文档库 最新最全的文档下载
当前位置:文档库 › 自动控制原理课程设计

自动控制原理课程设计

自动控制原理课程设计
自动控制原理课程设计

物理科学与工程技术学院

课程设计说明书

课题名称:自动控制原理

设计题目:自动控制与检测原理

专业班级: 11级自动化

学生姓名: 袁

学号: 1134307138

自动控制系统

为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。

自动检测

检测是指为确定产品、零件、组件、部件或原材料是否满足设计规定的质量标准和技术要求目标值而进行的测试、测量等质量检测活动。检测有3个目标: ①实际测定产品(含零、部件)的规定质量特性及其指标的量值。②根据测得值的偏离状况,判定产品的质量水平(等级),确定废次品。③认定测量方法的正确性和对测量活动简化是否会影响对规定特征的控制自动检测是指在计算机控制的基础上,对系统、设备进行性能检测和故

障诊断。他是性能检测、连续监测、故障检测和故障定位的总称。现代自动检测技术是计算机技术、微电子技术、测量技术、传感技术等学科共同发展的产物。凡是需要进行性能测试和故障诊断的系统、设备,均可以采用自动检测技术

课程内容——设计一个雷达天线伺服控制系统

1雷达天线伺服控制系统简介

1.1概述

用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。它是由若干元件和部件组成的并具有功率放大作用的一种自动控制系统。位置随动系统的输入和输出信号都是位置量,且指令位置是随机变化的,并要求输出位置能够朝着减小直至消除位置偏差的方向,及时准确地跟随指令位置的变化。位置指令与被控量可以是直线位移或角位移。随着工程技术的发展,出现了各种类型的位置随动系统。由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,并成功应用在雷达天线。伺服系统的精度主要决定于所用的测量元件的精度。此外,也可采取附加措施来提高系统的精度,采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。因此可根据这个特征将它划分为两个类型,一类是模拟式随动系统,另一类是数字式随动系统。本设计——雷达天线伺服控制系统实际上就是随动系统在雷达天线上的应用。系统的原理图如图1-1所示。

图1-1 雷达天线伺服控制系统原理图

1.2 系统的组成

从图1-1可以看出本系统是一个电位器式位置随动系统,用来实现雷达天线的跟踪控制,由以下几个部分组成:位置检测器、电压比较放大器、可逆功率放大器、执行机构。以上四部分是该系统的基本组成,在所采用的具体元件或装置上,可采用不同的位置检测器,直流或交流伺服机构等等。

现在对系统的组成进行分析:

1、受控对象:工作机械(雷达天线)。

2、被控量:角位置m θ。

3、干扰:主要是负载变化(f 及L T )。

4、给定值:指令转角*m θ。

5、传感器:由电位器测量m θ、*m θ,并转化为U 、*U 。

6、比较计算:两电位器按电桥连接,完成减法运算*U U e -=(偏差)。

7、控制器:放大器,比例控制。

8、执行器:直流电动机及减速箱。

1.3 工作原理

现在来分析该系统的工作原理。由图1-1可以看出,当两个电位器1RP 和2RP 的转轴位

置一样时,给定角*m θ与反馈角m θ相等,所以角差*m m

m 0θθθ?=-=,电位器输出电压 *U U =,电压放大器的输出电压ct U 0=,可逆功率放大器的输出电压d U 0=,电动机的转

速n 0=,系统处于静止状态。当转动手轮,使给定角*m θ增大,m 0θ?>,则*U >U ,ct U 0>,

d U 0>,电动机转速n >0,经减速器带动雷达天线转动,雷达天线通过机械机构带动电位器

2RP 的转轴,使m θ也增大。只要*m m θθ<,电动机就带动雷达天线超着缩小偏差的方向运动,

只有当*m

m θθ=,偏差角m 0θ?=,ct U 0=,d U 0=,系统才会停止运动而处在新的稳定状态。如果给定角*m θ减小,则系统运动方向将和上述情况相反。

2 雷达天线伺服控制系统主要元部件

2.1 位置检测器

位置检测器作为测量元件,由电位器1RP 和2RP 组成位置(角度)检测器,其中电位器1RP 的转轴和手轮相连,作为转角给定,电位器2RP 的转轴通过机械机构与负载部件相连接,作为转角反馈,两个电位器均由同一个直流电源S U 供电,这样可将位置直接转换成电量输出。

在控制系统中,单个电位器用作为信号变换装置,一对电位器可以组成误差检测器,空载时,单个电位器的电刷角位移()t θ与输出电压()u t 的关系曲线在进行理论分析时可以用直线近似,于是可得输出电压为

0()()u t K t θ= 式中0max K E θ=,是电刷单位角位移对应的输出电压,称为电位器传递系数,其中E 是电位器电源电压,max θ是电位器最大工作角。对上式求拉氏变换,并令()[()]U s L u t =,()[()]s L t θθ=,可求得电位器传递函数为

0()()()

U s G s K s θ== 可以看出电位器的传递函数是一个常值,它取决于电源电压E 和电位器最大工作角度max θ。电位器可用图2-1的方框图表示。

图2-1 电位器方框图

其中输入()X s 就是()s θ,输出()C s 就是()U s ,()G s 就是0K 。

用一对相同的电位器组成误差检测器时,其输出电压为

120120()()()[()()]()u t u t u t K t t K t θθθ=-=-=?

式中0K 是单个电位器的传递系数;12()()()t t t θθθ?=-是两个电位器电刷角位移之差。称为误差角。因此,误差角为输入时,误差检测器的传递函数与单个电位器传递函数相同,即为

0()()()

U s G s K s θ==? 在使用电位器时要注意负载效应。所谓负载效应就是指在电位器输出端接有负载时所产生的影响。当电位器接负载时,一般负载阻抗比较大,所以可以将电位器视为线性元件,其输出电压与电刷角位移之间成线性关系。

2.2 电压比较放大器

电压比较放大器由1A 、2A 组成,其中放大器1A 仅仅起倒相的作用,2A 则起电压比较和放大作用,其输出信号作为下一级功率放大器的控制信号,并具备鉴别电压极性(正反相位)的能力。

电压比较放大器实际上是比较元件和一部分放大元件的组合,其职能是把测量元件检测到的被控量实际值与给定元件给出的参据量进行比较,求出它们之间的偏差,并经过电压型集成运算放大器的放大作用,将偏差信号放大。具体说来就是:

*ct ct ()U K U U =- 其中ct 10K R R =-,又因*U U e -=(偏差),所以上式可以写成ct ct U K e =,对该式两边同时进行拉氏变换,可得电压比较运算放大器的传递函数为

ct ct ()()()

U s G s K E s == 从式子可以知道电压比较放大器的传递函数也是一个常值。电压比较放大器可以用图2-2

所示的方框图表示

图2-2 电压比较器方框图

其中ct ()G s K =。

2.3 可逆功率放大器

为了推动随动系统的执行机构,即执行电动机,只有电压放大是不够的,还必须有功率放大,这样才能驱动电动机SM 。可逆功率放大器也是放大元件。

由于在控制系统中,控制信号不能提供驱动执行元件的功率,所以必须进行功率放大。只有这样,才能使电动机(执行元件)按着期望的方向和速度运行。可以说,功率放大元件把具有固定电压的电源变成了由信号控制的能源,即电压或电流随控制信号而变化的电源。根据所要驱动的电动机的不同,功率放大元件分为直流伺服功率放大器和交流伺服功率放大器两种。前者驱动直流电动机,后者驱动交流电动机。控制系统中目前应用最广的功率放大元件是直流功率放大器。系统对直流功率放大器一般有下述基本要求:

1、能够输出足够高的电压和足够大的电流,能输出足够大的电功率。

2、线性度好。

3、可靠的限流装置。

4、能够吸收电动机的回输能量。

5、应具备电流负反馈线路。

常用的直流功率放大器有三种:线性(比例式)功率放大器、开关式功率放大器和晶闸管功率放大器。

本设计用到的功率放大器由晶闸管或大功率晶体管组成功放电路,由它输出一个足以驱动电动机SM 的电压和电流。分析可知,对该环节做近似处理,可得

d d ct U K U =

对式子两边同时做拉氏变换,得可逆功率放大器的传递函数为

d d ct ()()()

U s G s K U s == 用图2-3所示的方框图表示。

图2-3 可逆功率放大器方框图

其中d ()G s K =。

2.4 执行机构

执行机构即执行元件,它的只能是直接推动被控对象,使其被控量发生变化。一般用来作为执行元件的有控制阀、电动机、液压马达等。虽然随着科技的发展,近些年来,交流电动机在控制系统特别是调速系统中应用越来越广,使直流电动机的地位受到了严重的挑战。但目前直流电动机在控制系统中仍占主要地位。对于调速范围不大,动态响应要求不高的系统,可以使用普通直流电动机。对于调速范围大,动态响应要求快的系统,特别是伺服系统(随动系统),则应采用直流伺服电动机。

直流伺服电动机是专门为控制系统特别是伺服系统设计和制造的一种电机。它的转子的机械运动受输入电信号控制作快速反应。直流伺服电动机的工作原理、结构和基本特征与普通直流电动机没有原则区别,但为了满足控制系统的要求,在结构和性能上做了一些改进,具有如下特点:

1、采用细长的电枢以便降低转动惯量,其惯量大约是普通直流电动机的1/31/2。

2、具有优良的换向性能,在大的峰值电流冲击下仍能保持良好的换向条件。

3、机械强度高,能够承受住巨大的加速度造成的冲击力作用。

4、电刷一般都安排在几何中性面上,以确保正、反转特性对称。

本系统就是采用直流伺服电动机SM 作为带动负载运动的执行机构,系统中的雷达天线即为负载,电动机到负载之间通过减速器匹配。 直流伺服电动机在控制系统中广泛用作执行机构,用来对被控对象的机械运动实现快速控制,通过简化处理后的直流伺服电动机的微分方程为

m m m 1d 2()()()()d t T t K u t K M t dt

ωω+=- 式中()M t 可视为负载扰动转矩。根据线性系统的叠加原理,可分别求d ()u t 到m ()t ω和()M t 到m ()t ω的传递函数,以便研究在d ()u t 和()M t 分别作用下电动机转速m ()t ω的性能,将他们叠加后,便是电动机转速的响应特性。所以在不考虑负载扰动转矩的条件下,即()0M t =时

和在零初始条件下,即'm m

(0)(0)0ωω==时,对上式各项求拉氏变换,并令m m ()[()]s L t ωΩ=,d d ()[()]U s L u t =,则得s 的代数方程为

m m 1d (1)()()T s s K U s +Ω=

由传递函数的定义,于是有

m 1d m

()()()1

s K G s U s T s Ω==+ ()G s 便是电枢电压d ()u t 到m ()t ω的传递函数,m T 是系统的机电常数。

这可以用图2-4所示的方框图来表示

图2-4 直流伺服电动机方框图

其中1m ()1

K G s T s =+。 设减速器的速比为i ,减速器的输入转速为n ,而输出转速为'n ,则减速器的传递函数为

'()()()

g N s G s K N s == 其中g 1/K i =。

3 系统的开环增益的选择和系统的静态计算

系统的原理框图可简化成如图3-1所示

图3-1 雷达天线伺服控制系统原理框图

给定角*m θ经电位器变成给定信号*U ,被控量经电位器变成反馈信号U ,给定信号与反

馈信号产生偏差信号e ;偏差信号经放大器(电压比较放大器和可逆功率放大器)得到

d U ,d U 通过执行机构(直流伺服电动机)作用到雷达天线上,减小偏差,最终实现*m

m θθ=。这就是控制的整个过程。

第二章中已经将各部件的传递函数分别用方框图表示了出来,用信号线将个方框图按信号流向依次连接,在不考虑干扰力矩的条件下,并适当的变换,就会得到雷达天线伺服控制控制系统的结构图,如图3-2所示

图3-2 雷达天线伺服控制系统结构图

其中()R s 就是*m

()s θ,()C s 就是m ()s θ,g 1/K i =。 将方框图进行化简处理,可得系统的开环传递函数 m

*m m ()()()()()(1)

s C s K G s R s s s T s θθ===+ 其中0ct d 1g K K K K K K =。简化后的系统方框图如图3-3所示

图3-3 系统简化方框图

从实际考虑,我们知道雷达天线伺服控制系统的性能应该是响应速度尽可能快,即调节时间尽可能小,超调量尽可能小。

本系统的设计要求是系统通过校正设计后的单位阶跃响应无超调,且调节时间s 0.5t s ≤。因系统的开环传递函数为

m ()(1)K G s s T s =+

其中K 为开环增益,m T 为直流伺服电动机的时间常数。选取m 0.1T s =的直流伺服电动机作为执行机构。由开环传递函数求得系统的闭环传递函数

2/()()11()m m m

K T G s s K

G s s s T T Φ==+++ 由上式可以得到闭环特征方程为

210m m

K s s T T ++= 这是一个二阶系统,在没有校正设计前,取系统的阻尼比为0.5ζ=,代入m 0.1T =,由二阶系统的标准形式有

1210n m

T ζω== 210n m

K K T ω== 计算得到10rad /s n ω=。系统的开环增益为

210(rad /s)K =

系统的开环传递函数为

m 10()(1)(0.11)

K G s s T s s s ==++ 这可以用系统的参数方框图表示,如图3-4所示

图3-4 系统参数方框图

可以看出1ν=,是一型系统。静态位置误差系数

lim ()()p s K G s H s →==∞

得到系统在阶跃输入作用下的稳态误差

1101lim ()()1ss p s e G s H s K →===++ 4系统的动态分析

在第三章选择了系统的开环增益,并进行了静态计算,知道了系统的稳态误差为0,现在对系统进行动态分析。在典型输入信号作用下,任何一个控制系统的时间响应都由动态过程和稳态过程两部分组成,动态分析就是对动态过程的分析。动态过程又称过渡过程或瞬态过程,指系统在典型输入信号作用下,系统输出量从初始状态到最终状态的响应过程。由于实际控制系统具有惯性、摩擦以及其它一些原因,系统输出量不可能完全复现输入量的变化。动态过程除提供系统稳定性的信息外,还可以提供响应速度及阻尼情况等信息,这些信息用动态性能描述。

对本系统而言,在没有校正设计时,0.5ζ=,可知系统是欠阻尼二阶系统。动态分析具体而言就是确定系统的动态性能指标。因cos ζβ=,于是求得阻尼角为

arccos arccos0.5/3βζπ===

而阻尼振荡频率为

8.66(rad/s)d ωω==

对欠阻尼二阶系统各性能指标进行近似计算,可得

1、延迟时间d t :

10.710.70.50.13510d n

t ζω++?=== 2、上升时间r t :

/30.24()8.66

r d t s πβππω--=== 3、调节时间s t :

3.5 3.50.7()0.510s n

t s ζω===? 4、超调量%σ:

2/1%100%16.3%e πζζσ--=?=

由这些计算出的动态性能指标可以知道,系统并没有达到设计要求,超调量%16.3%0σ=>,调节时间0.70.5s t =>。系统此时的单位阶跃响应曲线如图4-1所示

图4-1 系统校正前单位阶跃响应曲线

从对系统的动态分析和图4-1可以看出,如果该系统没有校正设计,则达不到设计要求,所以为了满足设计要求,必须进行校正设计。校正设计的具体内容将在下一章重点详细介绍。

5 校正设计

所谓校正,就是在系统中加入一些其参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,从而满足给定的各项性能指标。目前,在工程实践中常用的有三种校正方法,分别是串联校正、反馈校正和复合校正。

本系统的校正设计采用反馈校正。反馈校正是目前广泛应用的一种校正方式,反馈校正的基本原理是:用反馈校正装置包围待校正系统中对动态性能改善有重大妨碍作用的某些环节,形成一个局部反馈回路(内回路),在局部反馈回路的开环幅值远大于1的条件下,局部反馈回路的特性主要取决于反馈校正装置,而与被包围部分无关;适当选择校正装置的形式和参数,可以使系统的性能满足给定指标的要求。

本系统采用直流测速发电机作为校正装置,即采用测速反馈控制来实现校正。直流测速发电机的传递函数为

t ()()()

U s G s K s ==Ω 或

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

《自动控制原理》

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的 MATLAB仿真 一、实验目的 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G200 , 100 2 ) ( 2 1 1 2 1 2= = - = - = - = 其对应的模拟电路及SIMULINK图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。 ①比例环节1 ) ( 1 = s G和2 ) ( 1 = s G; ②惯性环节 1 1 ) ( 1+ = s s G和 1 5.0 1 ) ( 2+ = s s G ③积分环节 s s G1 ) ( 1 = ④微分环节s s G= ) ( 1 ⑤比例+微分环节(PD)2 ) ( 1 + =s s G和1 ) ( 2 + =s s G ⑥比例+积分环节(PI) s s G1 1 ) ( 1 + =和s s G21 1 ) ( 2 + = 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

《自动控制原理》典型考试试题

《 自动控制原理 》典型考试试题 (时间120分钟) 院/系 专业 姓名 学号 第二章:主要是化简系统结构图求系统的传递函数,可以用化简,也可以用梅逊公式来求 一、(共15分)已知系统的结构图如图所示。请写出系统在输入r(t)和扰动n(t)同时作用下的输出C(s)的表达式。 G4 H1G3 G1 G 2 N(s)C(s) R(s) - -+ + + 二 、(共15分)已知系统的结构图如图所示。 试求传递函数 )()(s R s C ,) () (s N s C 。 三、(共15分)已知系统的结构图如图所示。 试确定系统的闭环传递函数C(s)/R(s)。 G1 G2 R(s) - + + C(s) - + 四、(共15分)系统结构图如图所示,求X(s)的表达式

G4(s)G6(s) G5(s)G1(s) G2(s) N(s) C(s) R(s) -- G3(s) X(s) 五、(共15分)已知系统的结构图如图所示。 试确定系统的闭环传递函数C(s)/R(s)和C(s)/D(s)。 G1 G2 R(s) - + + C(s) -+ D(s) G3G4 六、(共15分)系统的结构图如图所示,试求该系统的闭环传递函数 ) () (s R s C 。 七、(15分)试用结构图等效化简求题图所示各系统的传递函数 ) () (s R s C

一、(共15分)某控制系统的方框图如图所示,欲保证阻尼比ξ=0.7和响应单位斜坡函数的稳态误差为ss e =0.25,试确定系统参数K 、τ。 二、(共10分)设图(a )所示系统的单位阶跃响应如图(b )所示。试确定系统参数,1K 2K 和a 。 三、(共15分)已知系统结构图如下所示。求系统在输入r(t)=t 和扰动信号d(t)=1(t)作用下的稳态误差和稳态输出)(∞C 2/(1+0.1s) R(s) - C(s) 4/s(s+2) E(s) D(s) 四、(共10分)已知单位负反馈系统的开环传递函数为: 2()(2)(4)(625) K G s s s s s = ++++ 试确定引起闭环系统等幅振荡时的K 值和相应的振荡频率ω 五、(15分)设单位反馈系统的开环传递函数为 1 2 ) 1()(23++++=s s s s K s G α 若系统以2rad/s 频率持续振荡,试确定相应的K 和α值 第三章:主要包括稳、准、快3个方面 稳定性有2题,绝对稳定性判断,主要是用劳斯判据,特别是临界稳定中出现全零行问题。 相对稳定性判断,主要是稳定度问题,就是要求所有极点均在s=-a 垂线左测问题,就是将s=w-a 代入D(s)=0中,再判断稳定 快速性主要是要记住二阶系统在0<ξ<1时的单位阶跃响应公式以及指标求取的公式。 准确性主要是稳态误差的公式以及动态误差级数两方面

自动控制原理期末考试复习题及答案

一、 填空题 1、线性定常连续控制系统按其输入量的变化规律特性可分为_恒值控制_系统、随动系统和_程序控制_系统。 2、传递函数为 [12(s+10)] / {(s+2)[(s/3)+1](s+30)} 的系统的零点为_-10_, 极点为_-2__, 增益为_____2_______。 3、构成方框图的四种基本符号是: 信号线、比较点、传递环节的方框和引出点 。 4、我们将 一对靠得很近的闭环零、极点 称为偶极子。 5、自动控制系统的基本控制方式有反馈控制方式、_开环控制方式和_复合控制方式_。 6、已知一系统单位脉冲响应为t e t g 5.16)(-=,则该系统的传递函数为 。 7、自动控制系统包含_被控对象_和自动控制装置两大部分。 8、线性系统数学模型的其中五种形式是微分方程、传递函数、__差分方程_、脉冲传递函数_、__方框图和信号流图_。 9、_相角条件_是确定平面上根轨迹的充分必要条件,而用_幅值条件__确定根轨迹上各 点的根轨迹增益k*的值。当n-m ≥_2_时, 开环n 个极点之和等于闭环n 个极点之和。 10、已知一系统单位脉冲响应为 t e t g 25.13)(-=,则系统的传递函数为_ _。 11、当∞→ω时比例微分环节的相位是: A.90 A.ο 90 B.ο 90- C.ο45 D.ο 45- 12、对自动控制的性能要求可归纳为_稳定性__、_快速性_和准确性三个方面, 在阶跃 响应性能指标中,调节时间体现的是这三个方面中的_快速性___,而稳态误差体现的是_稳定性和准确性_。 13、当且仅当离散特征方程的全部特征根均分布在Z 平面上的_单位圆 _内,即所有特征根的模均小于___1____,相应的线性定常离散系统才是稳定的。 14、下列系统中属于开环控制系统的是 D.普通数控加工系统

自动控制原理课程实验

上海电力学院实验报告 自动控制原理实验课程 题目:2.1.1(2.1.6课外)、2.1.4(2.1.5课内)班级:gagagagg 姓名:lalalal 学号:hahahahah 时间:zzzzzzzzzzz

实验内容一: 一、问题描述: 已知系统结构图,(1)用matlab编程计算系统的闭环传递函数;(2)用matlab转换函数表示系统状态空间模型;(3)计算其特征根。 二、理论方法分析 (1)根据系统结构图的串并联关系以及反馈关系,分别利用tf ()函数series()函数,parallel函数以及feedback函数构建系统传递函数;(2)已求出系统传递函数G,对于线性定常系统利用函数ss(G)课得到系统的状态空间模型。(3)利用线性定常系统模型数据还原函数[num,den]=tfdata(G,‘v’)可得到系统传递函数的分子多项式num与分母多项式den,利用roots(den)函数可得到系统的特征根。 三、实验设计与实现 新建M文件,编程程序如下文所示: G1=tf([0.2],[1,1,1]); G2=tf([0.3],[1,1]); G3=tf([0.14],[2,1]); G4=series(G2,G3);%G2与G3串联 G5=0.7*feedback(G4,-1,1); G6=0.4*feedback(G1,G5,1); G7=feedback(G6,0.6)

ss(G7)%将系统传递函数转化为状态空间模型 [num den]=tfdata(G7,'v');%还原系统传递函数分子、分母系数矩阵 roots(den)%求系统传递函数特征根 点击Run运行 四、实验结果与分析 M文件如下: 运行结果如下:

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

自动控制原理-期末考试试题卷

洛阳理工学院 2010/2011 学年第二学期自动控制原理期末考试试题卷(B) 适用班级:B 考试日期时间:适用班级: 一、判断题。正确的打√,错误的打×。(每小题1分,共10分) 1.传递函数是线性定常系统的一种内部描述模型。() 2.劳斯判据是判断线性定常系统稳定性的一种代数判据。() 3.频域分析法是根据闭环系统的频率特性研究闭环系统性能的一种图解方法。( ) 4.频率响应是系统在正弦输入信号下的全部响应。() 5.绘制系统Bode图时,低频段曲线由系统中的比例环节(放大环节)和微积分环节决定( ) 6.对于线性定常系统,若开环传递函数不包括积分和微分环节,则当0 ω=时,开环幅相特性曲线(Nyquist图)从正虚轴开始。() 7.开环控制系统的控制器和控制对象之间只有正向作用,系统输出量不会对控制器产生任何影响。() 8.Ⅰ型系统,当过渡过程结束后,系统对斜坡输入信号的跟踪误差为零。() 9.控制系统分析方法中,经典控制理论的分析方法有频域分析法、根轨迹分析法、时域分析法。() 10.已知某校正网络传递函数为 1 () 1 s G s as + = + ,当满足a>1条件时,则该校正网络为滞后校正网络。() 二、单选题(每小题2分,共20分) 1.下述()属于对闭环控制系统的基本要求。 (A)稳定性(B)准确性(C)快速性(D)前面三个都是 2.分析线性控制系统动态性能时,最常用的典型输入信号是()。 (A)单位脉冲函数(B)单位阶跃函数 (C)单位斜坡函数(D)单位加速度函数 3.典型二阶系统阻尼比等于1时,称该系统处于()状态。 (A)无阻尼(B)欠阻尼(C)临界阻尼(D)系统不稳定或临界稳定 4.稳定最小相位系统的Nyquist图,其增益(幅值)裕度()。 (A)0 hdB<(B)0 hdB>(C)1 hdB<(D)1 hdB> 5.单位反馈控制系统的开环传递函数为 4 () (5) G s s s = + ,则系统在()2 r t t =输入作用下,其稳态误差为()。 (A)10 4 (B) 5 4 (C) 4 5 (D)0 6.一个线性系统的稳定性取决于()。 (A)系统的输入(B)系统本身的结构和参数

自动控制原理实验书(DOC)

目录 实验装置介绍 (1) 实验一一、二阶系统阶跃响应 (2) 实验二控制系统稳定性分析 (5) 实验三系统频率特性分析 (7) 实验四线性系统串联校正 (9) 实验五 MATLAB及仿真实验 (12)

实验装置介绍 自动控制原理实验是自动控制理论课程的一部分,它的任务是:一方面,通过实验使学生进一步了解和掌握自动控制理论的基本概念、控制系统的分析方法和设计方法;另一方面,帮助学生学习和提高系统模拟电路的构成和测试技术。 TAP-2型自动控制原理实验系统的基本结构 TAP-2型控制理论模拟实验装置是一个控制理论的计算机辅助实验系统。如上图所示,TAP-2型控制理论模拟实验由计算机、A/D/A 接口板、模拟实验台和打印机组成。计算机负责实验的控制、实验数据的采集、分析、显示、储存和恢复功能,还可以根据不同的实验产生各种输出信号;模拟实验台是被控对象,台上共有运算放大器12个,与台上的其他电阻电容等元器件配合,可组成各种具有不同系统特性的实验对象,台上还有正弦、三角、方波等信号源作为备用信号发生器用;A/D/A 板安装在模拟实验台下面的实验箱底板上,它起着模拟与数字信号之间的转换作用,是计算机与实验台之间必不可少的桥梁;打印机可根据需要进行连接,对实验数据、图形作硬拷贝。 实验台由12个运算放大器和一些电阻、电容元件组成,可完成自动控制原理的典型环节阶跃响应、二阶系统阶跃响应、控制系统稳定性分析、系统频率特性测量、连续系统串联校正、数字PID 、状态反馈与状态观测器等相应实验。 显示器 计算机 打印机 模拟实验台 AD/DA 卡

实验一一、二阶系统阶跃响应 一、实验目的 1.学习构成一、二阶系统的模拟电路,了解电路参数对系统特性的影响;研究二阶系统的两个重要参数:阻尼比ζ和无阻尼自然频率ωn对动态性能的影响。 2.学习一、二阶系统阶跃响应的测量方法,并学会由阶跃响应曲线计算一、二阶系统的传递函数。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验原理 模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟一、二阶系统,即利用运算放大器不同的输入网络和反馈网络模拟一、二阶系统,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。 若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 四、实验内容 构成下述系统的模拟电路,并测量其阶跃响应: 1.一阶系统的模拟电路如图

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

自动控制原理实验1-6

实验一 MATLAB 仿真基础 、实验目的: (1) 熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2) 掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3) 掌握使用MATLAB 命令化简模型基本连接的方法。 (4) 学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1 ?计算机;2. MATLAB 软件 三、实验原理 函数tf ()来建立控制系统的传递函数模型,用函数printsys ()来输出控制系 统的函数,用函数命令zpk ()来建立系统的零极点增益模型,其函数调用格式 为:sys = zpk ( z, p, k 零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用 feedback ()函数求得。 则 feedback ()函数调用格式为: sys = feedback (sysl, sys2, sigh 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign = -1;正反馈时, sig n = 1;单位反馈时,sys2= 1,且不能省略。 四、实验内容: 1. 已知系统传递函数,建立传递函数模型 2 2 5(s 2) (s 6s 7) 3 3 s(s 1) (s 2s 1) 2. 已知系统传递函数,建立零极点增益模型 s 3 飞 2~ s 2s 2s 1 3 ?将多项式模型转化为零极点模型 5(s 2)2(s 2 6s 7) G(s) s 3 s 3 2s 2 2s 1 G(s) G(s)

自动控制原理期末考试题A卷

A 卷 一、填空题(每空 1 分,共10分) 1、 在水箱水温控制系统中,受控对象为 ,被控量为 。 2、 对自动控制的性能要求可归纳为___________、快速性和准确性三个方面, 在阶跃响应性能指标中,调节时间体现的是这三个方面中的______________,而稳态误差体现的是______________。 3、 闭环系统的根轨迹起始于开环传递函数的 ,终止于开环传递函数的 或无穷远。 4、 PID 控制器的输入-输出关系的时域表达式是 ,其相应的传递函数为 。 5、 香农采样定理指出:如采样器的输入信号e(t)具有有限宽带,且有直到ωh 的频率分量,则使信号e(t) 完满地从采样信号e*(t) 中恢复过来的采样周期T 要满足下列条件:________________。 二、选择题(每题 2 分,共10分) 1、 设系统的传递函数为G (S )=1 52512++s s ,则系统的阻尼比为( )。 A .21 B .1 C .51 D .25 1 2、 非单位负反馈系统,其前向通道传递函数为G(S),反馈通道传递函数为H(S),当输入信号为R(S),则从输入端定义的误差E(S)为 ( ) A 、 ()()()E S R S G S =? B 、()()()()E S R S G S H S =?? C 、()()()()E S R S G S H S =?- D 、()()()() E S R S G S H S =- 3、 伯德图中的低频段反映了系统的( )。 A .稳态性能 B .动态性能 C .抗高频干扰能力 D ..以上都不是 4、 已知某些系统的开环传递函数如下,属于最小相位系统的是( )。 A 、 (2)(1)K s s s -+ B 、(1)(5K s s s +-+) C 、2(1)K s s s +- D 、(1)(2) K s s s -- 5、 已知系统的开环传递函数为 100(0.11)(5)s s ++,则该系统的开环增益为 ( )。 A 、 100 B 、1000 C 、20 D 、不能确定

自动控制原理课程设计任务书(2016)

《自动控制原理》课程设计任务书 航空航天学院 2016.11

目录 一、设计目的和要求 (1) 1 设计目的 (1) 2 设计要求 (1) 二、题目 (2) 题目1直线一级倒立摆频率响应控制实验 (2) 题目2 直线一级倒立摆PID 控制实验 (7) 题目3 控制系统校正实验1 (9) 题目4 控制系统校正实验2 (10) 题目5 控制系统校正实验3 (11) 题目6 控制系统校正实验4 (12) 三、实践报告书写内容要求 (13) 四、考核方式 (14)

一、设计目的和要求 1 设计目的 1)培养学生综合分析问题、发现问题和解决问题的能力。 2)培养学生运用所学知识,利用MATLAB这软件解决控制理论中的复杂和工程实际问题。 3)提高学生课程设计报告撰写水平。 4)培养学生文献检索的能力。 2 设计要求 1)熟悉MATLAB语言及Simulink仿真软件。 2)掌握控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。 3)掌握控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。 4)掌握控制系统的频域分析,主要包括系统Bode图、Nyquist图、稳定性判据和系统的频域响应。 5)掌握控制系统的校正,主要包括根轨迹法超前校正、频域法超前校正、频域法滞后校正以及校正前后的性能分析。

二、题目 题目1直线一级倒立摆频率响应控制实验 1、初始条件 (1)固高GLIP2002直线二级倒立摆 (2)计算机(Matlab Simulink) 1.1 倒立摆系统简介 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 1.2 直线倒立摆 直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。直线倒立摆系列产品如图1-1 所示。

自动控制原理期末考试题

《 自动控制原理B 》 试题A 卷答案 一、单项选择题(本大题共5小题,每小题2分,共10分) 1.若某负反馈控制系统的开环传递函数为 5 (1) s s +,则该系统的闭环特征方程为 ( D )。 A .(1)0s s += B. (1)50s s ++= C.(1)10s s ++= D.与是否为单位反馈系统有关 2.梅逊公式主要用来( C )。 A.判断稳定性 B.计算输入误差 C.求系统的传递函数 D.求系统的根轨迹 3.关于传递函数,错误的说法是 ( B )。 A.传递函数只适用于线性定常系统; B.传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响; C.传递函数一般是为复变量s 的真分式; D.闭环传递函数的极点决定了系统的稳定性。 4.一阶系统的阶跃响应( C )。 A .当时间常数较大时有超调 B .有超调 C .无超调 D .当时间常数较小时有超调 5. 如果输入信号为单位斜坡函数时,系统的稳态误差为无穷大,则此系统为( A ) A . 0型系统 B. I 型系统 C. II 型系统 D. III 型系统 二、填空题(本大题共7小题,每空1分,共10分) 1.一个自动控制系统的性能要求可以概括为三个方面:___稳定性、快速性、__准确性___。 2.对控制系统建模而言,同一个控制系统可以用不同的 数学模型 来描述。 3. 控制系统的基本控制方式为 开环控制 和 闭环控制 。 4. 某负反馈控制系统前向通路的传递函数为()G s ,反馈通路的传递函数为()H s ,则系统 的开环传递函数为()()G s H s ,系统的闭环传递函数为 () 1()() G s G s H s + 。 5 开环传递函数为2(2)(1) ()()(4)(22) K s s G s H s s s s s ++= +++,其根轨迹的起点为0,4,1j --±。 6. 当欠阻尼二阶系统的阻尼比减小时,在单位阶跃输入信号作用下,最大超调量将 增大 。 7.串联方框图的等效传递函数等于各串联传递函数之 积 。 三、简答题(本题10分) 图1为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量。试绘制系统方框图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么?

《自动控制原理》实验课程教学大纲

《自动控制原理》实验课程教学大纲 课程代码: TELE2004 课程学分:3 课程名称(中/英):自动控制原理 Principles of Automatic Control 课程学时: 54 实验学时:9 适用专业:信息、电子及通信 实验室名称:开放实验室 一、课程简介: 本课程主要学习自动控制系统分析与设计的基本原理与基本方法,包括系统数学 模型的建立,控制系统的分析的时域分析法、根轨迹法以及频域分析法,控制系统设 计的根轨迹法及频率响应法。通过课程的学习,同学们能理解并掌握系统传递函数的 概念,各项动态性能指标的定义与求法,稳定性的概念与判别,稳态误差及稳态误差 系数的求解。 本课程的教学目标是让用学们能够掌握反馈控制系统的经典理论与方法,并能运 用这些知识建立系统的数据模型,分析系统的动态性能指标,确定系统的稳定性与控 制精度,并可以进行小型控制系统的设计与改进。 本课程包含47学时的课程教学,讲授系统建模、时域分析、根轨迹、频率响应 与系统设计等内容。 本课程还包含一个9学时的实验项目,同学们将自行设计并实现一个小型控制系统,该实验将完全按照工程项目的执行方式进行的。 二、实验项目及学时分配 序号 项目名称 实验类型 学时分配 每组人数 必修/选修 设计性 9 1 必修 1 小型控制系统(角位 移、位移、温度可选) 设计与实现 三、实验内容及教学要求 实验项目1:小型控制系统(角位移、位移、温度可选)设计与实现

1.教学内容 与传统意义下的课程实验不同,这是一个项目型实验,意味着你必须执行一个小型的项目。有若干个项目题目可供选择,该项目需要在上课学期内完成。项目在学期中间发布,你必须在学期未进入考试周之前完成全部工作。 This is a project oriented lab, which means that you are required to carry out a small-scale project rather than a conventional lab. You will be supplied with several candidate projects to choose one as your objective project to carry out in the same semester when the course is given. You will have the project issued in the mid-semester and are required to complete it before entering examination weeks of the semester. 与普通的实验不同,项目的执行通常需要经历若干阶段,也会需要更长的实现周期。通过这个实验,你可明白并经历完整的项目执行过程,尽管从可操作性出发,实验中采用的会是一些比较小型化的项目。这样的经历无疑会对同学们参加项目的能力培养有所助益。 Not like conventional lab, project usually will run for several stages or phases and, maybe, will last for a longer period. You will move from one phase to the other until getting everything done properly. You can then experience and understand the complete project executing procedures, nevertheless how small scaled is the one in which you are involved, which is certainly helpful in preparing you some kind of project taking capabilities. 有三个可供选择的课题,它们是: There are three topics available. They are: 1)直流电机控制的角位移控制系统Angle position control system with dc motor 设计一个角度控制系统,它能接受所期望的角度的输入指令,产生一个与输出要求完全一致的输出角度。 Design an angle system, which can accept desired angle input command and generates an angle output following exactly the input one. 2)车辆运动控制系统Vehicle motion control system 一辆玩具车或是实验室自制的模型车将作为被控制对象。该系统必须能准确地行进任意指定的距离。 A toy vehicle or lab made vehicle is the plant to be controlled. The system must be able to move a given distance accurately. 3)温度控制系统Temperature control system 这是个水温控制系统。它用控制并操持一个小型容器中的水的温度到任意指定的数值。

自动控制原理试题库(含参考答案)

一、填空题(每空1分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。 2、复合控制有两种基本形式:即按输入的前馈复合控制和按扰动的前馈复合控制。 3、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为() G s,则G(s) 为G1(s)+G2(s)(用G1(s)与G2(s)表示)。 4、典型二阶系统极点分布如图1所示, ω, 则无阻尼自然频率= n 7 其相应的传递函数为,由于积分环节的引入,可以改善系统的稳态性能。 1、在水箱水温控制系统中,受控对象为水箱,被控量为水温。 2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。 3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统稳定。判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用奈奎斯特判据。 4、传递函数是指在零初始条件下、线性定常控制系统的输出拉氏变换与输入拉氏变换之比。

5、设系统的开环传递函数为2(1)(1) K s s Ts τ++ arctan 180arctan T τωω--。 6、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值穿越频率c ω对应时域性能指标调整时间s t ,它们反映了系统动态过程的。 1、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。 是指闭环传系统的性能要求可以概括为三个方面,即:稳定性、准确性和快速性,其中最基本的要求是稳定性。 2、若某单位负反馈控制系统的前向传递函数为()G s ,则该系统的开环传递函数为()G s 。 3、能表达控制系统各变量之间关系的数学表达式或表示方法,叫系统的数学模型,在古典控制理 论中系统数学模型有微分方程、传递函数等。 4、判断一个闭环线性控制系统是否稳定,可采用劳思判据、根轨迹、奈奎斯特判据等方法。

《自动控制原理》专科课程标准

《自动控制原理》课程标准 一、课程概述 (一)课程性质地位 自动控制原理是空间工程类、机械控制类、信息系统类等相关专业学历教育合训学员的大类技术基础课程。由于自动控制原理在信息化武器装备中得到了广泛的应用,因此,将本课程设置为大类技术基础课,对培养懂技术的指挥人才有着十分重要的作用。本课程所覆盖的知识面较宽,既有较深入的理论基础知识,也有较广泛的专业背景知识,因而,它在学员知识结构方面将起到加强理论深度和拓展知识广度的积极作用。 (二)课程基本理念 为了贯彻素质教育和创新教育的思想,本课程将在注重自动控制原理的基本概念和基本分析与设计方法的基础上,适当引入自动控制发展中的、学员能够理解的新概念和新方法;贯彻理论联系实际的原则,科学取舍各种主要理论、方法的比例,正确处理好理论与案例的关系,以适应为部队培养应用复合型人才的需要;适当引入和利用Matlab工具来辅助自动控制原理中的复杂计算与作图、验证分析与设计的结果;本课程应该既使学员掌握必要的基础理论知识,并了解它们对实际问题的指导作用,又要促进学员养成积极思考、长于分析、善于推导的能力和习惯。 (三)课程设计思路 本课程主要介绍自动控制原理的基本概念和基本的分析与设计方法。课程采用“一纵三横”的设计思路,具体来说,“一纵”就是在课程讲授中要求贯彻自动控制系统的建模、分析及设计方法这条主线;“三横”就是在方法讲授中要求强调自动控制系统的稳定性、快速性和准确性,稳准快三个字是分析的核心,也是设计的归宿。在课程讲授中,贯彻少而精的原则,即对重点、难点讲深讲透;注意理论联系专业实际,例子贴近生活,注重揭示抽象概念的物理意义;注意传统教法与现代教法的有机结合,充分运用各种教学手段,特别注重发挥课程教学网站的作用。在课程学习中,注重阅读教材、完成作业、课程实验及讨论问题等四个环节,深刻理解课程内容中的重点和难点,重点掌握自动控制原理的基本概念和基本分析与设计方法。

自动控制原理实验报告

自动控制原理 实验报告 实验一典型系统的时域响应和稳定性分析 (2) 一、实验目的 (3) 二、实验原理及内容 (3) 三、实验现象分析 (5) 方法一:matlab程序 (5) 方法二:multism仿真 (12)

方法三:simulink仿真 (17) 实验二线性系统的根轨迹分析 (21) 一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (21) 二、根据根轨迹图分析系统的闭环稳定性 (22) 三、如何通过改造根轨迹来改善系统的品质? (25) 实验三线性系统的频率响应分析 (33) 一、绘制图1. 图3系统的奈氏图和伯德图 (33) 二、分别根据奈氏图和伯德图分析系统的稳定性 (37) 三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导 出系统的传递函数 (38) 实验四、磁盘驱动器的读取控制 (41) 一、实验原理 (41) 二、实验内容及步骤 (41) (一)系统的阶跃响应 (41) (二) 系统动态响应、稳态误差以及扰动能力讨论 (45) 1、动态响应 (46) 2、稳态误差和扰动能力 (48) (三)引入速度传感器 (51) 1. 未加速度传感器时系统性能分析 (51) 2、加入速度传感器后的系统性能分析 (59) 五、实验总结 (64) 实验一典型系统的时域响应和稳定性分 析

一、 实验目的 1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、 实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:见图1 图1 (2) 对应的模拟电路图 图2 (3) 理论分析 导出系统开环传递函数,开环增益0 1 T K K = 。 (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图2), s 1T 0=, s T 2.01=,R 200 K 1= R 200 K =?

自动控制原理考试试题库(DOC)

自 动 控 制 理 论 2011年7月23日星期六

课程名称: 自动控制理论 (A/B 卷 闭卷) 一、填空题(每空 1 分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过 与反馈量的差值进行的。 2、复合控制有两种基本形式:即按 的前馈复合控制和按 的前馈复合控制。 3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 (用G 1(s)与G 2(s) 表示)。 4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率=n ω , 阻尼比=ξ , 该系统的特征方程为 , 该系统的单位阶跃响应曲线为 。 5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+, 则该系统的传递函数G(s)为 。 6、根轨迹起始于 ,终止于 。 7、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函数为 。 8、PI 控制器的输入-输出关系的时域表达式是 , 其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。 二、选择题(每题 2 分,共20分) 1、采用负反馈形式连接后,则 ( ) A 、一定能使闭环系统稳定; B 、系统动态性能一定会提高; C 、一定能使干扰引起的误差逐渐减小,最后完全消除; D 、需要调整系统的结构参数,才能改善系统性能。 2、下列哪种措施对提高系统的稳定性没有效果 ( )。 A 、增加开环极点; B 、在积分环节外加单位负反馈; C 、增加开环零点; D 、引入串联超前校正装置。 3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平面闭环极点数2=Z 。

相关文档
相关文档 最新文档