integral method ,technique,application

换元积分法(第一类换元法)

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微分”, dx x x d )()(?'=? . 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+?.若u 是中间变量,()u x ?=,()x ?可微,则根据 复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量x 的 微分来对待从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则 [()()()()[()]f x x dx f u du F u C F x C ???'==+=+?? (1) 如何应用公式(1),在求不定积分积分()g x dx ? 时 如果被积函数g(x)可以化为一个复合函数与它 内函数的导函数的积的形式[()]()f x x ??'的形式 那么 ()()[()]()[()]x u g x dx f x x dx f u du ???='=??? ()()[()]u x F u C F x C ??==++.

换元积分法(第二类换元法)

§4.2 换元积分法(第二类) Ⅰ 授课题目(章节): §4.2 换元积分法 (第二类换元积分法) Ⅱ 教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 Ⅲ 教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 Ⅳ 讲授内容: 第一类换元积分法的思想是:在求积分()g x dx ? 时 如果函数g (x )可以化为[()]()f x x ??'的 形式 那么 () ()[()]()[()]() ()u x g x dx f x x dx f x d x f u du ?????='==???? ()F u C =+[()]F x C ?=+ 所以第一换元积分法体现了“凑”的思想.把被积函数凑出形如[()]()f x x ??'函数来.对于某些函数第一换元积分法无能为力,例如? -dx x a 22.对于这样的无理函数的积分我们就得用今天要学 习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换)(t x ψ=将无理函数()f x 的积分 ()f x dx ?化为 有理式[()] ()f t t ψψ'的积分[()]()f t t dt ψψ'?。即 ()[()]()f x dx f t t dt ψψ'=?? 若上面的等式右端的被积函数[()] ()f t t ψψ'有原函数()t Φ,则[()]()()f t t dt t C ψψ'=Φ+?, 然后再把()t Φ中的t 还原成1 ()x ψ-,所以需要一开始的变量代换)(t x ψ=有反函数。 定理2 设)(t x ψ=是单调、可导的函数,且0)(≠ψ't ,又设)()]([t t f ψ'ψ有原函数()t Φ,则 ??+ψΦ=+Φ=ψ'ψ=-C x C t dt t t f dx x f )]([)()()]([)(1 分析 要证明 1()[()]f x dx x C ψ-=Φ+? ,只要证明1[()]x ψ-Φ的导数为()f x , 1[()]d d dt x dx dt dx ψ-ΦΦ=? , ?dt dx =

最新定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法 教学目的:掌握定积分换元积分法与分部积分法 难点:定积分换元条件的掌握 重点:换元积分法与分部积分法 由牛顿-莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数.在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的.1.定积分换元法 定理假设 (1) 函数?Skip Record If...?在区间?Skip Record If...?上连续; (2) 函数?Skip Record If...?在区间?Skip Record If...?上有连续且不变号的导数; (3) 当?Skip Record If...?在?Skip Record If...?变化时,?Skip Record If...?的值在?Skip Record If...?上变化,且?Skip Record If...?, 则有 ?Skip Record If...?.(1) 本定理证明从略.在应用时必须注意变换?Skip Record If...?应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分.例1计算?Skip Record If...?. 仅供学习与交流,如有侵权请联系网站删除谢谢4

仅供学习与交流,如有侵权请联系网站删除 谢谢4 解 令?Skip Record If...?,则?Skip Record If...?.当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?.于是 ?Skip Record If...? ?Skip Record If...?. 例2 计算?Skip Record If...??Skip Record If...?. 解 令?Skip Record If...?,则?Skip Record If...?.当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,? ?Skip Record If...??Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?. 显然,这个定积分的值就是圆?(图5-8). 例3 计算?Skip Record If...?. 解法一 令?Skip Record If...?,则?Skip Record If...?. 当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?,于是 ?Skip Record If...?. 解法二 也可以不明显地写出新变量?Skip Record If...?,这样定积分的上、下限也不要改变. 即 ?Skip Record If...? ?Skip Record If...?.

二重积分与三重积分区别

都是递进关系,从一重积分开始,只说几何意义吧。 一重积分(定积分):只有一个自变量y = f(x) 当被积函数为1时,就是直线的长度(自由度较大) ∫(a→b) dx = L(直线长度) 被积函数不为1时,就是图形的面积(规则) ∫(a→b) f(x) dx = A(平面面积) 另外,定积分也可以求规则的旋转体体积,分别是 盘旋法(Disc Method):V = π∫(a→b) f2(x) dx 圆壳法(Shell Method):V = 2π∫(a→b) xf(x) dx 计算方法有换元积分法,极坐标法等,定积分接触得多,不详说了 ∫(α→β) (1/2)[A(θ)]2 dθ = A(极坐标下的平面面积) 二重积分:有两个自变量z = f(x,y) 当被积函数为1时,就是面积(自由度较大) ∫(a→b) ∫(c→d) dxdy = A(平面面积) 当被积函数不为1时,就是图形的体积(规则)、和旋转体体积 ∫(a→b) ∫(c→d) dxdy = V(旋转体体积) 计算方法有直角坐标法、极坐标法、雅可比换元法等 极坐标变换:{ x = rcosθ { y = rsinθ { α≤θ≤β、最大范围:0 ≤θ≤ 2π ∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ 三重积分:有三个自变量u = f(x,y,z) 被积函数为1时,就是体积、旋转体体积(自由度最大) ∫(a→b) ∫(c→d) ∫(e→f) dxdydz = V(旋转体体积) 当被积函数不为1时,就没有几何意义了,有物理意义等 计算方法有直角坐标法、柱坐标切片法、柱坐标投影法、球面坐标法、雅可比换元法等极坐标变化(柱坐标):{ x = rcosθ { y = rsinθ { z = z { h ≤ r ≤ k { α≤θ≤β、最大范围:0 ≤θ≤ 2π ∫(α→β) ∫(h→k) ∫(z?→z?) f(rcosθ,rsinθ,z) r dzdrdθ 极坐标变化(球坐标):{ x = rsinφcosθ { y = rsinφsinθ { z = rcosφ

定积分换元法与分部积分法习题教学文稿

定积分换元法与分部积分法习题

1 ?计算下列定积 分: ⑴ g 3)dx; 【解法 一】 应用牛顿-莱布尼兹公式 【解法二】 化到 sin( x 3 )dx sin(x 3 3 [cos( 应用定积分换元法 于是有 dx ; 2(11 5x)3; 【解法一】应用牛顿 u,则dx du , sin(x )dx 3 3 [cos 3 -莱布尼兹公式 1 dx 2(11 5x)31 (1 1 2 【解法二】应用定积分换元法 令11 5x u, 变化到16,于是有 1 dx 3 2(11 5x) 3)d(x 3)cos(x 3) cos(—一)] [ cos 3 3 3 当x从3单调变化到 4 2 3sinudu 3 (cos3)] 3 5x) 3d(11 1^(11 5 1 1)2 cosu 4 3 2 3 5x) 1(11 2 (11 5 2)2] 则dx 1du, 5 (cos )] 。 3 2 时,u从3单调变 [cos4 3 cos2] 3 5x) 2 1( 12 1) 10 162 51 512 当x从2单调变化到1时,u从1单调 16 u 1 3du 1 5 2 16 1 1o(卡1)誥。

⑶ 0%in cos 1 2 3 d ; 【解法一】应用牛顿-莱布尼兹公式 1 4 4 [cos cos 0] 4 2 【解法二】应用定积分换元法 单调变化到0,于是有 ⑷ o (1 sin 3 )d ; 由于1是独立的,易于分离出去独立积分,于是问题成为对 sin 3 d 的积分, 这是正、余弦的奇数次幕的积分,其一般方法是应用第一换元法,先分出一次 式以便作凑微分: sin d d cos ,余下的sin 2 1 cos 2 ,这样得到的 1 -cos 3 1] 令cos u , sin du , 单调变化到 2时,u 从1 2 sin cos 3 :u 3du 0u 3 du (1 cos 2 )d cos 便为变量代换做好了准备。 具体的变换方式有如下两种: 【解法一】 应用牛顿-莱布尼兹公式 3 0 (1 sin )d 1d °sin 2 sin d 0 o (1 cos 2 )d cos (cos (cos cos0) 1 (cos 3 3 cos 3 0) 【解法二】 应用定积分换元法 1) 1(1 1) 2 ? 3 2 sin cos d 2 3 2 cos dcos 1 4 cos 4 【解】被积式为(1 sin 3 )d ,不属于三角函数的基本可积形式,须进行变换。

(初稿)三重积分计算方法小结

江西师范大学数学与信息科学学院 学士学位论文 三重积分的计算方法小结Methods of Calculation of Triple Integral 姓名:蒋晓颖 学号: 1007012048 学院:数学与信息科学学院 专业:数学与应用数学 指导老师:蒋新荣(副教授) 完成时间:2014年1月23日

三重积分的计算方法小结 蒋晓颖 【摘要】三重积分的计算是数学分析中的难点,本文结合教材以及相关资料较全面地给出了三重积分计算中的四种处理方法。第一,利用降低三重积分重数的思想,将其化为累次积分;第二,采用坐标变换的方法,将积分体表示成适当的形式;第三,充分运用被积函数的奇偶性和积分区域的对称性,简化计算;第四,利用高斯公式将三重积分的计算转化成曲面积分计算。希望这几种方法能对学习者具有一定的指导意义。 【关键词】三重积分累次积分坐标变换对称性高斯公式

Methods of Calculation of Triple Integral Jiang Xiaoying 【Abstract】The calculation of triple integral is the difficulty in Mathematics analysis.In this paper,unifying the teaching and related materials ,we give four instructive methods of the calculation of triple integral for learner.The four methods are as follows:the first,lower the multiplicity of triple integral and replace it with iterated integral;the second,with the method of coordinate alternate,we can transform the integral volume into appropriate form;the third,fully use the parity of integrand and symmetry of integral area to simplify calculation;finally,we can calculate the triple integral with the Gauss formula that could transform triple integral into a surface integral. 【Key words】triple integral iterated integral coordinate alternate symmetry Gauss formula

三重积分概念及其计算

§5 三重积分 教学目的 掌握三重积分的定义和性质. 教学内容 三重积分的定义和性质;三重积分的积分换元法;柱面坐标变换;球面坐标变换. 基本要求 掌握三重积分的定义和性质,熟练掌握化三重积分为累次积分,及用柱面坐标变 换和球面坐标变换计算三重积分的方法. 教学建议 (1) 要求学生必须掌握三重积分的定义和性质,知道有界闭区域上的连续函数必可 积.由于三重积分的定义与性质及充要条件与二重积分类似,可作扼要叙述与比较. (2) 对较好学生可布置这节的广义极坐标的习题. 一、三重积分的概念 背景:求某非均匀密度的曲顶柱体的质量时,通过“分割、近似,求和、取极限”的步骤, 利用求柱体的质量方法来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 定义1 设()z y x f ,,是定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于V 的任何分割T ,当它的细度δ

则()z y x f ,,必在V 上可积. 二、化三重积分为累次积分 定理21.15 若函数()z y x f ,,在长方体V =[][][]f e d c b a ,,,??上的三重积分存在,且对任何x ∈[]b a ,,二重积分 ()x I =()dydz z y x f D ??,, 存在,其中D =[][]f e d c ,,?,则积分 ?b a dx ()??D d z y x f σ ,, 也存在,且 ()???V dxdydz z y x f ,,=?b a dx ()??D d z y x f σ ,,. (1) 为了方便有时也可采用其他的计算顺序.若简单区域V 由集合 ()()()()(){} b x a x y y x y y x z z y x z z y x V ≤≤≤≤≤≤=,,,,,,2121 所确定,V 在xy 平面上的投影区域为 D =()()(){ }b x a x y y x y y x ≤≤≤≤,,21 是一个x 型区域,设()z y x f ,,在上连续, ()y x z ,1,()y x z ,2在D 上连续,()x y 1,()x y 2上[]b a ,连续,则 ()???V dxdydz z y x f ,,= ()()???D z y x z dz z y x f dxdy 21,,,=()()()() ???b a x y x y z y x z dz z y x f dy dx 212 1,,,, 其他简单区域类似. 一般区域V 上的三重积分,常将区域分解为有限个简单区域上的积分的和来计算. 例1 计算 ???+V dxdydz y x 221 ,其中V 为由

不定积分换元法例题

【不定积分的第一类换元法】 已知()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????==??? 【凑微分】 ()()f u du F u C ==+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ?的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????==??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==???()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。

__________________________________________________________________________________________ 【第一换元法例题】 1、9999(57)(57)(5711 (57)(57)5 5 )(57)dx d x d x dx x x x x +=+?=+?= +?++???? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1 ln ln ln ln dx d x x x dx x x x =?=?? ?? 221 (l 1ln ln (ln )2n )2 x x x d C x C =?=+=+? 【注】111(ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --====?? ??? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+? 【注】(cos )'sin ,(cos )sin ,sin (cos )x x d x xdx xdx d x =-=-=-?? 3(2)cos cos cot sin sin sin sin xdx x xdx dx d x x x x ===?? ?? sin ln |si ln |sin |n |sin x x d C x C x ==+=+? 【注】(sin )'cos ,(sin )cos ,cos (sin )x x d x xdx xdx d x ==?=?

高等数学常用积分换元公式

第一类换元积分法常用的凑微分公式: (1) 1 () dx d ax b a =+(2)1 1 () 1 n n x dx d x n + = + (3) 1 () 2 dx d x x =(4) 2 11 () dx d x x =- (5)1 (ln) dx d x x =(6)() x x e dx d e = (7)cos(sin) xdx d x =(8)sin(cos) xdx d x =- 常用的凑微分公式 第一换元积分法 积分类型换元公式1. 1 ()()() f ax b dx f ax b d ax b a +=++ ??u ax b =+ 2. 222 1 ()()() 2 f x a xdx f x a d x a +=++ ??2 u x a =+ 3. 1 1 ()() n n n n f x x dx f x dx n -= ??n u x = 4. 111 ()() n n n n f x dx f x dx x n x = ??n u x = 5. 1 ()2() f x dx f x d x x = ??u x = 6. 2 1111 ()()() f dx f d x x x x ?=- ??1 u x = 7. 1 (ln)(ln)(ln) f x dx f x d x x ?= ??ln u x = 8. ()() x x x x f e e dx f e de ?= ??x u e = 9. (sin)cos(sin)sin f x xdx f x d x ?= ??sin u x = (cos)sin(cos)cos f x xdx f x d x ?=- ??cos u x = 2 1 (tan)(tan)tan cos f x dx f x d x x = ??tan u x = 10. sin cos mx nxdx ? 利用积化和差 公式进行变换sin sin mx nxdx ? cos cos mx nxdx ?

二重积分换元法

感悟二重积分的魅力 定理 设),(y x f 在xOy 平面上的闭区域D 上连续,变换 ),(),,(:v u y y v u x x T == 将uOv 平面上的闭区域'D 变为xOy 平面上的D ,且满足 (1)),(),,(v u y v u x 在'D 上具有一阶连续偏导数; (2)在'D 上雅可比(Jacobi )式 ;0) ,() ,(),(≠??= v u y x v u J (3)变换D D T →':是一对一的, 则有 .|),(|)],(),,([),(' dudv v u J v u y v u x f dxdy y x f D D ????= 例(高等数学第六版152P 例8):求由直线)0,0(,,,b a d c bx y ax y d y x c y x <<<<===+=+所围成的闭区域D (图10-26左)的面积. 解 所求面积为 ??D dxdy 令,,x y v y x u = +=则.1,1v uv y v u x +=+= },,|),{('b v a d u c v u D ≤≤≤≤= 如图10-26右所示,又雅可比式

'),(,0)1(),(),(2 D v u v u v u y x J ∈≠+=??= 从而所求面积为 .)1)(1(2) )(()1()1(222' 2b a c d a b udu v dv dudv v u dxdy d c b a D D ++--=+=+=?????? 现对该题做一个拓展延伸。 求由曲线)0,(,,1,122d c b a dy x cy x e y e y bx ax <<<==-=-=所围成的闭区域D 的面积. 解 所求面积为 ??D dxdy 令2,)1ln(y x v x y u =+=,先求雅可比式v y u y v x u x v u y x v u J ????????=??=),(),(),(, 由? ??=-=+-00)1ln(2 x vy y ux 知,这是一个隐函数方程组,其解可写为 ? ? ?==),() ,(v u y y v u x x (*) 又2,)1ln(y x v x y u =+= ,将(*)分别对y x ,求偏导数,即: ??? ????????? ?=??? ? ??-??+???? ??+??=??? ? ??-??+???? ??+??=???? ????+??? ??+-??=???? ????+??? ? ?+-??12)1(10 2)1(101)1ln(11)1ln(332222y x v y y x u y y x v x y x u x y v y x y u y y v x x y u x 令

计算二重积分的几种方法

计算二重积分的几种方法 摘要 二重积分的计算是数学分析中一个重要的内容,其计算方法多样、灵活,本文总结了二重积分的一般计算方法和特殊计算方法.其中,一般计算方法包括化二重积分为累次积分和换元法,特殊计算方法包括应用函数的对称性、奇偶性求二重积分以及分部积分法. 关键词 二重积分 累次积分法 对称性 分部积分法 1 引言 本人在家里的职业教育高中实习,发现这里有些专业的的学生要计算很多面积或者体积问题,已经略微涉及到大学的积分问题,如曲顶柱体的体积,他们用最普遍的求面积/体积的方法求解,而用二重积分进行计算求解就会更容易理解,方法和步骤也带给学生一个新的认知领域。职业教育的学生在大学知识中解决实际问题应用积分的方法更频繁。在解决一些几何、物理等的实际问题时,我们常常需要各种不同的多元实值函数的积分,而二重积分又是基本的、常见的多元函数积分,我针对自己在《数学分析》这门课程中的学习,总结了累次积分、根据函数对称性积分、元素法、分部积分法、极坐标下的积分等内容,以下是我对二重积分方法的总结。 2 积分的计算方法 2.1化二重积分为两次定积分或累次积分法 定理 1 若函数(),f x y 在闭矩形域(),R a x b c y d ≤≤≤≤可积,且[],x a b ?∈,定积分 ()(),d c I x f x y dy =?存在,则累次积分 (),b d a c f x y dy dx ?????? ??也存在,且(,)(,)b d a c R f x y dxdy f x y dy dx ??=???? ?? ?? 证明 设区间[],a b 与[],c d 的分点分别是 011011i i n k k m a x x x x x b c y y y y y d --=<

相关文档
相关文档 最新文档