文档库 最新最全的文档下载
当前位置:文档库 › 两类四元数矩阵方程的可解性研究

两类四元数矩阵方程的可解性研究

四元数正规矩阵的几个定理

四元数正规矩阵的几个定理1 邹黎敏,陈香萍,伍俊良,李声杰 重庆大学数理学院,重庆(400044) E-mail :zlmlohr@https://www.wendangku.net/doc/5118843377.html, 摘 要:利用四元数正规矩阵可对角划的性质,得到了四元数正规矩阵的一些性质及判定准则。同时获得了四元数正规矩阵弱直积,矩阵方程,特征值的几个定理。 关键词: 四元数体,正规矩阵,弱直积,特征值 中图分类号: O241.6 文献标识码: A 1.引言与符号约定 近年来,人们对于四元数体上代数问题的研究非常深入,不仅仅是由于四元数乘积的非交换特性这一现象引起了人们对四元数代数问题的广泛兴趣(参考[1-3]),同时还因为四元数本身在众多的应用问题中也存在广泛的联系,如四元数在量子力学,刚体力学方面的应用,四元数在计算机图形图像处理和识别方面的应用,四元数在空间定位方面的应用等,也促使人们对四元数代数问题加以研究(参见[4-8])。 四元数矩阵的研究是四元数代数理论中的一个重要方面,特别在自共轭四元数矩阵的特征值、奇异值、合同、正定性以及自共轭四元数矩阵的子式等方面有着广泛的研究[文9-14]。但很少有文献对四元数正规矩阵进行研究。本文借助于四元数体上正规矩阵的概念以及相似分解,给出了四元数正规矩阵的一些性质和判定准则,得到了四元数正规矩阵弱直积,合同化简以及特征值不等式的几个定理。 文中用R 表示实数域,C 表示复数域,H 表示R 上的四元数体,R 和H 上n 阶矩阵的全体分别记为n n R ×和n n H ×,*'A A =表示A 的共轭转置,k a j a i a a a 3210+++=表示实四元数(3210,,,a a a a 为实数) ,用α和n I 分别表示H 上任意n 维四元数列向量和n 阶单位矩阵,)Re(a 表示a 和实部,* a 表示a 的共轭四元数,* α表示α的共轭转置向量, a a a N *)(=和N (α)=αα*分别表示a 和α的范数。 2.一些定义和引理 定义 1. 设n n H A ×∈,如果**AA A A =,则称A 是正规矩阵,则易知自共轭四元数矩阵,斜自共轭矩阵和下面定义的酉矩阵均为正规矩阵。 定义2. 设n n H A ×∈,如果n I AA A A ==* * ,则称A 是H 上的一个n 阶酉矩阵,其全体记为()u n H ,。 定义3[10] . 设() ij m n A a ×=与() ij p q B b ×=是H 上的矩阵,称H 上mp nq ×阵 1 本课题得到国家自然科学基金(60574073和10471142)和重庆市科委科学研究基金(CSTC,2005CF9057)的资 助。

旋转的矩阵与四元数的转换算法

绕指定方向的轴线的旋转 旋转的矩阵与四元数的转换算法 一、基本知识 四元数 q=w+xi+yj+zk, q=w+v, q ?1=|q|2q ?. 其中q ?= w ?xi ?yj ?zk 表示q 的共轭。 vv' =v×v' ?v?v' …… ① qq'= (ww'?v?v') + (wv' +vw' +v×v'), …… ② v ?v' = ?(vv' +v'v) /2 , …… ③ v×v' = (vv' ?v'v) /2 . …… ④ v 2=?|v|2. 内积v ?v =|v|2. 二、旋转表示为四元数 绕指定方向n 的旋转公式为 x'=(x ?n)n(1?cosθ ) + cosθ x +sinθ n×x …… ⑤ 其中的向量运算转化为四元数运算得到 x'= ?(x n+nx)n (1?cosθ)/2 +cosθx +sinθ (n x?x n)/2, 由于|n|=1, 故n ?1=?n. 因此有 x'= (1+cosθ)x/2 +sinθ (n x?x n )/2 ?nxn (1?cosθ)/2 . …… ⑥ x 的平行、垂直分量记为x p =(x?n)n , x v = x?x p , 则?nxn= x p ? x v , 与x 关于n 轴对称。 (nx?xn)/2= n×x, 是x v 旋转+90°的结果。 若 n ⊥x, x?n =0,即xn=?nx, 此时nxn=x, 故 x' =(cosθ+n sinθ)x . q=r(cosθ+nsinθ)称为四元数的三角式,其中n 为单位向量,它的几何意义是,qx 表示对向量x 绕方向n 旋转θ角,然后长度扩大为r 倍。任何四元数都有三角式q=w+v= |q|(w/|q|+n|v|/|q|)=r(cosθ+nsinθ). φ(x)=qxq ?1称为四元数域上的合同变换。若q=a+bn, |n|=1, 则 |q|2 =a 2+b 2 , |q|2φ(x) = qx q ? =( a+bn)x(a ?bn) =(ax+bnx)(a ?bn) =a 2x+ bnxa ? axbn ?bnxbn= a 2x+ ab(n x?xn)?b 2nxn. 即 |q|2(qxq ?1) = a 2x+ ab(n x?xn)?b 2nxn …… ⑦

解三元一次方程组的消元技巧

解三元一次方程组的消元技巧 解三元一次方程组的基本思想和解二元一次方程组一样也是消元,化三元为二元、一元,最终求出各未知数的值,完成解题过程.但是,在具体解题过程中,许多同学却难以下手,不清楚先消去哪个未知数好.下面就介绍几种常见的消元策略,供同学们学习时参考. 一、当方程组中有一个方程缺省某未知数时,可以从其余方程中消去所缺少的未知数. 1、解方程组3472395978.x z x y z x y z +=??++=??-+=? , , ①②③ 分析:因为方程①中缺少未知数y 项,故而可由②、③先消去y ,再求解. 解:②×3+③,得111035x z +=,④ 解由①、④组成的方程组,得52x z =??=-? , ⑤ 把⑤代入②,得13 y =, 所以原方程组的解为5132 x y z =???=??=-??. 二、当方程组中有两个方程缺省不同的未知数时,可将其中一个与剩余方程消去另一个所缺少的未知数;或则可先用含公共未知数的代数式表示另外两个未知数,再用代入法消元. 1、解方程组27532234 4.y x x y z x z =-??++=??-=? , , ①②③ 分析:很明显,在方程①、③中,分别缺少未知数z 、y 的项,而都含有未知数x 的项,从而可用含x 的代数式分别表示y 、z ,再代入②就可以直接消去y 、z 了. 解:由③,得314 z x =-, ④ 把①、④代入②,得2x =, ⑤

把⑤代入①,得3 y=-,⑥ 把⑤代入③,得 1 2 z=, 所以原方程组的解是 2 3 1 2 x y z ? ?= ? =-? ? ?= ? . 2、 解答: 16 8 3 x y z =? ? =? ?=? 三、当方程组中三个方程都缺省不同的未知数时,可从中挑选两个消去相同的未知数 四、当方程组中某个未知数的系数成整数倍关系时,可先消去这个未知数 1、解方程组 2439 32511 56713. x y z x y z x y z ++= ? ? -+= ? ?-+= ? , , ① ② ③ 分析:方程组中含y的项系数依次是4,-2,-6,且4=-2×(-2),-6=-2×3.由此可先消去未知数y.

四元数法VS旋转矩阵法的性能比较

探讨:物体绕任意向量的旋转-四元数法VS.旋转矩阵法的性能比较 3D空间中的旋转可用旋转矩阵、欧拉角或四元数等形式来表示,他们不过都是数学工具,其中在绕任意向量的旋转方面,旋转矩阵和四元数两种工具用的较多,欧拉角由于存在万向节死锁等问题,使用存在限制。 (本文假设坐标系为左手坐标系中,旋转方向为顺时针。) 所求问题: 给定任意单位轴q(q1,q2,q3)(向量),求向量p(x,y,z)(或点p)饶q旋转theta角度的变换后的新向量p'(或点p'): 1.用四元数工具: ------------------------------------------------------------------------- 结论:构造四元数变换p'= q*p*q-1,(p,q是由向量p,q扩展成的四元数)。那么,p'转换至对应的向量(或点)就是变换后的新向量p'(或点p')。 其中,p',q,p,q-1均为四元数。q由向量q扩展,为q=(cos(theta/2),sin(theta/2)*q),p由向量p扩展,为p=(0,x,y,z),q-1为q的逆,因为q为单位四元数,所以 q-1=q*=(cos(theta/2),-sin(theta/2)*q)。 ------------------------------------------------------------------------- (这个结论的证明过程可以在网上找到。这里略去。) 下面看其时间复杂度: 首先有个三角函数的计算时间,这个可以预先计算好,花费时间不计。考虑n个四元数相乘需进行4*4*(n-1)=16*(n-1)次乘法,15*(n-1)次加法,因为加法化费时间较少,这里仅考虑乘法。这里涉及到三个四元数的乘法,设一次乘法的时间为T,故花费16*2=32T 2.旋转矩阵工具: ------------------------------------------------------------------------- 结论:构造旋转矩阵变换Trot,则变换后的新向量p'(或点p')为p'= p*Trot 其中,p'(x',y',z',1),p(x,y,z,1)为向量p',p的4D齐次坐标表示,Trot = |t*q1*q1 + c, t*q1*q2 + s*q3, t*q1*q3 - s*q2, 0| |t*xq1*q2 - s*q3, t*q2*q2 + c, t*q2*q3 + s*q1, 0| |t*q1*q3 + s*q2, t*q2*q3 - s*q1, t*q3*q3 + c, 0| |0, 0, 0, 1| c=cos(theta), s=sin(theta),t=1-c. ------------------------------------------------------------------------- (这个结论的证明过程可以在网上找到。这里略去。) 下面看其时间复杂度: 三角函数的计算时间不计。矩阵本身的元素乘法主要是计算t*x和s*x之类,需进行12+3=15次乘法。两个矩阵相乘的需进行n*n*n次乘法,这里n=4,所以花费4*4*4=64次乘法时间,

线性方程组的矩阵求解算法

线性方程组的矩阵求解算法 摘要 线性方程组的矩阵求解算法,只需在约当消元法的基础上,再对方程组的 增广矩阵的行最简形进行行(列)删除和增加行,交换行等运算即可得到方程组的解,并且这种方法既可求解有唯一解的方程组.因而算法简单,易于实现. 关键词 线性方程组;解向量;解法;约当消元法 1 矩阵求解算法 设有线性方程组m n A X b ?=,其增广矩阵())(1,m n A A b ?+=,算法的步骤如下: 第一步:利用约当消元法,把增广矩阵A 化为行最简形,设行最简形为()1m n B ?+.若()t i (),r A r =则方程组无解;否则设(),r A R =并执行以下步骤; 第二步:删除B 中的所有零行和每一行第一个非零元素(这个非零元素一定是1)所在的列,得到矩阵()1,r n r D ?-+并记录每行的第一个非零元所在的列标,放在一维数组()1,,t r L 中,如第i 行的第一个非零元在第j 列,则()t i j =; 第三步:构造矩阵() 1m n r D H F ?-+?? = ? ??,其中 ()()1100 001 0000 10n r n r F -?-+-?? ?- ? = ? ? -??L L L L L L L L 第四步:对矩阵H 中的行作交换运算:把H 中的第i 行(,1,1,i r r =-L 即从第r 行开始直到第一行)依次与其下一行交换,使之成为第()t i 行,交换运算结果后的矩阵记为G ,则G 中的前n r -个n 维列向量即为方程组的一个基础解系,最后一列向量即为方程组的一个特解; 第五步:写出方程组的通解. 2 算法证明 先证一个特殊情形,增广矩阵A 的行最简形矩阵B 的左上角为一r 阶的单位矩阵,即第i 行的第一个非零元的列标为i ,即()()1t i i i r =≤≤,所以设B 为

最新薛定谔方程及其解法

关于薛定谔方程 一.定义及重要性 薛定谔方程(Schrdinger equation)是由奥地利物理学家薛定谔提 出的量子力学中的一个基本方程,也是量子力学的一个基本假定, 其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合 建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都 有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式 以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基 本假定,它的正确性只能靠实验来检验。 二.表达式 三.定态方程 ()() 2 2 2 V r E r m η ψψ + ?? -?= ?? ?? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E是粒子本身的能量;v(x,y,z)是描述势场的函数,假设不随时间变化。

2 2 22222 z y x ??????++=? 可化为 d 0)(222 =-+ψψv E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ). ()()((3) ) ,(),()( ,,(2) )(),( 311212 2111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==?????=≤≤=++的局部截断误差使以下数值解法的值及确定常数ββα βα

旋转矩阵、欧拉角、四元数

旋转矩阵、欧拉角、四元数比较 旋转矩阵、欧拉角、四元数主要用于: 向量的旋转、坐标系之间的转换、角位移计算、方位的平滑插值计算 各方法比较 任务/性质旋转矩阵欧拉角四元数 在坐标系间(物体和惯性)旋转点能不能(必须转换到矩 阵) 不能(必须转换到矩 阵) 连接或增量旋转能,但经常比四元数 慢,小心矩阵蠕变的情 况 不能能,比矩阵快 插值基本上不能能,但可能遭遇万向锁 或其他问题Slerp提供了平滑插值 易用程度难易难 在内存或文件中存储9个数3个数4个数 对给定方位的表达方式是否唯一是不是,对同一方位有无 数多种方法 不是,有两种方法,它 们互相为互 可能导致非法矩阵蠕变任意三个数都能构成 合法的欧拉角可能会出现误差积累,从而产生非法的四元数 不同的方位表示方法适用于不同的情况。下面是我们对合理选择格式的一些建议: l 欧拉角最容易使用。当需要为世界中的物体指定方位时,欧拉角能大大的简化人机交互, 包括直接的键盘输入方位、在代码中指定方位(如为渲染设定摄像机)、在调试中测试。这个优点不应该被忽视,不要以”优化”为名义而牺牲易用性,除非你去顶这种优化的确有效果。 2如果需要在坐标系之间转换响亮,那么就选择矩阵形式。当然,这并不意味着你就不能用其他格式来保存方位,并在需要的时候转换到矩阵格式。另一种方法是用欧拉角作为方位的”主拷贝”但同时维护一个旋转矩阵,当欧拉角发生改变时矩阵也要同时进行更新。

3 当需要大量保存方位数据(如:动画)时,就使用欧拉角或四元数。欧 拉角将少占用25%的内存,但它在转换到矩阵时要稍微慢一些。如果动画数据需要嵌套坐标系之间的连接,四元数可能是最好的选择。 4 平滑的插值只能用四元数完成。如果你用其他形式,也可以先转换 到四元数然后再插值,插值完毕后再转换回原来的形式。

三元一次方程组及其解法

7.3 三元一次方程组及其解法 【教学目标】 知识与能力 (1)了解三元一次方程组的概念. (2)会解某个方程只有两元的简单的三元一次方程组. (3)掌握解三元一次方程组过程中化三元为二元的思路. 过程与方法 通过消元可把“三元”转化为“二元”,充分体会“转化”是解二元一次方程组的基本思路. 情感、态度、价值观 通过本节的教学,应该使学生体会通过本节学习,进一步体会“消元”的基本思想,认识到数学的价值。 【教学重点】 (1)使学生会解简单的三元一次方程组. (2)通过本节学习,进一步体会“消元”的基本思想. 【教学难点】 针对方程组的特点,灵活使用代入法、加减法等重要方法. 【教学过程】 一、回顾旧知,引入新课 在7.2节中,我们应用二元一次方程组,求出了勇士队在我们的小世界杯足球赛第一轮比赛中胜与平的场数。 问题回顾 暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛。比赛规定:胜一场得3分,平一场得1分,负一场得0分。勇士队在第一轮比赛中赛了9场,只负了2场,共得17分。 那么这个队胜了几场?又平了几场呢? 解:设勇士队胜了x场,平了y场,则 胜 每场得分

?? ?=+=++17 39 2y x y x 解得???==25y x 提出问题: 在第二轮比赛中,勇士队参加了10场比赛,按同样的计分规则,共得18分。已知勇士队在比赛中胜的场数正好等于平与负的场数之和,那么勇士队在第二轮比赛中,胜、负、平的场数各是多少? 解:设勇士队胜了x 场,平了y 场,负了z 场,则 0 ?? ? ??+==+=++z y x y x z y x 18310 引出定义:像这种含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程组。一般情况下,三元一次方程组有三个方程,但不一定每个方程都出现三个未知数。 二、自主探究--------三元一次方程组的解法 探究一: 怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言) 解方程?? ? ??+==+=++③②① z y x y x z y x 18 310 解:把③分别带入①②得???=++=+++18)(310 y z y z y z y 整理得???=+=+⑤④18341022z y z y 由?????12⑤④得? ??=+=+⑦⑥ 18342044z y z y 由⑦⑥-得2=z 把2=z 代入④得1042=+y , 即 3=y

总结求线性方程组的方法

总结求线性方程组的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

华北水利水电大学 总结求线性方程组的方法 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2014年12月31日

摘要:线性方程组的求解是当代代数学中的一个重要组成部分。它广泛应用在数学以及其他领域。它与矩阵、线性变换、行列式、向量组的线性相关性,二次型,这些型之间有着相当密切的联系。线性方程组是线性代数中一个相当基础的内容必须要学会以及熟悉内容。本文章主要说明和讨论线性方程组的基本结构,然后应用克拉莫法则,高斯消元法来来求解。 关键词:线性方程组、高斯消元法、克拉莫法则; Summary for the method of liner equations Abstract: Solution of the system of linear equations is an important component part of algebra. It is widely used in mathematics and other areas. It and determinant, matrix, linear transformation, linear correlation vector group, quadratic form, has the close relation. System of linear equations is a very basic content in linear algebra must grasp and familiar with the content. This article mainly explain and discuss the basic structure of system of linear equations, then apply law of kramer, gauss elimination method to solve.

实验三 定态薛定谔方程的矩阵解法

实验三 定态薛定谔方程的矩阵解法 一.实验目的 1.掌握定态薛定谔方程的矩阵解法。 2.掌握几种矩阵特征值问题数值解法的原理,会调用相应的子程序求解具体问题。 二.实验内容 1.问题描述 以/2ω/()m ω为长度单位,一维谐振子的哈密顿量为 2 202d H x dx =-+, 其本征值为21n E n =+,本证波函数为 2 /2)()n n x H x ?=-, 其中()n H x 为厄米多项式,满足递推关系 11()2()2()n n n H x xH x nH x +-=-。 用矩阵方法求 2 22d H x x dx =-++ 的本证能量和相应的波函数。 2.问题分析 H E ψψ= 0()|j j j t c ψ?∞ ==>∑ 0||i i j i j i j c E c x Ec ??∞ =+<>=∑ 11|j j j x ???-+>=>>

11||||j j j j x x ????-+<>= <>= 0010010 112111,211,11,1 n n n n n n n n n n n n E x c c x E x c c E x E x c c x E c c -------?????????????????????????=??????????????????????? ? 3.程序编写 子程序及调用方法见《FORTRAN 常用算法程序集(第二版)》第三章 徐士良,P97 4.实验要求 ◆用恰当的算法求解以上实对称三对角矩阵的特征值问题。 ◆取n=8,给出H 的全部特征值和相应的特征向量。 5.实验步骤 ● 启动软件开发环境Microsoft Developer Studio 。 ● 创建新工作区shiyan03。 ● 创建新项目xm3。 ● 创建源程序文件xm3.f90,编辑输入源程序文本。 ● 编译、构建、运行、调试程序。 6.实验结果 程序设计:

基于四元数方法的姿态解算

基于四元数方法的姿态解算方法分析 摘要:载体的姿态解算算法是实现捷联式惯性导航系统精确导航的核心技术之一。分析了欧拉法、方向余弦法、四元数法求解姿态矩阵的优缺点,采用四元数法与方向余弦法两种解算方法分别计算载体姿态,两种方法的计算结果之差与理论真值比较以得到解算的相对误差,从而验证了四元数法的正确性和有效性。最后,指出提高采样频率和采用高阶计算算法能进一步减小姿态解算误差。数字化仿真与转台试验结果表明,本文提出的载体姿态解算法具有良好的实时性。 1引言 捷联惯导是一种自主式的导航方法。该方法将陀螺仪和加速度计直接安装在载体上,省掉机电式导航平台,利用计算机软件建立一个“数学平台”来代替机电平台实体[1]。由于其结构简单且抗干扰能力强,目前已成为航空航天、航海、机器人、智能交通等领域的研究热点之一。 姿态解算是捷联式惯性导航系统的关键技术,通过姿态矩阵可以得到载体的姿态和导航参数计算需要的数据,是捷联式惯导算法中的重要工作。载体的姿态和航向体现了载体坐标系与导航坐标系之间的方位关系,确定两个坐标系之间的方位关系需要借助矩阵法和力学中的刚体定点运动的位移定理。通过矩阵法推导方向余弦表,而刚体定点运动的位移定理表明,定点运动刚体的任何有限位移都可以绕过定点的某一轴经过一次转动来实现。目前描述动坐标相对参考坐标系方位关系的方法有多种,可简单地将其分为3类,即三参数法、四参数法和九参数法「1-2]。三参数法也叫欧拉角法,四参数法通常指四元数法,九参数法称作方向余弦法。欧拉角法由于不能用于全姿态飞行运载体上而难以广泛用于工程实践,且实时计算困难。方向余弦法避免了欧拉法的“奇点”现象,但方程的计算量大,工作效率低。随着飞行运载体导航控制系统的迅速发展和数字计算机在运动控制中的应用,控制系统要求导航计算环节能更加合理地描述载体的刚体空间运动,四元数法的研究得到了广泛重视。本文全面分析了3种解算方法的特点,通过对比四参法与九参法的计算结果以验证四元数法的正确性和有效性,基于数值仿真和转台实验相结合的分析方法得到进一步减少姿态解算误差的有效途径,为捷联式惯性导航技术的工程实践提供参考。(就是这部分内容需要程序解算,不会搞) 2姿态矩阵的计算方法 由于载体的姿态方位角速率较大,所以针对姿态矩阵的实时计算提出了更高的要求。通常假定捷联系统“数学平台”模拟地理坐标系,即导航坐标系;而确定载体的姿态矩阵即为研究载体坐标系(6)和导航坐标系(E)的空间转动关系,一般用载体坐标系相对导航坐标系的三次转动角确定,习惯上俯仰角和偏航角用B和必表示,滚转角用Y表示。目前主要的研究方法为:欧拉法、方向余弦法与四元数法。图1为捷联式惯性导航原理图。

最新常见的三元一次方程组的解法

常见的三元一次方程组的解法 三元一次方程组的常规解法是:通过代入法或加减法把三元一次方程组转化为二元一次方程组,再把二元一次方程组转化为一元一次方程从而解出方程组.但有时我们也可根据三元一次方程组的结构特点采取非常规的方法来解方程组.常见的方法有: 一、缺项型的解法 例1 解方程组 4917(1) 31518(2) 232(3) x z x y z x y z -= ? ? ++= ? ?++= ? 分析:由于方程(1)缺少未知数y,这方程时只要在方程(2)(3)中消去未知数y即可把三元一次方程组转化为二元一次方程组,从而顺利地解出方程组. (2)2(3) ?-得:52734(4) x z += (1)3(4) ?+得:1785 x=5 x= 把5 x=代入(1)得:20917 z -= 1 3 z= 把5 x=, 1 3 z=代入(3)得:5212 y ++=, 2. y=- ∴方程组的解为: 5 2 1 3 x y z ? ?= ? =-? ? ?= ? 二、标准型的要选择确当的未知 例2 解方程组 34(1) 2312(2) 6(3) x y z x y z x y z -+= ? ? +-= ? ?++= ? 解:要消去三个未知数中的一个,相对而言消未知数z比较方面. (1)+(2)得:5216(4) x y += (3)+(2)得:3418(5) x y += (5)(4)2 -?得:20 x=

把20x =代入(4)得:100216y += 42y =. 把20x =,42y =代入(1)得:60424z -+= 14z =-. ∴方程组的解为:204214x y z =??=??=-? . 三、轮换的特殊解法 例3 解方程组2(1)4(2)6(3)x y y z z x +=??+=??+=? 解:这样轮换缺少未知数的方程可以采用下面特殊方法来解. (1)+(2)+(3)得:22212x y z ++= ∴6(4)x y z ++= (4)-(1)得:4z = (4)-(2)得:2x = (4)-(3)得:0y = ∴方程组的解为:204x y z =??=??=? . 四、有比巧设参数 x :y=2:1 (1) 例4 解方程组 y :z=1:3 (2) 23414x y z +-=- (3) 解:由(1)得:设其中的一份为k ,则2x k =,y k =. 把y k =代入(2)得:3z k =. 把2x k =,y k =,3z k =代入(2)得:431214k k k +-=-.

第二章 薛定谔方程

第二章 薛定谔方程 本章介绍:本章将系统介绍波动力学。波函数统计解释和态叠加原理是量子力学的两个基本假设。薛定谔方程是波动力学的核心。在一定的边界条件和初始条件下求解薛定谔方程,可以给出许多能与实验直接比较的结果。 §2.1 波函数的统计解释 §2.1.1 波动—粒子两重性矛盾的分析按照德布罗意的观点,和每个粒子相联系的都有一个波。怎样理解粒子性和波动性之间的联系,这是量子力学首先遇到的根本问题。 2.1.1 波动—粒子两重性矛盾的分析能否认为波是由粒子组成? 粒子的单缝和双缝实验表明,如减小入射粒子强度,让粒子近似的一个一个从粒子源射出,实验发现,虽然开始时底片上的感光点是无规则的,但只要时间足够长,感光点足够多,底片上仍然会出现衍射条纹。如果波是由粒子做成,那末,波的干涉、衍射必然依赖于粒子间的相互作用。这和上述实验结果相矛盾,实际上,单个粒子也具有波动性的。 能否认为粒子是由波组成? 比如说,电子是三维空间的物质波包,波包的大小即电子的大小,波包的速度即电子的速度,但物质波包是色散的,即使原来的物质波包很小,但经过一段时间后,也会扩散到很大的空间去,或者形象地说,随着时间的推移,粒子将越来越“胖”,这与实验相矛盾 经典物理对自然界所形成的基本物理图像中有两类物理体系: ◆一类是实物粒子 ◆另一类是相互作用场(波)经典粒子是以同时确定的坐标和动量来描述其运动状态,粒子的运动遵从经典力学规律,在运动过程中具有确定严格的轨道。粒子的能量,动量在粒子限度的空间小区域集中;当其与其它物理体系作用时,只与粒子所在处附近的粒子相互作用,并遵从能量、动量的单个交换传递过程,其经典物理过程是粒子的碰撞;“定域”是粒子运动的特征。经典波动则是以场量(振幅、相位等)来描述其运动状态,遵从经典波动方程,波的能量和动量周期性分布于波所传播的空间而不是集中在空间一点,即波的能量、动量是空间广延的。波与其他物质体系相互作用时,可同时与波所在广延空间内的所有物理体系相互作用,其能量可连续变化,波满足叠加原理,“非定域”是波动性运动的特性。◆◆在经典物理中,粒子和波各为一类宏观体系的呈现,反映着两类对象,两种物质形态,其运动特点是不相容的,即具有粒子性运动的物质不会具有波动性;反之具有波动性运动的物质不会具有粒子性。综上所述,微观粒子既不是经典的粒子又不是经典的波,或者说它既是量子概念的粒子又是量子概念的波。其量子概念中的粒子性表示他们是具有一定的能量、动量和质量等粒子的属性,但不具有确定的运动轨道,运动规律不遵从牛顿定律;其量子概念中的波动性并不是指某个实在物理量在空间的波动,而是指用波函数的模的平方表示在空间某处粒子被发现的概率。◆现在被物理学家们普遍接受的波函数解释是玻恩提出的统计解释。他认为,粒子在衍射或干涉实验中所揭示的波动性质,既可以看成是大量粒子在同一实验中的统计结果,也可以认为是单个粒子在多次相同实验中显示的统计结果。 ◆玻恩的统计解释:波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波 §2.1.2 波函数统计解释 波函数的的特点:1.由于 2 |),(|t r ψ给出在 t 时刻,粒子在 r 处出现的几率密度,因此原 则上可由统计平均公式:? ?>= <)(r f 。在这种意义下,波函数),(t r ψ描述了微观粒子的运

分裂四元数矩阵的实表示与特征值

第48卷第2期2019年3月内蒙古师范大学学报(自然科学汉文版)J o u r n a l o f I n n e rM o n g o l i aN o r m a lU n i v e r s i t y (N a t u r a l S c i e n c eE d i t i o n )V o l .48N o .2M a r .2019 收稿日期:2018-03-09基金项目:山东省自然科学基金资助项目(Z R 2017MA 029);山东省高等教育科技计划项目(J 16L I 15) ;山东省教育科学 十二五”规划 高等教育数学教学专项”重点资助课题(Z B S 15004);菏泽学院科研基金科技计划项目(2017001)作者简介:孔祥强(1983-),男,山东菏泽人,菏泽学院讲师,主要从事计算数学研究.分裂四元数矩阵的实表示与特征值 孔祥强 (菏泽学院数学与统计学院,山东菏泽274015 )摘 要:在分裂四元数概念的基础上,首先给出了分裂四元数的实表示;其次,依托实矩阵研究分裂四元数 矩阵,得到分裂四元数矩阵实表示的重要性质;最后,给出了分裂四元数矩阵特征值存在的充分必要条件,并通 过数值算例说明了分裂四元数矩阵左特征值的求法.关键词:分裂四元数;分裂四元数矩阵;实表示;特征值 中图分类号:O246.1 文献标志码:A 文章编号:1001-8735(2019)02-0112-05d o i :10.3969/j .i s s n .1001-8735.2019.02.0041843年,H a m i l t o n 提出了四元数的概念,其形式为H 0=a 0+a 1i +a 2j +a 3{}k ,且满足i 2=-1,j 2=-1,k 2=-1,i j =-j i =k ,j k =-k j =i ,k i =-i k =j ,i j k =-1,a 0,a 1,a 2,a 3∈R .1849年,J a m e s C o c k l e 提出分裂四元数的概念,其形式为H =a 0+a 1i +a 2j +a 3{}k ,且满足i 2=-1,j 2=1,k 2=1,i j =-j i =k ,j k =-k j =-i ,k i =-i k =j ,i j k =1,a 0,a 1,a 2,a 3∈R .H 0和H 是两个结合且非交换的四维克利福德代数,是两个非交换的代数环.四元数代数H 0为除环,分裂四元数代数H 不是除环,且含有零因子二幂等元和幂零 元等[1]. 分裂四元数矩阵的特征值问题在四元数理论研究中占有非常重要的地位,对这部分的研究已取得丰硕成果[2-3].文献[4]利用矩阵的复表示研究了四元数矩阵的右特征值问题,得到系列结果.文献[5]利用矩阵的复表示研究了分裂四元数矩阵的左特征值和右特征值.本文研究实表示意义下分裂四元数矩阵的性质和特征值问题. 1 分裂四元数的实表示 设H =a =a 0+a 1i +a 2j +a 3k ;a 0,a 1,a 2,a 3∈{}R ,且满足i 2=-1,j 2=1,k 2=1,i j k =1,i j =-j i =k ,j k =-k j =-i ,k i =-i k =j ,称满足条件的a 为分裂四元数.称a =a 0-a 1i -a 2j -a 3k 为a 的共轭,a =|a a |=|a 20+a 21-a 22-a 23|为a 的范数 [5].定理1 任一个分裂四元数均和R 上的4阶矩阵同构.证明 令a =a 0+a 1i +a 2j +a 3k ∈H ,a 0,a 1,a 2,a 3∈R ,定义映射φa :H →H ,σa (b )=a b ,?b ∈H ,则φa 为双射, 且 φa (1)=a 1=a 0+a 1i +a 2j +a 3k , φa (i )=a i =-a 1+a 0i +a 3j -a 2k , φa (j )=a j =a 2+a 3i +a 0j +a 1k , φ a (k )=a k =a 3-a 2i -a 1j +a 0k .依此映射,可定义分裂四元数集合为4阶实矩阵集合 M 4×4(R )=a 0a 1a 2a 3-a 1a 0a 3-a 2a 2a 3a 0a 1a 3-a 2-a 1a ?è???????÷÷÷÷÷0T ,a 0,a 1,a 2,a 3∈ì?í??????üt y??????R 的子集合,H 和M 4×4(R )本质是相同的. 故对分裂四元数的研究可转化为实数域上4阶矩阵的研究.实数域

四元数矩阵转化

//公式都是网上搜罗的,下面这些经过简单的测试,确认可用。 //ps: x,y,z,w 分别是四元素的四个值。稍微修改下就可以用。 // 由旋转矩阵创建四元数 inline CQuaternion(const_Matrix4& m) { float tr, s, q[4]; int i, j, k; int nxt[3] = {1, 2, 0 }; // 计算矩阵轨迹 tr = m._11 + m._22 + m._33; // 检查矩阵轨迹是正还是负 if(tr>0.0f) { s = sqrt(tr + 1.0f); this->w = s / 2.0f; s = 0.5f / s; this->x = (m._23 - m._32) * s; this->y = (m._31 - m._13) * s; this->z = (m._12 - m._21) * s; } else { // 轨迹是负 // 寻找m11 m22 m33中的最大分量 i = 0; if(m.m[1][1]>m.m[0][0]) i = 1; if(m.m[2][2]>m.m[i][i]) i = 2; j = nxt[i]; k = nxt[j]; s = sqrt((m.m[i][i] - (m.m[j][j] + m.m[k][k])) + 1.0f); q[i] = s * 0.5f; if( s!= 0.0f) s = 0.5f / s; q[3] = (m.m[j][k] - m.m[k][j]) * s; q[j] = (m.m[i][j] - m.m[j][i]) * s; q[k] = (m.m[i][k] - m.m[k][i]) * s; this->x = q[0]; this->y = q[1]; this->z = q[2]; this->w = q[3]; }

三元一次方程组的解法及技巧解析

三元一次方程组的解法及技巧解析初中阶段是我们一生中学习的“黄金时期”。不光愉快的过新学期,也要面对一件重要的事情那就是学习。优立方数学为大家提供了三元一次方程组的解法知识点,希望对大家有所帮助。 1.三元一次方程的概念 三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+c=0等都是三元一次方程. 2.三元一次方程组的概念 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 例如, 等都是三元一次方程组. 三元一次方程组的一般形式是: 3.三元一次方程组的解法 (1)解三元一次方程组的基本思想 解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一

个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数. (2)怎样解三元一次方程组? 解三元一次方程组例题 解方程组 法一:代入法 分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解. 解:由(2),得x=y+1.(4) 将(4)分别代入(1)、(3)得解这个方程组,得 把y=9代入(4),得x=10. 因此,方程组的解是 法二:加减法 解:(3)-(1),得x-2y=-8(4) 由(2),(4)组成方程组

解这个方程组,得把x=10,y=9代入(1)中,得z=7. 因此,方程组的解是 法三:技巧法 分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y值后再代回,即可得到关于x、y的二元一次方程组 解:由(1)+(2)-(3),得y=9. 把y=9代入(2),得x=10. 把x=10,y=9代入(1),得z=7. 因此,方程组的解是 注意: (1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出. (2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确

线性方程组的矩阵求法

线性方程组的矩阵求法 摘要: 关键词: 第一章引言 矩阵及线性方程组理论是高等代数的重要内容, 用矩阵 方法解线性方程组又是人们学习高等代数必须掌握的基本 技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。 第二章用矩阵消元法解线性方程组 第一节预备知识 定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。 定义2:定义若阶梯形矩阵满足下面两个条件: (1)B的任一非零行向量的第一个非零分量(称为的 一个主元)为1; (2)B中每一主元是其所在列的唯一非零元。 则称矩阵为行最简形矩阵。 第二节 1.对一个线性方程组施行一个初等变换,相当于对它的增广矩

阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。 下面以一般的线性方程组为例,给出其解法: (1) 11112211 21122222 1122 , , . n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++= +++= +++= L L L L L L L L L L L L L L L 根据方程组可知其系数矩阵为: (2) 11121 21222 12 n n m m mn a a a a a a a a a ?? ? ? ? ? ??? L L L L L L L L L L L L 其增广矩阵为: (3) 111211 212222 12 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ? ??? L L L L L L L L L L L L L L L 根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。 定理2:设A是一个m行n列矩阵

3元一次方程组解法

3元一次方程组解法 本周目标: 会解三元一次方程组.通过解三元一次方程组的学习,提高逻辑思维能力.培养抽象概括的数学能力. 重点、难点: 三元一次方程组的解法.解法的技巧. 重点难点分析: 1.三元一次方程的概念 三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+c=0等都是三元一次方程. 2.三元一次方程组的概念 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 例如,等都是三元一次方程组. 三元一次方程组的一般形式是: 3.三元一次方程组的解法 (1)解三元一次方程组的基本思想 解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数. (2)怎样解三元一次方程组? 解三元一次方程组例题 1.解方程组 法一:代入法 分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解.

解:由(2),得x=y+1.(4) 将(4)分别代入(1)、(3)得 解这个方程组,得 把y=9代入(4),得x=10. 因此,方程组的解是 法二:加减法 解:(3)-(1),得x-2y=-8 (4) 由(2),(4)组成方程组 解这个方程组,得 把x=10,y=9代入(1)中,得z=7. 因此,方程组的解是 法三:技巧法 分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y 值后再代回,即可得到关于x、y的二元一次方程组 解:由(1)+(2)-(3),得y=9. 把y=9代入(2),得x=10. 把x=10,y=9代入(1),得z=7. 因此,方程组的解是 注意: (1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出. (2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确 求解方程组.

相关文档