文档库 最新最全的文档下载
当前位置:文档库 › 时间序列分析方法第章谱分析完整版

时间序列分析方法第章谱分析完整版

时间序列分析方法第章谱分析完整版
时间序列分析方法第章谱分析完整版

时间序列分析方法第章

谱分析

HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第六章 谱分析 Spectral Analysis

到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:

我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τ

Y 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。

在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为:

上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞

-}{t Y 性质时所发挥的重要程度如何。如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。

§ 母体谱

我们首先介绍母体谱,然后讨论它的性质。 6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为:

假设这些自协方差函数是绝对可加的,则自协方差生成函数为:

这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:

注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。

利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为:

注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:

利用三角函数的奇偶性,可以得到: 假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数

)(ωY s 存在,并且是ω

的实值、对称、连续函数。由于对任意k π2,

有:)()2(ωπωY Y s k s =+,因此)(ωY s 是周期函数,如果我们知道了],0[π内的所有)(ωY s 的值,我们可以获得任意ω时的)(ωY s 值。

§ 不同过程下母体谱的计算 假设随机过程+∞∞-}{t Y 服从)(∞MA 过程: 这里:

∑∞

==0)(j j

j L L ψψ,∑∞

=∞<0||j j ψ,???≠==t

s t

s E s t ,0,)(2σεε

根据前面关于)(∞MA 过程自协方差生成函数的推导: 因此得到)(∞MA 过程的母体谱为:

例如,对白噪声过程而言,1)(=z ψ,这时它的母体谱函数是常数:

下面我们考虑)1(MA 过程,

此时:z z θψ+=1)(,则母体谱为: 可以化简成为:

显然,当0>θ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数;当0<θ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数。

对)1(AR 过程而言,有:

这时只要1||<φ,则有:)1/(1)(z z φψ-=,因此谱函数为:

该谱函数的性质为:当0>φ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数;当0<φ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数。

一般地,对),(q p ARMA 过程而言: 则母体谱函数为:

如果移动平均和自回归算子多项式可以进行下述因式分解: 则母体谱函数可以表示为: 从母体谱函数中计算自协方差

如果我们知道了自协方差序列+∞∞-}{j γ,原则上我们就可以计算出任意ω的谱函数)(ωY s 的数值。反过来也是对的:如果对所有在],0[π内的ω,已知谱函数)(ωY s 的数值,则对任意给定的整数k ,我们也能够计算k 阶自协方差k γ。这意味着母体谱函数)(ωY s 和自协方差序列+∞∞-}{j γ包含着相同的信息。其中任何一个都无法为我们提供另外一个无法给出的推断。

下面的命题为从谱函数计算自协方差提供了一个有用的公式: 命题 假设+∞∞-}{j γ是绝对可加的自协方差序列,则母体谱函数与自协方差之间的关系为:

上述公式也可以等价地表示为:

利用上述谱公式,可以实现谱函数与自协方差函数之间的转换。

解释母体谱函数

假设0=k ,则利用命题可以得到时间序列的方差,即0γ,计算公式为:

根据定积分的几何意义,上式说明母体谱函数在区间],[ππ-内的面积就是0γ,也就是过程的方差。

更一般的,由于谱函数)(ωY s 是非负的,对任意],0[1πω∈,如果我们能够计算:

这个积分结果也是一个正的数值,可以解释为t Y 的方差中与频率的绝对值小于1ω的成分相关的部分。注意到谱函数也是对称的,因此也可以表示为:

这个积分表示频率小于1ω的随机成分对t Y 方差的贡献。

但是,频率小于1ω的随机成分对t Y 方差的贡献意味着什么?为了探索这个问题,我们考虑更为特殊一些的时间序列模型:

这里j α和j δ是零均值的随机变量,这意味着对所有时间t ,有

0=t EY 。进一步假设序列M j j 1}{=α和M

j j 1}{=δ是序列不相关和相互不相关的:

????

?≠==k j k

j E j k j ,

0,

)(2σαα,????

?≠==k

j k j E j k j ,

0,

)(2

σδδ

0)(=k j E δα,对所有的j 和k

这时t Y 的方差是:

因此,对这个过程来说,具有频率j ω的周期成分对t Y 的方差的贡献部分是2j σ。如果频率是有顺序的:πωωω<<<<

因为过程}{t Y 的均值和自协方差函数都不是时间的函数,因此这个过程是协方差平稳过程。但是,可以验证此时的自协方差序列∞=0}{k k γ不是绝对可加的。

虽然在上述过程中,我们已经过程的方差分解为频率低于某种程度的周期成分的贡献,我们能够这样做的原因在于这个过程是比较特殊的。对于一般的情形,着名的谱表示定理(the spectral representation theorem)说明:任何协方差平稳过程都可以表示成为不同频率周期成分的和形式。

对任意给定的固定频率],0[πω∈,我们定义随机变量)(ωα和)(ωδ,

并假设可以将一个具有绝对可加自协方差的协方差平稳过程表示为:

这里需要对随机变量)(ωα和)(ωδ的相关性给出更为具体的假设,但是上述公式便是谱表示定理的一般形式。

§ 样本周期图 Sample Periodogram

对一个具有绝对可加自协方差的协方差平稳过程}{t Y ,我们已经定义在频率ω处的谱函数值为:

∑+∞

-∞

=--=

=j j i j i Y Y e e g s ωωγπ

πω21

)(21)(,)])([(μμγ--≡-j t t j Y Y E

注意到母体谱是利用+∞=0}{j j γ表示的,而+∞

=0}{j j γ表示的是母体的二阶矩性质。

给定由T y y y ,,,21 表示的T 个样本,我们可以利用下述公式计算直到)1(-T 阶的样本自协方差:

?????+---=-=---=-+=--∑1,,2,1,?1,,1,0,))(()(?1

1

T j T j y y y y j T j

T

j t j t t j γγ,∑==T

t t y T

y 1

1

对于给定的ω,我们可以获得母体谱密度对应的样本情形,我们称其为样本周期图:

样本周期图也可以表示成为如下形式:

类似地,我们可以证明样本周期图下的面积等于样本方差: 样本周期图也是关于原点对称的,因此也有:

更为重要的是,谱表示定理在样本情形也有类似的表示。我们将要说明,对于平稳过程的任意一个容量为T 的观测值序列T y y y ,,,21 ,

存在频率M ωωω,,,21 和系数μ?,M ααα?,,?,?21 ,M

δδδ?,,?,?21 使得t 期的y 值可以表示成为: 其中:

当k j ≠时,)]1(cos[?-t j j ωα

与)]1(cos[?-t k k ωα不相关; 当k j ≠时,)]1(sin[?-t j j ωδ与)]1(sin[?-t k k ωδ不相关;

对于所有的j 和k ,)]1(cos[?-t j j ωα与)]1(sin[?-t k

k ωδ不相关。 y 的样本方差是∑=--T t t y y T 12

1)(,该方差中可以归因于频率为j ω的周期成分的部分由样本周期图)(j Y s ω给出。

我们对样本容量是奇数的情形展开讨论上述谱表示模式。这时t

y 可以表示成为由2/)1(-≡T M 个不同频率构成的周期函数,频率M ωωω,,,21 如下:

T

πω21=

,T

πω42=,……,T

M M

πω2=

因此最高频率为:

我们考虑t y 基于常数项、正弦函数和余弦函数的线性回归: 将这个回归方程表示成为下述方式:

其中:11{1,cos[(1)],sin[(1)],,cos[(1)],sin[(1)]}t M M t t t t ωωωω'=----x ,这是一个具有T M =+)12(个解释变量的回归方程,因此解释变量与观测值是一样多的。我们将证明解释变量之间是线性无关的,这意味着t y 基于t x 回归的OLS 估计具有惟一解。该回归方程的 系数具有显着的

统计意义:2/)??(22j j δα+表示t y 中可以归因于频率j ω的周期成分的那部

分。这就是说,任意观测到的序列T y y y ,,,21 ,它都可以利用上述周期函数形式表示,并且不同频率的周期成分对方差的贡献都可以在样本周期图中找到。

命题 假设样本容量是奇数,定义2/)1(-≡T M ,并设定T i j /2πω=,M j ,,2,1 =,假设解释变量为: 则有:

进一步,假设T y y y ,,,21 是任意T 个实数,则下述推断成立: (a) 过程t y 可以表示为: 这里:

y =μ

?,∑=-=T t j t j t y T 1)]1(cos[2?ωα,∑=-=T

t j t j t y T 1

)]1(sin[2?ωδ (b) t y 的样本方差可以表示为:

样本方差可以归因于频率为j ω的周期成分的部分为2/)??(22j j δα+。

(c) t y 的样本方差中可以归因于频率为j ω的周期成分的部分还可以表示为:

其中)(?j y s

ω是样本周期图在频率j ω处的值。 上述结果说明,∑='T

t t t 1x x 是对角矩阵,这意味着包含在向量t x 中的向

量之间是相互正交的。这个命题断言:任何奇数个观测到的时间序

列T y y y ,,,21 可以表示成为一个常数加上具有2/)1(-T 个不同频率的)1(-T 个周期成分的加权和。当T 是偶数整数的时候,类似的结果也是成立的。因此,这个命题给出了类似谱表示定理的有限样本的类似情况。这个命题进一步表明了样本周期图的特征是将y 的方差按部分分解为不同频率的周期成分的贡献。

注意到解释y 的方差的频率j ω都落在区间],0[π中。为什么不使用负的频率0<ω?假设数据确实是由上述过程的一种特殊情形生成的: 这里0<-ω代表某个特殊的负频率,α和δ是零均值的随机变量,

利用三角函数的奇偶性,可以将t Y 表示为:

因此,利用上述式子无法从数据中识别数据是从正发频率还是负的频率生成的。这时一种简单的方式是假设数据是从具有正的频率中生成的。

为什么只考虑πω=作为最大的频率呢?假设数据真的是从频率πω>的周期函数中生成的,例如2/3πω=:

这时正弦和余弦函数的周期性质表明,上式可以表示成为:

因此,根据以前的讨论,具有频率2/3πω=的周期在观测值上等价于具有频率2/πω=的周期。

注意到频率和周期之间的关系,频率ω对应的周期为ωπ/2。由于我们考虑的最高频率为πω=,因此我们所观测到的能够自己重复的最短阶段是2/2=ππ。如果2/3πω=,则周期是每3/4阶段重复自己。但是,如果数据是整数阶段观测的,因此数据可以观测的时间间隔仍然是每4个阶段观测到,这对应着周期频率是2/πω=。例如,函数])2/cos[(t π和函数])2/3cos[(t π在整数的时间间隔上,它们的观测值是一致的。

命题也为计算在频率T i j /2πω=(M j ,,2,1 =)上的样本周期图的数值提供了方法。定义: 这里:

∑=-=T t j t j t y T 1)]1(cos[2?ωα

,∑=-=T

t j t j t y T 1

)]1(sin[2?ωδ 因此可以得到:

§ 估计总本谱 Estimating the Population Spectrum 上面我们介绍了母体谱的意义和性质,下面我们面对的问题

是:获得了观测样本},,,{21T y y y 以后,如何估计母体谱函数)(ωY s ?

样本周期图的大样本性质

一个显然的方法是利用样本周期图)(?ωy s

去估计母体谱函数)(ωY s 。但是,这种方法具有显着的限制。假设对于无限移动平均过程而言:

这里系数∞=0}{j j ψ是绝对可加的,∞

-∞=t t }{ε是具有均值0)(=t E ε和方差2)var(σε=t 的独立同分布序列,假设)(ωY s 是如上定义的母体谱函数,

且对所有的ω,都有0)(>ωY s 。假设)(?ωy s

是如上定义的样本谱函数,Fuller (1976) 证明了,对0≠ω和充分大的样本容量T ,样本周期图与母体谱函数之比的二倍具有下述渐近分布:

进一步,如果ωλ≠,也有:

并且上述两个渐近分布的随机变量是相互独立的。

注意到)(2n χ的均值等于自由度,因此有:

因为)(ωY s 是母体数量,不是一个随机变量,因此上式也可以表示成为:

因此,对充分大的样本容量,样本周期函数为母体谱提供了一个渐近无偏估计。

母体谱的参数化估计

假设我们认为数据可以由),(q p ARMA 模型表示:

这里t ε是具有方差2σ的白噪声。这时一个估计母体谱的出色方法是先利用前面介绍的极大似然估计估计参数22121,,,,,,,,,σθθθφφφμq p ,具有绝对可加自协方差的协方差平稳过程}{t Y ,我们已经定义在频率ω处的谱函数

§ 谱分析的应用 Uses of Spectral Analysis

我们利用美国制造业生产的数据来说明谱分析的应用。书中给出了联邦储备委员会的季节非调整的月度指数,从1947年1月至1989年11月。其中出现经济衰退的时候出现了生产的下降,大约持续一年左右。数据中出现了显着的季节成分,大约在7月出现下降,而在8月出现复苏。

图给出了原始数据的样本周期图。这里显示的)(?j y s

ω是j 的函数,这里T j j /2πω=。

时间序列分析方法及应用7

青海民族大学 毕业论文 论文题目:时间序列分析方法及应用—以青海省GDP 增长为例研究 学生姓名:学号: 指导教师:职称: 院系:数学与统计学院 专业班级:统计学 二○一五年月日

时间序列分析方法及应用——以青海省GDP增长为例研究 摘要: 人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界的目的。而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。从统计学的内容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。大学四年在青海省上学,基于此,对青海省的GDP十分关注。本论文关于对1978年到2014年以来的中国的青海省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的青海省GDP进行较为有效的预测。希望对青海省的发展有所贡献。 关键词: 青海省GDP 时间序列白噪声预测

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

利用Excel进行时间序列的谱分析

利用Excel 进行时间序列的谱分析(I ) 在频域分析中,功率谱是揭示时间序列周期特性的最为有力的工具之一。下面列举几个例子,分别从不同的角度识别时间序列的周期。 1 时间序列的周期图 【例1】某水文观测站测得一条河流从1979年6月到1980年5月共计12月份的断面平均流量。试判断该河流的径流量变化是否具有周期性,周期长度大约为多少? 分析:假定将时间序列x t 展开为Fourier 级数,则可表示为 ∑=++=k i t i i i i t t f b t f a x 1 )2sin 2cos (εππ (1) 式中f i 为频率,t 为时间序号,k 为周期分量的个数即主周期(基波)及其谐波的个数,εt 为标准误差(白噪声序列)。当频率f i 给定时,式(1)可以视为多元线性回归模型,可以证明,待定系数a i 、b i 的最小二乘估计为 ∑∑====N t i t i N t i t i t f x N b t f x N a 1 12sin 2?2cos 2?ππ (2) 这里N 为观测值的个数。定义时间序列的周期图为 )(2 )(22 i i i b a N f I += ,k i ,,2,1 = (3) 式中I (f i )为频率f i 处的强度。以f i 为横轴,以I (f i )为纵轴,绘制时间序列的周期图,可以在最大值处找到时间序列的周期。对于本例,N =12,t =1,2,…,N ,f i =i /N ,下面借助Excel ,利用上述公式,计算有关参数并分析时间序列的周期特性。 第一步,录入数据,并将数据标准化或中心化(图1)。 图1 录入的数据及其中心化结果

第十二章时间序列分析

目录 第十一章时间序列分析___________________________________________________________________ 2 第一节时间序列的有关概念______________________________________________________________ 3 一、时间序列的构成因素_______________________________________________________________ 3 二、时间序列的数学模型_______________________________________________________________ 4 第二节时间序列的因素分析______________________________________________________________ 4 一、图形描述_________________________________________________________________________ 4 二、长期趋势分析_____________________________________________________________________ 5 三、季节变动分析_____________________________________________________________________ 8 四、循环波动分析____________________________________________________________________ 12 第三节随机时间序列分析_______________________________________________________________ 14 一、平稳随机过程概述________________________________________________________________ 14 二、ARMA模型的识别 _______________________________________________________________ 15 三、模型参数的估计__________________________________________________________________ 19 英文摘要与关键词______________________________________________________________________ 21习题_________________________________________________________________________________ 21

时间序列分析方法第章谱分析

第六章 谱分析 Spectral Analysis 到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为: 我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞ ∞-}{t Y 的性质。 假设+∞ ∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:

注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞ ∞-}{j γ,原则上都可 以计算)(ωY s 的数值。 利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为: 注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: ω的下面我们考虑)1(MA 过程, 此时:z z θψ+=1)(,则母体谱为: 可以化简成为: 显然,当0>θ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数;当0<θ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数。

对)1(AR 过程而言,有: 这时只要1||<φ,则有:)1/(1)(z z φψ-=,因此谱函数为: 该谱函数的性质为:当0>φ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数;当0<φ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数。 一般地,对),(q p ARMA 过程而言: ) (ωY s 利用上述谱公式,可以实现谱函数与自协方差函数之间的转换。 解释母体谱函数 假设0=k ,则利用命题6.1可以得到时间序列的方差,即0γ,计算公式为: 根据定积分的几何意义,上式说明母体谱函数在区间],[ππ-内的面积就是0γ,也就是过程的方差。

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

第章时间序列分析课后习题答案

第9章 时间序列分析课后习题答案 第10章 (1)30× 3 1.06×2 1.05= 30×1.3131 = 39.393(万辆) (2117.11%== (3)设按7.4%的增长速度n 年可翻一番 则有 1.07460/30n == 所以 n = log2 / log1.074 = 9.71(年) 故能提前0.29年达到翻一番的预定目标。 第11章 (1)以1987年为基期,2003年与1987年相比该地区社会商品零售额共增长: %86.2313186.213186.31%)8.61(%)2.81(%)101(5 5 5 ==-=-+?+?+ (2)年平均增长速度为 1%)8.61(%)2.81(%)101(15 555-+?+?+=0.0833=8.33% (3) 2004年的社会商品零售额应为 509.52)0833.01(307=+?(亿元) 第12章 (1)发展总速度%12.259%)81(%)101(%)121(3 43=+?+?+ 平均增长速度= %9892.91%12.25910=- (2)8.561%)61(5002 =+?(亿元) (3)平均数∑====415 .1424570 41j j y y (亿元), 2002 年一季度 的计划 任务 : 625.1495.142%105=?(亿元)。 第13章 (1)用每股收益与年份序号回归得 ^ 0.3650.193t Y t =+。预测下一年(第11年)的每股收益 为488.211193.0365.0? 11=?+=Y 元 (2)时间数列数据表明该公司股票收益逐年增加,趋势方程也表明平均每年增长0.193元。是一个较为适合的投资方向。 第14章 (1)移动平均法消除季节变动计算表

季节性时间序列分析方法

季节性时间序列分析方 法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7) 2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847)

对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除( 或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W 2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有

(时间管理)时间序列分析方法第章谱分析

(时间管理)时间序列分析方法第章谱分析

第六章谱分析SpectralAnalysis 到目前为止,时刻变量的数值壹般均表示成为壹系列随机扰动的函数形式,壹般的模型形式为: 我们研究的重点于于,这个结构对不同时点和上的变量和的协方差具有什么样的启示。这种方法被称为于时间域(timedomain)上分析时间序列的性质。 于本章中,我们讨论如何利用型如和的周期函数的加权组合来描述时间序列数值的方法, 这里表示特定的频率,表示形式为: 上述分析的目的于于判断不同频率的周期于解释时间序列性质时所发挥的重要程度如何。如此方法被称为频域分析(frequencydomainanalysis)或者谱分析(spectralanalysis)。 我们将要见到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由壹种表示能够描述的任何数据性质,均能够利用另壹种表示来加以体现。对某些性质来说,时域表示可能简单壹些;而对另外壹些性质,可能频域表示更为简单。 §6.1 母体谱 我们首先介绍母体谱,然后讨论它的性质。 6.1.1 母体谱及性质 假设是壹个具有均值的协方差平稳过程,第个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里表示复变量。将上述函数除以,且将复数表示成为指数虚数形式,,则得到的结果(表达式)称为变量的母体谱: 注意到谱是的函数:给定任何特定的值和自协方差的序列,原则上均能够计算的数值。 利用DeMoivre 定理,我们能够将表示成为: 因此,谱函数能够等价地表示成为: 注意到对于协方差平稳过程而言,有:,因此上述谱函数化简为: 利用三角函数的奇偶性,能够得到: 假设自协方差序列是绝对可加的,则能够证明上述谱函数存于,且且是的实值、对称、连续函数。由于对任意,有:,因此是周期函数,如果我们知道了内的所有的值,我们能够获得任意时的值。 §6.2 不同过程下母体谱的计算 假设随机过程服从过程: 这里: , 根据前面关于过程自协方差生成函数的推导: 因此得到过程的母体谱为: 例如,对白噪声过程而言,,这时它的母体谱函数是常数:下面 我们考虑过程, 此时:,则母体谱为: 能够化简成为: 显然,当时,谱函数于内是的单调递减函数;当时,谱函数于内是的单调递增函数。对过程而言,有: 这时只要,则有:,因此谱函数为: 该谱函数的性质为:当时,谱函数于内是的单调递增函数;当时,谱函数于内是的单调递减函数。 壹般地,对过程而言: 则母体谱函数为:

典型时间序列模型分析

实验1 典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有 AR(2)模型, X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) 其中:W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 【分析】给定二阶的AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 1 2 1 ()10.30.5H z z z --= ++ 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, ()() 2 2 12 12exp 11x w z jw P w a z a z σ--==++ 可以看出, () x P w 完全由两个极点位置决定。 对于 AR 模型的自相关函数,有下面的公式: 这称为 Yule-Walker 方程,当相关长度大于p 时,由递推式求出: 这样,就可以求出理论的 AR 模型的自相关序列。

1.产生样本函数,并画出波形 2.题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程 plot(x,'r'); ylabel('x(n)'); title('邹先雄——产生的AR 随机序列'); grid on; 得到的输出序列波形为: 2.估计均值和方差 可以首先计算出理论输出的均值和方差,得到 x m ,对于方差可以先求出理论自相 关输出,然后取零点的值。

第八章 时间序列分析

第八章时间序列分析与预测 【课时】6学时 【本章内容】 § 时间序列的描述性分析 时间序列的含义、时间序列的图形描述、时间序列的速度分析 § 时间序列及其构成分析 时间序列的构成因素、时间序列构成因素的组合模型 § 时间序列趋势变动分析 移动平均法、指数平滑法、模型法 § 时间序列季节变动分析 [ 原始资料平均法、趋势-循环剔除法、季节变动的调整 § 时间序列循环变动分析 循环变动及其测定目的、测定方法 本章小结 【教学目标与要求】 1.掌握时间序列的四种速度分析 2.掌握时间序列的四种构成因素 3.掌握时间序列构成因素的两种常用模型 4.掌握测定长期趋势的移动平均法 5.了解测定长期趋势的指数平滑法 6.; 7.掌握测定长期趋势的线性趋势模型法 8.了解测定长期趋势的非线性趋势模型法 9.掌握分析季节变动的原始资料平均法 10.掌握分析季节变动的循环剔出法 11.掌握测定循环变动的直接法和剩余法 【教学重点与难点】 1.对统计数据进行趋势变动分析,利用移动平均法、指数平滑法、线性模型法求得数 据的长期趋势; 2.对统计数据进行季节变动分析,利用原始资料平均法、趋势-循环剔除法求得数据 的季节变动; 3.对统计数据进行循环变动分析,利用直接法、剩余法求得循环变动。 【导入】 ; 很多社会经济现象总是随着时间的推移不断发展变化,为了探索现象随时间而发展变化的规律,不仅要从静态上分析现象的特征、内部结构以及相互关联的数量关系,而且应着眼于现象随时间演变的过程,从动态上去研究其发展变动的过程和规律。这时需要一些专门研究按照时间顺序观测的序列数据的统计分析方法,这就是统计学中的时间序列分析。 通过介绍一些时间序列分析的例子,让同学们了解时间序列的应用,并激发学生学习本章知识的兴趣。 1.为了表现中国经济的发展状况,把中国经济发展的数据按年度顺序排列起来,

第13章时间序列分析和预测

第13章时间序列分析和预测 三、选择题 1.不存在趋势的序列称为()。 A. 平稳序列B. 周期性序列 C. 季节性序列D. 非平稳序列 2.包含趋势性、季节性或周期性的序列称为()。 A. 平稳序列B. 周期性序列 C. 季节性序列D. 非平稳序列 3.时间序列在长时期内呈现出来的某种持续向上或持续下降的变动称为()。A. 趋势B. 季节性C. 周期性D. 随机性 4.时间序列在一年内重复出现的周期性波动称为()。 A. 趋势B. 季节性C. 周期性D. 随机性 5.时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动称为()。A. 趋势B. 季节性C. 周期性D. 随机性 6.时间序列中除去趋势、周期性和季节性之后的偶然性波动称为()。A. 趋势B. 季节性C. 周期性D. 随机性 7.从下面的图形可以判断该时间序列中存在()。 A. 趋势B. 季节性C. 周期性D. 趋势和随机性 8.增长率是时间序列中()。 A. 报告期观察值与基期观察值之比 B. 报告期观察值与基期观察值之比减1后的结果 C. 报告期观察值与基期观察值之比加1后的结果 D. 基期观察值与报告期观察值之比减1后的结果 9.环比增长率是()。 A. 报告期观察值与前一时期观察值之比减1 B. 报告期观察值与前一时期观察值之比加1 C. 报告期观察值与某一固定时期观察值之比减1 D. 报告期观察值与某一固定时期观察值之比加1 10.定基增长率是()。 A. 报告期观察值与前一时期观察值之比减1

B. 报告期观察值与前一时期观察值之比加1C. 报告期观察值与某一固定时期观察值之比减1D. 报告期观察值与某一固定时期观察值之比加1

(时间序列分析)

时间序列分析 17.某城市过去63年中每年降雪量数据(单位:mm)如表3—20所示(行数据)。表3—20 126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5 25 69.3 53.5 39.8 63.6 46.7 72.9 79.6 83.6 80.7 60.3 79 74.4 49.6 54.7 71.8 49.1 103.9 51.6 82.4 83.6 77.8 79.3 89.6 85.5 58 120.7 110.5 65.4 39.9 40.1 88.7 71.4 83 55.9 89.9 84.8 105.2 113.7 124.7 114.5 115.6 102.4 101.4 89.8 71.5 70.9 98.3 55.5 66.1 78.4 120.5 97 110 (1)判断该序列的平稳性与纯随机性。 (2)如果序列平稳且非白噪声,选择适当模型拟合该序列的发展。 (3)利用拟合模型,预测该城市未来5年的降雪量。 答:

(1)由a-time时序图(左上角),该图平稳 由ACF自相关系数图(右上角),该图非纯随机性 (2)因为该序列是平稳且非白噪声序列,由图可知ACF图拖尾, PACF图一阶截尾,故该序列可拟合为AR(1)模型

图1 (3)由图1和xt-time时序图(右下角)可知,该城市未来5年的降雪量预测为:89.01662, 82.43668, 80.37336, 79.72634, 79.52345 该题的程序: 18.某地区连续74年的谷物产量(单位:千吨)如表3—21所示(行数据)。表3—21 0.97 0.45 1.61 1.26 1.37 1.43 1.32 1.23 0.84 0.89 1.18 1.33 1.21 0.98 0.91 0.61 1.23 0.97 1.10 0.74 0.80 0.81 0.80 0.60 0.59 0.63 0.87 0.36 0.81 0.91 0.77 0.96 0.93 0.95 0.65 0.98 0.70 0.86 1.32 0.88 0.68 0.78 1.25

时间序列分析论文

关于居民消费价格指数的时间序列分析 摘要 本文以我国1997年4月至2014年4月间每月的烟酒及用品类居民消费价格指数为原始数据,利用EVIEWS软件判断该序列为平稳序列且为非白噪声序列,通过对数据一系列的处理,建立AR(1)模型拟合时间序列,由于时间序列之间的相关关系和历史数据对未来的发展有一定的影响,对我国的烟酒及用品类居民消费价格指数进行了短期预测,阐述该价格指数所表现的变化规律。 关键字:烟酒及用品类居民消费价格指数,时间序列,AR模型,预测 引言 一、理论准备 时间序列分析是按照时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。 时间序列分析是定量预测方法之一。 基本原理: 1.承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。 2.考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。 该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。 时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。 二、基本思想 1. 拿到一个观测值序列之后,首先判断它的平稳性,通过平稳性检验,判断序列是平稳序列还是非平稳序列。 2.若为非平稳序列,则利用差分变换成平稳序列。 3.对平稳序列,计算相关系数和偏相关系数,确定模型。 4.估计模型参数,并检验其显著性及模型本身的合理性。

5.检验模型拟合的准确性。 6.根据过去行为对将来的发展做出预测。 三、背景知识 CPI(居民消费价格指数),是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。居民消费价格指数,是对一个固定的消费品篮子价格的衡量,主要反映消费者支付商品和劳务的价格变化情况,也是一种通货膨胀水平的工具。一般来说,当CPI>3%的增幅时我们称为通货膨胀。 国外许多发达国家非常重视消费价格统计,美国、加拿大等国家都计算和公布每月经过季节调整的消费价格指数,以满足不同信息使用者的要求。经济学家用消费价格指数进行经济分析和利用时间序列构建经济模型。 总所周知,居民消费价格指数是反映一个国家或地区宏观经济运行状况好坏的必不可少的统计指标之一,是世界各国判断通货膨胀(紧缩)的主要标尺,是反映市场经济景气状态必不可少的经济晴雨表。因此,我国也采用国际惯例,用消费价格指数作为判断通货膨胀的主要标尺。 由于CPI是反映社会经济现象的综合指标,对其定量分析必须建立在定性分析的基础上,因此CPI的预测趋势还要与国家宏观经济政策及我国市场的供求关系相结合。如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。因此,该指数过高的升幅往往不被市场欢迎。 基于以上种种,CPI指数的预测对我国各方面显得尤为重要。 本文针对烟酒及用品类居民消费价格指数,分析其时间序列,并进行了相关预测。 模型的建立 一、数据的选择: 选取2007年4月—2014年4月的各个月份的烟酒及用品类居民消费价格指数,如表1所示: 表1 烟酒及用品类居民消费价格指数 时间指数时间指数时间指数时间指数2007.4 99.4 2009.2 103.2 2010.12 101.5 2012.1 103.4 2007.5 99.3 2009.3 103.3 2011.1 101.6 2012.11 103.4 2007.6 99.3 2009.4 103.4 2011.2 101.7 2012.12 103.3 2007.7 99.3 2009.5 103.6 2011.3 101.7 2013.1 103.1

(完整版)应用时间序列分析习题答案解析

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(122130 2112211ρφρφρρφρφρφφρ ?? ???=-====015.06957.033222111φφφρφ

时间序列分析方法第章谱分析完整版

时间序列分析方法第章 谱分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第六章 谱分析 Spectral Analysis 到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为: 我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τ Y 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。 在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为: 上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞ -}{t Y 性质时所发挥的重要程度如何。如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。 § 母体谱 我们首先介绍母体谱,然后讨论它的性质。 6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱: 注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。 利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为: 注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: 利用三角函数的奇偶性,可以得到: 假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数

时间序列分析方法第章预测

第四章 预 测 在本章当中我们讨论预测的一般概念和方法,然后分析利用),(q p ARMA 模型进行预测的问题。 §4.1 预期原理 利用各种条件对某个变量下一个时点或者时间阶段内取值的判断是预测的重要情形。为此,需要了解如何确定预测值和度量预测的精度。 4.1.1 基于条件预期的预测 假设我们可以观察到一组随机变量t X 的样本值,然后利用这些数据预测随机变量1+t Y 的值。特别地,一个最为简单的情形就是利用t Y 的前m 个样本值预测1+t Y ,此时t X 可以描述为: 假设*|1t t Y +表示根据t X 对于1+t Y 做出的预测。那么如何度量预测效果呢?通常情况下,我们利用损失函数来度量预测效果的优劣。假设预测值与真实值之间的偏离作为损失,则简单的二次损失函数可以表示为(该度量也称为预测的均方误差): 定理4.1 使得预测均方误差达到最小的预测是给定t X 时,对1 +t Y 的条件数学期望,即: 证明:假设基于t X 对1+t Y 的任意预测值为: 则此预测的均方误差为: 对上式均方误差进行分解,可以得到: 其中交叉项的数学期望为(利用数学期望的叠代法则): 因此均方误差为: 为了使得均方误差达到最小,则有: 此时最优预测的均方误差为: 211*|1)]|([)(t t t t t X Y E Y E Y MSE +++-= End 我们以后经常使用条件数学期望作为随机变量的预测值。 4.1.2 基于线性投影的预测 由于上述条件数学期望比较难以确定,因此将预测函数的范围限制在线性函数当中,我们考虑下述线性预测: 如此预测的选取是所有预测变量的线性组合,预测的优劣则体现在系数向量的选择上。 定义4.1 如果我们可以求出一个系数向量值α,使得预测误差)(1t t X Y α'-+与t X 不相关: 则称预测t X α'为1+t Y 基于t X 的线性投影。 定理4.2 在所有线性预测当中,线性投影预测具有最小的均方误差。

第六章时间序列分析

第六章时间序列分析 重点: 1、增长量分析、发展水平及增长量 2、增长率分析、发展速度及增长速度 3、时间数列影响因素、长期趋势分析方法 难点: 1、增长量与增长速度 2、长期趋势与季节变动分析 第一节时间序列的分析指标 知识点一:时间序列的含义 时间序列是指经济现象按时间顺序排列形成的序列。这种数据称为时间序列数据。 时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。 时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。表现了现象在时间上的动态变化,故又称为动态数列。 一个完整的时间数列包含两个基本要素: 一是被研究现象或指标所属的时间; 另一个是该现象或指标在此时间坐标下的指标值。 同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。 研究时间数列的意义:了解与预测。 [例题·单选题]下列数列中哪一个属于时间数列(). a.学生按学习成绩分组形成的数列 b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列 c.工业企业按产值高低形成的数列 d.降水量按时间先后顺序排列形成的数列 答案:d 解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。 知识点二:增长量分析(水平分析)

一.发展水平 发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用y t (t=1,2,3,…,n) 。 在绝对数时间数列中,发展水平就是绝对数; 在相对数时间数列中,发展水平就是相对数或平均数。 几个概念:期初水平y 0,期末水平y t ,期间水平(y 1 ,y 2 ,….y n-1 ); 报告期水平(研究时期水平),基期水平(作为对比基础的水平)。 二.增长量 增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为: 增长量=报告期水平-基期水平 根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。 1.逐期增长量:是报告期水平与前一期水平之差,用公式表示为: △ = y n - y n-1 (i=1,2,…,n) 2.累计增长量:是报告期水平与某一固定时期水平(通常是时间序列最初水平)之差,用公式表示为: △ = y n - y (i=1,2,…,n)(i=1,2,…,n) 二者关系:逐期增长量之和=累计增长量 3.平均增长量 平均增长量是时间序列中的逐期增长量的序时平均数,它表明现象在一定时段内平均每期增加(减少)的数量。 一般用累计增长量除以增长的时期数目计算。 (y n - y )/n [例题·单选题]某社会经济现象在一定时期内平均每期增长的绝对数量是()。 a.逐期增长量 b.累计增长量 c.平均增长量 d.增长速度 答案:c 解析:平均每期增长的绝对数量是平均增长量。 知识点三:增长率分析(速度分析) 一.发展速度

时间序列分析word版

第2章 时间序列的预处理 拿到一个观察值序列之后,首先要对它的平稳性和纯随机性进行检验,这两个重要的检验称为序列的预处理。根据检验的结果可以将序列分为不同的类型,对不同类型的序列我们会采用不同的分析方法。 2.1 平稳性检验 2.1.1 特征统计量 平稳性是某些时间序列具有的一种统计特征。要描述清楚这个特征,我们必须借助如下统计工具。 一、概率分布 数理统计的基础知识告诉我们分布函数或密度函数能够完整地描述一个随 机变量的统计特征。同样,一个随机 变量族的统计特性也完全由它们的联 合分布函数或联合密度函数决定。 对于时间序列{t X ,t ∈T },这样来定义它的概率分布: 任取正整数m ,任取m t t t ,, ,?21∈T ,则m 维随机向量(m t t t X X X ,,,?21)’的联合概率分布记为),,,(m t t t x x x F m ??21,,,21,由这些有限维分布函数构成的全体。 {),,,(m t t t x x x F m ??21,,,21,?m ∈正整数,?m t t t ,,,?21∈T } 就称为序列{t X }的概率分布族。 概率分布族是极其重要的统计特征描述工具,因为序列的所有统计性质理论上都可以通过 概率分布推测出来,但是概率分布族的重要 性也就停留在这样的理论意义上。在实际应 用中,要得到序列的联合概率分布几乎是不 可能的,而且联合概率分布通常涉及非常复 杂的数学运算,这些原因使我们很少直接使 用联合概率分布进行时间序列分析。 二、特征统计量 一个更简单、更实用的描述时间序列统计特征的方法是研究该序列的低阶矩,特别是均值、方差、自协方差和自相关系数,它们也被称为特征统计量。 尽管这些特征统计量不能描述随机序列全部的统计性质,但由于它们概率意义明显,易于计算,而且往往能代表随机 序列的主要概率特征,所以我们对时间序列进行分析,主要就是通过分析这些统计量的统计特性,推断出随机序列的性质。 1.均值 对时间序列{t X ,t ∈T }而言,任意时刻的序列值t X 都是一个随机变量,都有它自己的概率分布,不妨记为)(x F t 。只要满足条件 ∞

相关文档
相关文档 最新文档