文档库 最新最全的文档下载
当前位置:文档库 › 辅助供电系统概述

辅助供电系统概述

辅助供电系统概述
辅助供电系统概述

9.1 概要

动车组的辅助供电系统采用干线供电方式,电源系统贯穿全列车。辅助电路电源从搭载

在M2-2、M2-6车的牵引变压器MTr的3次绕组得到。

M2-2、M2-6车的牵引变压器的3次绕组电源AC400v/50Hz分别通过电磁接触器ACK1被

连接到贯穿线704、754线系统。设置在T2-4车的扩展供电用的电磁接触器ACK2平时断开,

以防止来自M2-2、M2-6车两系统的电源混接触。一旦某一个系统出现故障,另一个系统可

以通过电磁接触器 ACK2连接,实现扩展供电(见图9.3)。

9.1.1 辅助供电系统组成

辅助供电系统由辅助电源装置和辅助用电设备两部分组成。

辅助电源装置由辅助电源箱(APU Box)和辅助整流器箱(ARf Box)两部分构成,由辅

助电源装置输出的电压分为非稳压电源和稳压电源两大类:即非稳定单相ACl00V/50Hz电

源;稳定单相ACl00V/50Hz电源、稳定单相AC220V/50Hz电源、稳定三相AC400V/50Hz电源、

稳定DCl00V电源。

图9.1为辅助电源装置供电种类示意图。

图9.1辅助电源装置供电种类示意图

辅助电源装置向牵引变流器通风机、牵引电机通风机、牵引变压器通风机、牵引变压器

电动油泵、空气压缩机等车上设备提供三相交流电源,给蓄电池、辅助电路、监视装置、制

动装置、关门装置、牵引变流器控制等电力设备提供直流输出,给空调控制、显示器、水泵

装置、辅助制动等电力装置提供单相交流输出。

动车组车体侧面装有连接外部电源的插座(单相AC400V/50 Hz),M2 车(2 号车及6号

车)上各有一处。车辆检修基地设置有外部电源,可供辅助电路工作。

9.1.2 系统布置

在动车组两辆先头车辆T1c-1、T2c-8车底下各悬挂辅助电源装置1台,在M2-2、T2-4、M2-6车底下各悬挂蓄电池1组,具体布置如图9.2所示。

空調装置

水箱

接线箱

制动控

(a )1号车车下悬挂设备概况

辅助电源装置(A P U )

B at 制换气装置

号接收装置

控制回路接线箱

(b) 8号车车下悬挂设备概况

辅助电动 电流传感器(C T 3)

控制回路 接线箱

接线箱

(c) 2、6号车车下悬挂设备概况

换气装置

踏面清扫用电磁阀蓄电池箱

控制回路

接线箱

(d) 4号车车下悬挂设备概况

图9.2 辅助电源装置和蓄电池布置示意图9.1.3 系统供电回路

辅助系统供电回路如图9.3所示。

1.交流供电回路

表9.1为交流电源系统中各种电源、车辆各用电设备的汇总表。

表9.1 交流电路电源系统参数表

障时,为了扩展供电,在T2-4车上设置了电磁接触器ACK2和BKK。但为了避免与来自M2-2车及M2-6车的电源发生混接触,ACK2和BKK平时处于断开位置。

2.直流供电回路

表9.2是直流电源系统中各种电源、各车辆用电设备的汇总。

表9.2 直流电路电源系统参数表

图9.3 辅助系统供电回路

各电源系统的说明:

102线系统:首先由蓄电池直接供电,完成升弓和合VCB任务后,通过BatK1与103线连接,蓄电池通过辅助整流器(ARf)输出的DC100V电源充电。当蓄电池电压异常下降时,通过电压检测电路检测,BatK1变为OFF状态,(参照M2-2、T2-4及M2-6辅助电路)阻止蓄电池过放电。以[T1c-1、M2-2、M1-3]、[T2-4、T1k-5]、[M2-6、M1s-7、T2c-8]为单位进行贯穿,在整个编组没有贯穿。

103线系统:整个编组贯穿,103线经由电磁接触器ARfK被加压。

103B线系统:平时由103线供电(通过预备灯切换接触器RrLpCgK常闭点),当接触网停电时,RrLpCgK的常开点接通,103B线改由102线供电。以各车为单位,在整个编组没有贯穿。

115线系统:103线经由ARfK被加压后,进而115线经由BatK2与103线连通而加压。与102线相同,以[T1c-1、M2-2、M1-3]、[T2-4、T1k-5]、[M2-6、M1s-7、T2c-8]为单位贯

穿,在整个编组没有贯穿。

118A线系统:平时以103线作为电源。当接触网停电时,预备灯切换接触器RrLpCgK 和列车无线用蓄电池切换开关(TWEmCgS)接通,列车无线用蓄电池切换接触器(TWEmCgK)工作,118A线从103线切换成由列车无线用蓄电池(TWBat)供电。列车无线用蓄电池(TWBat)平时从103线得到浮充电。

9.1.4 系统容量计算

ATM9型牵引变压器的额定容量如表9.3所示。

表9.3 ATM9型牵引变压器额定值

源降至单相AC400V/50Hz,分别通过电磁接触器ACK1连接到列车贯穿线704、754线系统,向辅助电源装置和空调与换气装置提供电能。

表9.4 辅助电源负载容量计算

施,用剩下完好的1台也具备向编组内所有负载提供电能的能力。

表9.5 MTr 3次电源(辅助绕组)夏季容量计算

注:空调额定负荷时:34KVA,减半时:13KVA

根据表9.5统计的MTr 辅助绕组输出负荷结果,发生故障时,虽然超过了辅助绕组的额定输出值,但通过扩展供电和空调减半等措施,仍能使牵引变压器在允许的范围内工作。

动车组设有容量充足的蓄电池组,供紧急时使用。应急用电量(含应急照明、列车无线装置、广播装置、尾灯)最少可持续两小时。在运行中,蓄电池组通过辅助电源装置输出的DC100V电源充电。蓄电池容量计算说明见9.3.4。

9.1.5 系统特点

1.冗余设计

在动车组上安装2台牵引变压器,其辅助绕组输出至辅助电源装置的AC400V电压分别供电给4节车厢。正常情况下,每台牵引变压器的辅助绕组输出至辅助电源装置的AC400V电压分别供电给4节车厢。当一台牵引变压器故障时,另一台正常运转的牵引变压器能够通过辅助绕组向8节车厢供电(设置了用于切换的扩展供电回路)。此时,应使空调装置半功率运行。

在动车组上安装2台辅助电源装置,一台辅助电源装置供给4节车厢所需辅助用电。当一台辅助电源装置发生故障时,另一台正常运转的辅助电源装置能够向8节车厢供电(设置了用于切换的扩展供电回路)。辅助电源装置的输出容量的设计能够在故障时用一台正常运转的辅助电源装置向整列车供电。因此,当一台辅助电源装置故障时无需减少负荷。

2.多电源制式

辅助电源装置输出的稳压电源和不稳压电源适合不同负载使用,输出多种电源适合各种负载使用。

3.小型、轻量、低噪音

辅助电源装置中辅助变流器采用可高速开关的IGBT,通过高频PWM控制,实现了装置的小型、轻量、低噪音化。

4.智能化

在列车信息控制系统和辅助电源装置之间设置自诊断功能接口,实现故障在线检测和诊断,通过列车信息显示装置显示,便于司机采取正确的应急处理方法;通过故障记录和IC 卡控制装置输出,便于故障检修和提高维修效率。

电力系统基本概念

一、电力工业发展概况及前景 几个需要记住的知识点 1、电力工业是将一次能源转换成二次能源的工业,其发展水平是反映国家经济发展程度的重要标志。 2、1882年在上海建立第一个火电厂。 3、1912年在昆明滇池石龙坝建立第一座水电站。 4、2001年,针对我国能源结构的实际情况,我国的电源发展实施了“优先开发水电、大力发展火电、适当发展核电、积极发展新能源发电”的方针,使电源发展呈现多种 能源互补的格局。 5、在水电方面我取得了骄人成绩,有许多世界之最 ①1994年12月开工建设世界上最大的水电站→三峡 ②界上最大的抽水蓄能电站→广州抽水蓄能电站 ③世界上海拔最高的电站→西藏羊卓雍湖水电站等。 6、我国电力已经开始进入“大机组‘’、“大电网”、“超高压”、“高自动化” 的发展新阶段。 二、电力系统基本概念 (一)、电力系统 1、电力系统概念 由发电厂、升压变电站、输电线路、降压变电站及电力用户所组成的统一整体称为电 力系。 2、动力系统概念 电力系统加上带动发电机转动的动力装置构成的整体称为动力系统。 3、电力网概念 由各类升压变电站、输电线路、降压变电站、组成的电能传输和分配的网络称为电力网。 (二)、发电厂 1、定义 发电厂是电力系统的中心环节,它是把其他形式的一次能源转换成二次能源的一种特 殊工程。 2、分类 ⑴a、按其所用能源分为 火力发电厂、水力发电厂、核能发电厂、风力发电厂、潮汐发电厂、地热发电、太阳 能发电、垃圾发电、沼气发电等等。 b、按发电厂的规模和供电范围划分为:区域性发电厂、地方发电厂、自备专用发电厂等。 ⑵、火力发电厂

①定义 利用煤、石油、天然气、油页岩等燃料的化学能生产电能的工厂。热能→机械能机→ 电能。 ②凝汽式火力发电厂 火力发电厂中的原动机可以是凝汽式汽轮机、燃气式汽轮机或内燃机。我国大部分火 力发电厂采用凝汽式汽轮发电机组,所以称为凝汽式火力发电厂。汽式火力发电厂热 效率较低只有30~40%。适宜建在燃料产地。 ③热电厂 既发电又供热的火力发电厂称为热电厂。热效率可以上升到60~70%。一般建在大城 市及工业附近。 ⑶水力发电厂 定义 通常称水电厂。利用江河水流的水能生产电能的工厂。水能→机械能→电能。 ⑷核电厂 定义 核能→热能→机械能→电能。 特点 能取得较大的经济效益,所需原料极少。 (三)、变电站 1、定义 变电站是汇集电源、升降电压和分配电力的场所,是联系发电厂和用户的中间环节。 2、分类 ⑴按升降电压划分为 ①、升压变电站→通常是发电厂升压部分,紧靠发电厂。 ②、降压变电站→通常运离发电厂而靠近负荷中心。 ⑵按变电站在电力系统中所处的地位和作用划分为 ①、枢纽变电站:枢纽变电站位于电力系统的枢纽点,电压等级一般为330kV以上, 连接多个电源,出现回路多,变电容量大;全站停电后将造成大面积停电或系统瓦解。 ②、中间变电站:中间变电站位于系统主干环行线或系统主干线的接口处,电压等级 一般为330——220kV,汇集2~3个电源和若干线路。 ③、地区变电站:地区变电站是某个地区和某个城市的主要变电站,电压等级一般为220kV。 ④、企业变电站:企业变电站是大、中型企业的专用变电站,电压等级35——220kV,1~2回进线。 ⑤、终端变电站:终端变电站位于配电线路的终端,接近负荷处,高压侧10——35kV 引入线,经降压后向用户供电。

电力系统概述

第一章电力系统概述 第一节本厂在系统中的地位和作用 一、华中电网现状 2002年底华中地区装机容量为52142MW。其中水电装机17985MW,火电装机34157MW。分别占全部装机的34.5%、65.5%。统调装机容量39140MW,其中水电12294MW,火电26845MW。 2002年华中地区发电量221.9TW·h。其中水电发电量64.2TW·h,火电发电量157.7TW·h,分别占全部发电量的28.9%、71.1%。统调发电量168.1TW h,其中水电发电量45.3TW h,火电发电量122.8TW·h。 2002年华中地区全社会用电量为220.3TW·h。统调用电最高负荷30790MW,比上年增长14.72%。 二、湖南省电力系统现状 1.电源现状 2002年底湖南省装机容量为11110.86MW。其中水电装机6135.28MW,火电装机4975.58MW。分别占全省装机的55.2%、44.8%。2002年统调装机容量为7424.65MW,其中水电装机3419.65MW、火电装机4005MW。 2002年湖南省发电量45.387TW·h。其中水电发电量25.329TW·h、火电发电量20.05785TW·h,分别占全省发电量的55.8%、44.2%。 湖南省电网电源主要分布在湖南西部,全省最大火力发电厂为华能岳阳电厂(725MW)。最大水电站为五强溪水电站(1200MW)。 2.网络现状 湖南省电力系统是华中电力系统的重要组成部分,处于华中系统的南部,目前全网分为14个供电区。 湖南电网经两条联络线即葛洲坝~岗市500kV线路及汪庄余~峡山220kV线路与华中电网联系,贵州凯里电厂通过凯里~玉屏~阳塘220kV线路向湖南送电。目前省内已建成五强溪~岗市~复兴~沙坪~云田~民丰~五强溪500kV环网,并且岗市与云田间另有一回500kV线路直接相联。 2002年底湖南省共有500kV变电所5座,变电容量4,250MV A(云田(株洲)2,750MV A,民丰(娄底)1,750MV A,岗市(常德)1,500MV A,复兴(益阳)1,750MV A,沙坪(长沙)1,750MV A)220kV公用变电所54座,变电容量10,590MV A,拥有500kV线路8条894.3km ,220kV线路136条6666km。 2002年底湖南电网共装有无功补偿设备7630.7Mvar,其中电容器6180.2Mvar,并联电抗器1280.1Mvar,调相机50.4Mvar,其他165Mvar。 3.供用电现状

电力系统基本概述

电力系统基本概述 一、电力系统与电网 发电厂将一次能源转变成电能,这些电能需要通过一定方式输送给电力用户,在由发电厂向用户供电过程中,为了提高其可靠性和经济性,广泛通过升、降压变电站,输电线路将多个发电厂用电力网连接起来并联工作,向用户供电。这种由发电厂、升压和降压变电站、送电线路以及用电设备有机连接起来的整体,称为电力系统。发电机的原动机、原动机的力能部分、供热和用热设备,则称为动力系统。在电力系统中,由升压和降压变电站和各种不同电压等级的送电线路连接在一起的部分称为电网。 二、电力生产的特点 电能的生产与其它工业生产有着显然不同的特点。 1.电能不能大量储藏 电力系统中发电厂负荷的多少,决定于用户的需要,电能的生产和消费时时刻刻都是保 持平衡的。电能的生产、分配和消费过程的同时性,使电力

系统的各个环节形成了一个紧密 的有机联系的整体,其中任一台发、供、用电设备发生故障,都将影响电能的生产和供应。 2.电力系统的电磁变化过程非常迅速 电力系统中,电磁波的变化过程只有千分之几秒,甚至百万分之几秒;而短路过程、发 电机运行稳定性的丧失则在十分之几秒或几秒内即可形成。为了防止某些短暂的过渡过程对 系统运行和电气设备造成危害,要求能进行非常迅速和灵敏的调整及切换操作,这些调整和 切换,靠手动操作不能获得满意的效果,甚至是不可能的,因此必须采用各种自动装置。 3.电力工业和国民经济各部门之间有着极其密切的关系 电能供应不足或中断,将直接影响国民经济各个部门的生产,也将影响人们的正常生活, 因此要求电力工业必须保证安全生产和成为国民经济中的

先行工业,必须有足够的负荷后备 容量,以满足日益增长的负荷需要。 三、电力系统的运行要求 为了保证为用户提供电能,电力系统的运行必须满足下列基本要求。 1.保证对用户供电的可靠性 在任何情况下都应该尽可能的保证电力系统运行的可靠性。系统运行可靠性的破坏,将 引起系统设备损坏或供电中断,以致造成国民经济各部门生产停顿和人民生活秩序的破坏,甚至发生设备和人身事故。 电力用户,对供电可靠性的要求并不一样,即使一个企业中各个部门或车间,对供电持 续性的要求也有所差别。根据对供电持续性的要求,可把用户分为三级。

第一章电力系统概论

第一章绪论 General introduction 第一节电力系统概论 General introduction of electric power industry 一、电力系统的构成Composing of power system <一>电力工业在国民经济中的地位 The status of power industry in national economic 1.电力工业是社会公共基础事业,是国民经济的一个重要部门。 2.为社会生产的各个领域提供动力,与社会生活密切相关; 3.“经济要发展,电力要先行”。从各国经济发展看,国民经济每增长1%,就要求电力工业增长1.3%—1.5%。 <二> 电力系统的形成 Development of power system 1 初期电厂建在用电区附近,规模很小,孤立运行。 2 随着生产的发展和科学技术的进步,用电量和发电厂容量不断增加,但由于发电所需的一次能源通常离负荷中心较远,因此形成了电力网和电力系统。 <三>基本概念 Basic conception 电力系统:发电机、变压器、输配电线路和电力用户的电器设备所组成的电气上的整体。 电力网:电力系统中输送、分配电能的部分(变压器和输配电线路)。 动力系统:电力系统+发电厂的动力部分(火电厂的锅炉、汽机;水电厂的水库、水轮机;核电厂的反应堆)

二、电力系统的发展The history of electric power industry 1.国外电力系统的发展历史 1831 法拉第发现电磁感应定律后,出现了交流直流发电机,直流电动机出现里100-400V的低压直流输电系统; 1882年德国 1500-2000V 直流输电系统 1885年单相交流输电 1891年三相交流输电 俄国人展示了现代电力系统模式 2.国内电力系统发展历史 1882年第一座电厂在上海建成 1882—1945年全国总装机容量185万KW,年发电量仅43亿KWh 2000年全国总装机容量3亿KW,年发电量13556亿KWh 并建成500kV交流、直流超高压输电线路,7个跨省电力系统 西南大容量水电的开发,山西陕西和内蒙西部大量坑口电厂的建设,使得全国联网的格局逐步形成。 3.联合电力系统的特点Characteristics of power system 1)系统总装机容量减少。发电厂孤立运行的最大负荷并不同时出现 2)合理利用动力资源 与火力发电厂相比,水电厂具有单位发电成本低、跟踪负荷快的特点。因此,依照“不弃水”的原则,水电厂丰水季节承担基荷,枯水季节承担峰荷。这样可以降低煤耗,充分利用水力资源。 3)提高了供电可靠性 由于各电厂之间在机组检修或系统发生事故的情况下能够相互支援,从而可以降低系统备用容量和提高供电可靠性。 4)提高了系统运行的经济性 a.在机组间合理分配负荷; b.采用大容量机组,降低单位千瓦造价和运行损耗。 缺点:故障波及地区容易扩大、系统短路容量增加。 三、对电力系统的基本要求Basic requirement of the power system operation (一)电能生产、输送和消费的特点

电力系统概论复习1

1.电力系统运行的特点:电能不能大量储存、过渡过程非常迅速、与国民经济各部门密切相关;基本要求:保证可靠地持续供电、保证良好的电能质量、努力提高电力系统运行的经济性。 2.按供电可靠性的要求将负荷分为三级: 一级负荷:属于重要负荷,如果对该负荷中断供电,将会造成人身事故、设备损坏、产生大量废品,或长期不能恢复生产秩序,给国民经济带来巨大损失。 二级负荷:如果对该负荷中断供电,将会造成大量减产、工人窝工、机械停止运转、城市公用事业和人民生活受到影响。 三级负荷:指不属于第一、二级负荷的其他负荷,短暂停电不会带来严重后果,如工厂的不连续生产车间或辅助车间、小城镇、农村用电等。 3.电力系统的接线方式和特点:无备用接线的特点是简单、经济、运行方便,但供电可靠性差、电能质量差;有备用接线的优点是供电可靠、电能质量高,缺点是运行操作和继电保护复杂,经济性较差。 4.中性点接地方式:一般电压在35kV及其以下的中性点不接地或经消弧线圈接地,称小电流接地方式;电压在110kV及其以上的中性点直接接地,称大电流接地方式。 5.为了减小电晕损耗或线路电抗,电压在220kV以上的输电线还常常采用分裂导线。 6.在精度要求较高的场合,采用变压器的实际额定变比进行归算,即准确归算法。在精度要求不太高的场合,采用变压器的平均额定变比进行归算,即近似归算法。 7.线电压与相电压存√3倍的关系,三相功率与单相功率存在3倍关系,但他们在标幺值中是相等的。 8.电压降落是指线路始、末两端电压的向量差(dU=U1-U2)。 电压损耗是指线路始、末两端电压的数值差(U1-U2)。 电压偏移是指网络中某一点的电压与该网络额定电压的数值差。 9.电力线路的电能损耗:如果在一段时间内电力网络的负荷不变,则相应的电能损耗为△W=△Pt=(P∧2+Q∧2)Rt/U∧2。变压器的电能损耗等于励磁支路的电能损耗与阻抗支路的电能损耗之和。变压器在额定运行条件下励磁支路的电能损耗对应着空载损耗P0,阻抗支路的电能损耗对应着短路损耗Pk。 10.自、互导纳的物理意义。自导纳Yii在数值上等于该节点i直接连接的所有支路导纳的总和;互导纳Yij在数值上等于节点i、j支路导纳的负值.

高铁供电系统概论

高铁供电系统概论 一、高铁供电系统概述 高速铁路全长345公里共设置七座牵引动力变电站,其设计原则为任一变电站故障情况下仍能保持正常运转,其变电站间之最大距离约为60公里。列车所需之牵引电力由七座牵引动力变电站以2x25KV形式馈电给电车线及负馈线,再由动力车以集电弓撷取电车线与轨道间之25KV电源供列车使用。 二、牵引动力变电站介绍 高铁供电系统依其用电特性可区分为牵引动力用电及车站用电两种电源,其中有关车站用电必须配合车站特定区之用电加以整合,且需依据当地台电公司之配电系统加以规划,此部份和一般大楼用电相似,此处不再加以说明,有关牵引动力部份将详加说明如下。 车辆牵引系统之特性为列车在低速时需要较大之转矩,而在适当之速度下会有平衡的拉力特性,且在高速列车所需之能量为速度2次方的函数,从控制的角度来看,在电子控制电路发展以前,以直流电动机为主要设备,其电压以DC750V、1500V、3000V为主,仅适用于小编组的高速列车,其优点为自变电所之相间不平衡和低次高谐波问题不存在,但还余留电力腐蚀的问题。 随着速度之增加所需之电流大增,直流系统已无法配合,且在电子控制电路发展下,于1951年法国采用50Hz商用频率之馈电系统,日本也于1957年开始进入实用化,其电压几乎都是商用频率AC25KV(德国是15KV、16 2/3Hz)。 台湾高速铁路沿线变电站,经与电力公司相关人员,实地勘察结果,在沿线择定七个变电站(树林、杨梅、苗栗、台中、云林、新营、冈山)。 三、各国高铁供电系统简介 牵引动力馈电电压:依牵引机车需求不同,馈送至电车的电压亦有多种不同额定,通常被采用者为: 直流:750 V、1500 V、3000 V 交流:单相、50Hz或60Hz、15 KV、20 KV、25 KV、50KV 高速铁路采用者:交流25 KV(日本、法国、西班牙)、交流15 KV,Hz(德国) 受电电压:依据电力的需量与电力公司供电网络特性而有所区别。 法国采用:90 KV、150 KV、225 KV、400 KV

第一讲:电力系统的概念

第一讲:电力系统的概念 电力系统的组成 1 发电部分(Generation ): 发电厂,将燃料(煤炭,燃油)的化学能,核燃料的原子能,水库的水能等转化为电能。 (1) 一次能源转换: 水库 锅炉 核反应堆(核锅炉) 水电厂:利用水的势能发电(可再生能源),必须有很大的水库蓄水,受气象与季节影响大。 火电厂:能源为煤、油、天燃气(不可再生),还需要空气和水。 核电站:能源为核燃料(铀),还需要空气和水。 抽水蓄能电站:同步电发电机与电动机合一,峰谷调节,快速备用。在电网负荷高峰时作为发电 机运行,将上游水库的水放到下游水库。在电网负荷低谷时作为同步电动机发电机运行,将下游 水库的水吸到到下游水库。 (2) 原动机: 水轮机 汽轮机 (3) 发电机 2 输配电部分 (Power TransmissionGrid ) : 输电网络,通过高压输电网络将电能由发电厂输送到负荷中心 V A " 石口 …用户 10KV 110KV 110KV 380V 10KV 10KV 1 110KV / i-\ -f * 4 r 、 1 ______ 380V 口口 □ □, 380V 380V 500KV 火电厂汽轮机锅炉 库 220KV 35KV F 220KV i 00 :配网 10KV 10KV 380V □ □ r 电网 电力系统 动力系统 地调 市调 8 网调 省调 水电厂水轮机 水n 380V — 占220KV \ -JL, I V A V A 亠"?二 : 一 500KV 串补 ,丄it ■ 10KV

(1)输电线 (2)变电站 2.1一次设备变压器断路器(开关)隔离开关(刀闸)限流电抗器(电感)载流导体(母线/输电线) CT/PT (Current Transformer/ Potential Transformer)绝缘子 接地装置补偿装置(调相机/电容/静补装置)中性点设备 避雷设备 2.2二次设备控制系统:直流电压,控制短路器开合信号系统:警报音响,位置信号(断路器开合)测量系统: 测量表计同步系统:保证同期操作(同压,同频,同相)用的设备测量设备 保护设备控制设备监视设备(包括故障录波) 3配电部分(Distribution Network system) 电压等级与调度范围的划分 1. 电网与电压等级国家规定的等级: 3、6、10、35、110、220、330、500、750(KV) 1、3.5、11、22. 、33.、50.、75 (万伏) 其中: 500,330,220KV 用于大电力系统主干线,330KV 文革期间建成的西北电网。准备提高一个电压等级750KV ,330KV 首先上升为750KV ,其余为新建。世界最高电压等级1100KV 。 电压等级为500/220/110(KV )的设备升压变压器(发电机—变压器组) 降压变压器 线路

电力系统的基本概念

电力系统的基本概念: 电力系统是由发电机、变压器、电力线路及用电设备组成的发电、输电、配电和用电的整体。 电力网是由变电所、电力线路等变换、输送和分配电能的设备连接在一起所组成的网络。它将发电厂与用户连接在一起。是电能产生与消费的纽带。 目前我国有5个跨省的电力系统,即华北、华东、华中、东北、西北电力系统,其中华东电力系统总装机容量和年发电量都占据首位 电力系统的特点及运行应满足的基本要求: 电能作为一种商品,它的生产、输送、分配和使用与其他工业产品相比有明显不同的特点,主要表现在以下几个方面: 电能的生产、传输及消费几乎同时进行,因为发电设备任何时刻生产的电能必须与消耗的电能相平衡。 电能与国民经济各部门之间的关系密切。电能的中断或减少直接影响国民经济生产各部门及人们的生活。 电力系统的暂态过程非常短暂。电能以电磁波的形式传输,传输速度为30万KM/S,电力系统的发电机、变压器、电力线路以及用电设备的投入和退出,都在一瞬间完成。故障的产生及发展非常短促,电力系统的暂态过程非常迅速。 对电能质量的要求颇为严格。电能的质量的好坏由电压的大小、频率和波形质量能否满足要求来衡量。任一个参数不满足要求都将造成不良的影响,甚至造成产品不合格,损坏设备或大面积停电等。

为适应上述特点,对电力系统的运行提出如下基本要求: 一、保证供电的可靠性。 间断供电,将会使生产停顿,生活混乱甚至危及人身和设备的安全,给国民经济造成极大损失,这种损失远远超出对电力系统本身的损失。造成对用户中断供电的原因主要有: 电力系统的设备发生故障; 1、电力系统的误操作; 2、电力系统继电保护的误动作; 3、运行管理水平低,维修质量不合格等。 提高电力系统运行的可靠性,应改善设备质量,提高运行管理水平和技术水平及运行检修人员的责任心。另一方面要完善电力系统的结构,提高抗干扰能力,充分发挥计算机进行监视和控制的优势,不断提高电力系统的自动化水平。 二、保证良好的电能质量。电压质量和频率质量一般以偏离额定值的大小来衡量,实际用电设备均按额定电压设计,电压偏高或偏低都将影响用电设备运行的技术指标和经济指标,甚至不能正常工作。一般规定,电压偏移不应超过额定电压的±5%;频率偏差不超过±0.2~0.5HZ等。正弦交流电的波形质量一般以波形的畸变率衡量。所谓波形的畸变率指的是各次谐波有效值的平方和的方根值与基波有效值的百分比。10KV允许为4%。 三、保证系统运行的经济性。 合理发展电网,优化电网结构和运行方式,降低电能传输过程中的损

电力系统概论

第一章 1.1、电力系统、电力网、动力系统的定义是什么?P1 答:电力系统是指由发电机、变压器、电力线路、用户的用电设备等在电气上相互连接所组成的有机整体。 电力系统中,除去发电机、用户的用电设备,剩下的部分,即电力线路和它两边连接的变压器,称为电力网,简称电网。 电力系统再加上它的动力部分可称为动力系统。 1.3、电力系统运行的特点和基本要求是什么?P4 答:特点:1、电能不能大量储存;2、过渡过程非常迅速;3、与国民经济各部门密切相关。 基本要求:1、保证可靠地持续供电(通常对一级负荷要保证不间断供电;对二级负荷,如有可能也要保证不间断供电。当电力系统中出现供电不足时,三级负荷 可以短时断电); 2、保证良好的电能质量 (电力系统的电压和频率正常是保证电能质量的两大基本指标,一般规定, 电压偏移不应超过额定电压的±5%。频率偏移不超过±(0.2~ 0.5)Hz。) 3、努力提高电力系统运行的经济性。 1.4、衡量电能质量的指标是什么?P6 答:衡量电能质量的指标是电压偏差、频率偏差、谐波畸变率、三相不平衡度、电压波动和闪变、暂时过电压和瞬态过电压。 1.7、电力系统的接线方式有哪几种?比较有备用接线和无备用接线的优缺点。P10 答:接线方式:两种(有备用接线和无备用接线) 无备用接线指用户只能从一个方向取得电源的接线方式,包括放射式、干线式、链式。 优点:简单、经济、运行方便;缺点:供电可靠性差、电能质量差。 有备用接线包括双回路放射式、双回路干线式、双回路链式、环式和两端供电网。 优点:供电可靠、电能质量高;缺点:运行操作和继电保护复杂,经济性差。 1.8、电力系统各元件的额定电压如何确定?P11 答:1、用电设备的额定电压为U N(最理想、最经济的工作电压),也是其他元件的参考电压。 2、电力线路的额定电压和用电设备的额定电压是相等的。 3、发电机的额定电压应该比线路的额定电压高5%,即U GN=U N(1+5%)。 4、变压器的额定电压:变压器的一次侧额定电压等于用电设备的额定电压,即U1N =U N;但是,直接和发电机相连的变压器,其一次侧额定电压等于发电机的额定 电压,即U1N=U GN=U N(1+5%)。 变压器的二次侧额定电压:当电力线路的额定电压为10 kV及以上,比线路的额 定电压高10%;当电力线路的额定电压为10 kV以下,比线路的额定电压高5%。 1.9、电力系统中性点的接线方式有哪几种?分析其适用范围。P14-16 答:接线方式主要有三种:不接地、经消弧线圈接地和直接接地。 一般电压在35kV及其以下的中性点不接地或经消弧线圈接地,称小电流接地方式;电压在110kV及其以上的中性点直接接地,称大电流接地方式。 1.12、钢芯铝绞线分为几类?导线型号(如LGT—120)后面的数字表示什么?P17-18 答:钢芯铝绞线按照其铝线和钢线截面比的不同有不同的机械强度,一般分为三类:LGJ型—普通钢芯铝绞线;LGJQ型—轻型钢芯铝绞线;LGJJ—加强型钢芯铝绞线。 数字代表主要载流部分的额定截面积为120mm2。

电力系统状态估计概述

电力系统状态估计研究综述 摘要:电力系统状态估计是当代电力系统能量管理系统(EMS)的重要组成部分。本文介绍了电力系统状态估计的概念、数学模型,阐述了状态估计的必要性及其作用,系统介绍了状态估计的研究现状,最后对状态估计的研究方向进行了展望。关键词:电力系统;状态估计;能量管理系统 0 引言 状态估计是当代电力系统能量管理系统(EMS)的重要组成部分, 尤其在电力市场环境中发挥更重要的作用。它是将可用的冗余信息(直接量测值及其他信息)转变为电力系统当前状态估计值的实时计算机程序和算法。准确的状态估计结果是进行后续工作(如安全分析、调度员潮流和最优潮流等)必不可少的基础。随着电力市场的发展,状态估计的作用更显重要[1]。 状态估计的理论研究促进了工程应用,而状态估计软件的工程应用也推动了状态估计理论的研究和发展。迄今为止,这两方面都取得了大量成果。然而,状态估计领域仍有不少问题未得到妥善解决,随着电力系统规模的不断扩大,电力工业管理体制向市场化迈进,对状态估计有了新要求,各种新技术和新理论不断涌现,为解决状态估计的某些问题提供了可能。本文就电力系统状态估计的研究现状和进一步的研究方向进行了综合阐述。 1 电力系统状态估计的概念 1.1电力系统状态估计的基本定义 状态估计也被称为滤波,它是利用实时量测系统的冗余度来提高数据精度,自动排除随机干扰所引起的错误信息,估计或预报系统的运行状态(或轨迹)。状态估计作为近代计算机实时数据处理的手段,首先应用于宇宙飞船、卫星、导弹、潜艇和飞机的追踪、导航和控制中。它主要使用了六十年代初期由卡尔曼、布西等人提出的一种递推式数字滤波方法,该方法既节约内存,又大大降低了每次估计的计算量[2,4]。 电力系统状态估计的研究也是由卡尔曼滤波开始。但根据电力系统的特点,即状态估计主要处理对象是某一时间断面上的高维空间(网络)问题,而且对量测误差的统计知识又不够清楚,因此便于采用基于统计学的估计方法如最小方差估计、极大验后估计、极大似然估计等方法,目前很多电力系统实际采用的状态估计算法是最小二乘法。 1.2电力系统状态估计的数学模型 状态估计的数学模型是基于反映网络结构、线路参数、状态变量和实时量测之间相互关系的量测方程: z+ =) ( h v x 其中z是量测量;x是状态变量,一般是节点电压幅值和相位角;v是量测误差;z和v都是随机变量。 状态估计器的估计准则是指求解状态变量x的原则, 电力系统状态估计器采用的估计准则大多是极大似然估计, 即求解的状态变量x*使量测值z被观测到的可能性最大, 用数学语言描述, 即: z f x f= z (x , )] , ( *) max[ 其中f(z)是z的概率分布密度函数[3]。

电力系统的基本概念

<<电力系统分析自学指导书>> 第一章电力系统的基本概念 (一)课程容 1,l 电力系统概述。 1.2 电力系统的接线方式和电压等级。 1.3 电力系统分析的容与工具。 (二)学习目的与要求 本章为电力系统概述。本章主要介绍电力系统的构成、电力系统的近况、电力系统的额定电压等级及接线方式、电力系统运行的基本要求、电力系统分析课程的研究容及研究工具。 本章重点是电力系统的构成、电能生产特点、电力系统运行的基本要求、接线方式及 特点、电压等级及电压分布、中性点运行方式及特点。 要求考生领会掌握本章的重点容。 (三)考核知识点与考核要求 1.地理接线图与电气接线图,要求达到领会层次 1.1 地理接线图、电气接线图。 1,2 电气接线图中符号意义。 1.3 电力系统的构成。 2.电能生产特点,要求达到领会层次。 2.1 电能不能大量储存。 2,2 电能生产、输送、消费同时完成。 2.3 运行状态改变瞬间完成。 2.4 电能质量要求严格。 2.5 电能与国民经济各部门间关系密切。 3.供电可靠性与负荷分类,要求达到领会层次。 3.1 供电可靠性的重要性。 3.2 负荷的分类。 4 电能质量,要求达到领会层次。 4.1 电压偏移。 4.2 频率要求。 4.3 电压波动与闪变。 4.4 波形畸变。 4.5 电能质量恶化原因。 5 电力系统运行经济性,要求达到领会层次。 5.1 煤耗率。 5.2 网损率。 5.3 水电厂、火电厂互补性。 5.4 联合系统提高经济性与可靠性。 6.接线方式及特点,要求达到领会层次。 6.1 接线方式的种类。 6.2 各类接线方式的优缺点。

7.电压等级的划分及适用围,要求达到识记层次 7.1 额定电压、电压等级及电压分布。 7.2 我国规定的电压等级。 7.3 电压等级与供电围。 8.中性点运行方式,要求达到领会层次。 8.1 中性点运行方式种类。 8,2 确定中性点运行方式的根据。 8,3中性点运行方式的确定及供电可靠性。 第二章电力系统各元件的特性参数及等值电路 (一)课程容 2.1 发电机的参数及数学模型。 2.2 电力线路的参数及等值电路。 2.3 变压器的参数及等值电路。 2.4 负荷的数学模型。 2.5 电力网的等值电路。 (二)学习目的与要求 本章主要向考生介绍发电机的稳态参数模型、发电机的运行极限、据变压器的试验数据计算变压器的参数、变压器的两种等值电路、线路参数的计算公式及线路的等值电路、负荷的数学模型、标幺制、电网的等值电路图。 本章的重点是发电机的运行极限图、线路参数计算公式的应用、变压器参数计算公式、变压器n型等值电路图、标幺制、电网等值电路图。 要求考生对本章重点领会掌握。 (三)考核知识点与考核要求 1.发电机稳态运行相量图、运行极限图及功角特性,要求达到识记层次。 1,1 隐极机稳态相量图。 1.2 隐极机稳态运行极限图。 1.3 隐极机稳态运行功角特性。 2.变压器参数计算及等值电路,要求达到识记层次。 2.1 参数计算公式。 2,2 H型等值图。 2,3 H型图存在的条件。 2,4 H型图的优点。 2.5 理想变压器三种变比取值的意义。 3.线路参数及等值电路,要求达到识记层次 3.1 线路参数计算公式。 3.2 架空线路换位。 3.3 线路电纳等值含义。 3.4 长线路任意点的电压、电流计算公式。 4.负荷的数学模型,要求达到识记层次。 4.1 常用负荷的函数表达式。 5.电力网等值电路,要求达到识记层次。 5,1 标幺制。

电力系统概述

电力系统概述 电力系统是指发电厂,输送电线路,变配电设备和用电设备组成的进行电能生产、输送和应用的整体。 电力由于其生产、输送和应用较其他能源方便,因而在诸多能源中电力发展最快,应用最为广泛。电力系统的结构和发展与经济的发展密切相关,地方经济的发展为电力系统提供了强大的用户,必然促进电力系统的扩容发展,而电力系统丰富的电力资源和无处不到的网络又为经济发展提供了能源保障, 必然促进企业的飞速发展。经济发达地区,电力系统也必然发达。 一个电力系统的组成可用图1-1表示。它是由一个水电厂,两个火电厂和一个热电厂构成了动力系统,由330kV 线路、220kV 线路、110kV 线路、35kV 线路及诸变电所构成输变电力网,由10kV 线路及配电所构成配电网。 电力系统主要包含以下几部分: 一、发电厂 发电厂将其他形式的能源转换为电能。根据转换能量的不同,发电厂分为火电厂、热电厂、风电厂、水电厂、核电厂等。 我国煤炭资源丰富,目前仍以燃煤为燃料的火电厂为主。这些电厂,早期多建在用电集中地区,由于电力输送成本较煤炭运输成本低廉,为提高经济性,近年来火电厂多建在煤炭基地附近,故称为“坑口”电厂。电厂若向用户兼供热能,则称为热电厂。 水电厂是将江河水位落差造成的势能转换为电能的。我国水力资源丰富,而 火力发电厂 变压器台 二次电压变电站 一次降压变电站 工厂 10kV 220V

水力资源不利用又不能保存,会白白浪费。在我国能源紧张的今天,发展水力发电是国家的优先选择。水里电厂一次性投资大,运行费用低廉。由于改革开放的成果,国家财力较为雄厚,为建设大水电厂提供了可能,近年来国家投资兴建的葛洲坝、三峡等一批大型水电站必将为国民经济的大发展发挥重大作用,也将造福于子孙万代。 核电厂是将原子核裂变时产生的核能转化为电能。核电厂的重要部分是核子反应堆和蒸汽发生器。相当于火电厂的蒸汽锅炉,其发电设备与火电厂相同为汽轮发电机。核电厂在安全运行状态下,是最卫生环保的发电厂,但一旦发生泄露,将造成不可估量的损失和严重的后果,所以在建设核电厂时要用大量资金建设公用辅助和防护设施,以确保人民生命财产安全。 风力电厂是将风力的动能转换为电能的。由于能用于发电的风力资源很有限,因而风力发电厂在电力系统中所占的比重较小。 发电机考虑到并网的要求,一般采用三相同步发电机,输出电压多为6.3kV 和10.5kV。通常是经过升压后才并网输送的。 二、输电线 输电线是由导线及相应杆塔组成完成电网连接和电能输送的。输电线路的电压是按输送距离而确定的,输送距离较远电压就高,反之电压就低。如连接几个地区或几个省的一般电压为330~500kV;输送距离在一个省或一个地区的一般电压在110~220kV。用于分配电能的配电线电压在35kV以下。输电线电压与输送距离、容量的关系如表1-1所示。 表1-1 各级电压的输送容量与距离 三、变电所

电力系统概论第二版答案

电力系统概论第二版答案 【篇一:电力系统概论题库】 开关电器的作用下列说法不正确的是()。 a.正常工作情况下可靠地接通或断开电路; b.在改变运行方式时进行切换操作; c.当系统中发生故障时迅速切除故障部分,以保证非故障部分的正常运行; d.在电力系统中起到汇集和分配电流的作用 2、110kv 及以上的断路器、隔离开关、互感器的最大工作电压比其额定电压高() a.5% b.10% c.15% d.20% 3、少油式断路器中油的用途是()。 a.灭弧介质b.灭弧介质和绝缘介质c.绝缘介质d以上都不对 4、多油断路器中油的用途是()。 a.灭弧介质b.灭弧介质和绝缘介质c.绝缘介质d以上都不对 5、关于气体的特性下列说法不正确的是()。 a.无色、无臭、不可燃的惰性气体 b. 有毒 c.电负性气体 d.

灭弧能力很强 6、有关隔离开关的作用下列说法错误的是()。 a.隔离电源 b.刀闸操作 c.接通和断开小电流电路d可以带电操作 三、选择题 1. d 2.c3.a4.b5.b6.d 二、选择题 1.短路电流计算中,电路元件的参数采用()。 a.基准值 b.标么值 c.额定值 d.有名值 2.短路电流计算中,下列假设条件错误的是()。 a.三向系统对称运行b各电源的电动势相位相同c各元件的磁路不饱和同步电机不设自动励磁装置 3.220kv系统的基准电压为()。 a.220kv b.242kv c.230kv d.200kv 4.短路电流的计算按系统内()。 a.正常运行方式 b. 最小运行方式 c. 最大运行方式 d. 满足负荷运行方式 5.只有发生()故障,零序电流才会出现。 a.相间故障 b.振荡时 c.不对称接地故障或非全相运行时 d.短路 6.在负序网络中,负序阻抗与正序阻抗不相同的是()。 a.变压器 b.发电机 c.电抗器 d.架空线路

电力系统概论题库

三、选择题 1、有关开关电器的作用下列说法不正确的是()。 A.正常工作情况下可靠地接通或断开电路; B.在改变运行方式时进行切换操作; C.当系统中发生故障时迅速切除故障部分,以保证非故障部分的正常运行; D.在电力系统中起到汇集和分配电流的作用 2、110kV 及以上的断路器、隔离开关、互感器的最大工作电压比其额定电压高() A.5% B.10% C.15% D.20% 3、少油式断路器中油的用途是()。 A.灭弧介质 B.灭弧介质和绝缘介质 C.绝缘介质 D以上都不对 4、多油断路器中油的用途是()。 A.灭弧介质 B.灭弧介质和绝缘介质 C.绝缘介质 D以上都不对 5、关于气体的特性下列说法不正确的是()。 A.无色、无臭、不可燃的惰性气体 B. 有毒 C.电负性气体 D.灭弧能力很强 6、有关隔离开关的作用下列说法错误的是()。 A.隔离电源 B.刀闸操作 C.接通和断开小电流电路D可以带电操作 三、选择题 1. D 2.C3.A4. B5.B6.D 二、选择题 1.短路电流计算中,电路元件的参数采用()。 A.基准值 B.标么值 C.额定值 D.有名值 2.短路电流计算中,下列假设条件错误的是()。 A.三向系统对称运行B各电源的电动势相位相同C各元件的磁路不饱和 D.同步电机不设自动励磁装置 3.220KV系统的基准电压为()。 A.220KV B.242KV C.230KV D.200KV 4.短路电流的计算按系统内()。 A.正常运行方式 B. 最小运行方式 C. 最大运行方式 D. 满足负荷运行方式 5.只有发生()故障,零序电流才会出现。 A.相间故障 B.振荡时 C.不对称接地故障或非全相运行时 D.短路 6.在负序网络中,负序阻抗与正序阻抗不相同的是()。 A.变压器 B.发电机 C.电抗器 D.架空线路 7.发生三相对称短路时,短路电流为()。 A.正序分量 B.负序分量 C.零序分量 D.正序和负序分量 8.零序电流的分布主要取决于()。 A.发电机是否接地 B.运行中变压器中性点、接地点的分布 C.用电设备的外壳是否接地 D.故障电流 9.电路元件的标么值为()。 A.有名值与基准值之比 B. 有名值与额定值之比 C. 基准值与有名值之比 D.额定值与有名值之比 二、选择题

高压供电系统概述

第一部分强电系统 第1章高压供电系统 1.1 高压供电系统概述 对于物业管理公司来讲,高压供电系统是指从高压进线的产权分界点到变压器之间的线路和设备。 同时使用多台变压器供电的民用建筑物,通常都采用10kV供电。为了提高供电可靠性,建筑物一般都采用双路供电的方式,即电源从两个变电站或者从一个变电站的两个变压器下分别引入。电缆从中心变电站进入建筑物以后,首先进入高压配电室(也称电缆π接室),然后连接到建筑物内变电室的高压柜上。 建筑群内用来改变电压的场所被称为变电室,用来接收和分配电能而不改变电压的场所称为配电室。在一般情况下变电室和主配电室建在同一个地点,建筑面积比较大的建筑物还会再设置分变(配)电室。 1.1.1 供电设备组成 高压配电设备主要由高压进线隔离柜(图1–1)、高压进线柜、计量柜、变压器柜、母线隔离柜、联络柜、互投柜、PT(电压互感器)柜、直流屏、中央信号屏、电流互感器、防雷设备(避雷器)、接地刀闸、高压母线、变压器、继电保护装置等组成;变电设备主要由不同电压等级及不同容量的电力变压器组成。 图1-1 隔离柜图1-2 隔离手车 1.1.1.1 进线隔离柜 组成:主要采用手车式隔离柜(图1–2),内置高压隔离开关。由动触头、静触头、支持瓷瓶或套管瓷瓶、导电铜排、辅助开关、手车机械移动装置等组成,另外可根据用户需要选配带电显示装置。 调度编号:201–2(202–2) 作用:是电气系统中重要的开关电器,其主要功能是:保证高压电器及装置在检修工作时的安全,在高压进线处起隔离电压的作用。在“分”位置时,触头间符合规定要求的绝缘距离,有明显的断开标志;

在“合”位置时,能承载正常回路条件下的电流及规定时间内异常条件(例如短路)下电流的开关设备。 不能用于切断、投入负荷电流和断开短路电流,仅可用于不产生强大电弧的某些切换操作,即它不具有灭弧功能;隔离柜不能单独工作,需与高压断路器配套使用。 1.1.1.2高压进线柜(图1–3) 组成:主要构件是高压断路器(图1–4)。由电流互感器、真空断路器、动力操动机构、车体等组成。其动力操动机构由弹簧储能动力装置及主轴、拐臂、连杆等构成。 调度编号:201(202) 作用:内置高压断路器(或称高压开关),是变配电室主要的电力控制设备,具有灭弧特性,当系统正常运行时,它能切断和接通线路及各种电气设备的空载和负载电流;当系统发生故障时,它和继电保护配合,能迅速切断故障电流,以防止扩大事故范围。高压断路器种类很多,按其灭弧的不同,可分为:油断路器(多油断路器、少油断路器)、六氟化硫断路器(SF6断路器)、真空断路器、压缩空气断路器等。 1.1.1.3计量柜(图1–5) 组成:柜内安装各类计量仪表(图1–6),及电能量采集器、三相三线电子式多功能电能表、高压峰谷表。 调度编号:44(55) 作用:计量实际电能消耗量。 1.1.1.4变压器柜

(推荐)辅助供电系统概述

第三章辅助供电系统 辅助供电系统是城市轨道交通车辆电气系统的重要组成部分,主要任务是产生车辆中、低压电源、客室照明、空调、通风机、空气压缩机以及其他低压用电设备所需的各种不同电压。 辅助逆变器是辅助供电系统的主要部件。国内城市轨道交通车辆上,辅助逆变器均采用静止式逆变器,它具有输出电压的品质好、功率因数高、工作性能安全可靠等优点。 本章主要介绍城市轨道交通车辆辅助供电系统的组成结构、中压供电分配电路、低压供电分配电路、列车扩展供电电路等。 第一节辅助供电系统概述 1.辅助供电系统的功能 辅助供电系统(辅助电源系统/辅助电源),是为除牵引系统之外的所有车载用电设备供电的一套系统。 2.辅助供电系统的组成 辅助供电系统主要由三部分组成:辅助逆变器、蓄电池充电器、蓄电池。 辅助逆变器一般采用静止逆变器,简称SIV。辅助逆变器将网压转换成AC380V、50Hz的三相交流电能输出,为车辆上空压机、空调装置等交流负载供电。 蓄电池充电器主要输出DC110V电能给车辆控制、蓄电池充电等直流负载供电。 蓄电池作为直流备用电源,在列车启动和紧急情况下(失去高压电源时)为

列车提供

DC110V电能。列车正常运行时,蓄电池处在浮充电状态。 3.辅助供电系统的负载 辅助供电系统的负载包括列车上的几乎所有用电设备,可以将这些负载根据使用电能不同分为以下几类。 ①AC380V、50Hz三相负载:空气压缩机单元、空调装置、通风冷却装置等。 ②AC220V、50Hz单相负载:客室正常照明、司机室方便插座、客室维修用方便插座等。 ③DC110V负载:列车控制系统、列车控制电路、列车信号系统、乘客信息系统、客室紧急照明、紧急通风、电动车门驱动电机等。 除了以上三种负载之外,还有极少量的DC24负载,如司机室阅读灯、列车前照灯等。 4.车间电源 辅助供电系统在有接触网供电区域,由接触网供电;在没有接触网供电的区域,来自于车间电源。一般在检修车间内设有车间电源,通过列车车底高压箱内有车间电源插座,向列车提供高压电能。车间电源与接触网之间存在电气联锁,两者不可同时为列车供电。在电网供电时,必须断开车间电源;电网为列车供电时,列车不可接车间电源。 车间电源只能为辅助供电系统提供电能,不能为牵引系统供电。车间电源向列车供电时,列车必须处于静止状态。 5.辅助供电系统供电框图 图3-1给出车辆上常见的一种供电框图,其中包含辅助供电系统的主要负载设备。不同车辆,辅助供电系统供电框图略有差异。

电力系统概述

电力系统概述 (一)电力系统的组成和基本特征 电力系统是由发电厂、电力网、用电设备和相应的辅助系统(继电保护、安全自动、测量、调度自动化和通信等装置),按规定的技术和经济要求组成的整体。 火力发电厂、水力发电厂和核电厂发出的电力,按其容量的不同和所需输送距离的不同,分别接入110、220kV和500kV交流电力网以及高压电流输电线路。在电力网的构成中,不同电压的输电线路和配电线路通过相应电压等级的变电所相互连接,在配电网的低压侧接有动力负荷和照明负荷等各种用电设备,这就形成了发电、输电和配电设备,以及用电设备在内的统一的电力系统。 电力系统的基本特征包括电力系统电压等级,电力系统频率、电力网结构和电力系统流量等。 1、电力系统频率 电力系统频率是电力系统中发电厂的同步发电机所产生的交流正弦基波电压的频率。频率质量是电能质量的一个重要指标。在稳态运行的条件下,各发电机同步运行,整个电力系统的频率是相等的。它是电力系统一致的运行参数。世界上,电力系统采用的额定频率有50Hz和60Hz 两种。我国和世界多数国家均采用50Hz电力系统;只有美国、加拿大、古巴、朝鲜等少数国家采用60Hz电力系统;日本的东部地区为50Hz电力系统,中部和西部地区为60Hz电力系统,两种不同频率的电力系统与

直流变频站互联。 电力系统中的发电和用电设备,都是按照额定频率设计和制造的,只有在额定频率附近运行时,才能发挥最好的功能。只有当电力系统中所有发电设备发出的有功功率之总和与电力网中电力负荷吸收和消耗的有功功率相等时,系统频率才能保持不变。 2、电力系统的电压等级 电压等级是电力系统及电力设备的额定电压级别系列,额定电压是指电力系统及电力设备规定的正常工作电压。电力系统各个节点的实际运行电压容许在一定程度上偏离额定电压。在上述容许偏离的电压范围内,各种电力设备和整个电力系统仍能正常运行。 我国国家标准规定的电力系统额定电压等级为分3、6、10、35、 63、110、220、330、500、750 kV。一般认为,在一个电力系统中,相邻两级电压之比取1.7~3.0是比较合理的,因此在上述电压等级中,35kV与63kV,63kV与110kV不宜在同一地区性电力系统中并存。 3、电力网结构 电力网结构与电压等级、电源和负荷点的容量和数目,以及它们之间的地理位置及供电可靠性要求等因素有关。 4、电力系统容量 电力系统容量是指系统中各类发发电厂机组额定容量的总和,也称为系统装机容量。电力系统装机容量和覆盖的地域大小反映了电力系统的规模。到2002年底我国已形成了覆盖全国大部分省区的统一调度或联合调度的6个跨省区域电力系统,即东北、华北、华东、华中、西北和

相关文档