文档库 最新最全的文档下载
当前位置:文档库 › 充电器共模干扰波形测试方法及规格要求

充电器共模干扰波形测试方法及规格要求

充电器共模干扰波形测试方法及规格要求

Proprietary and Confidential

充电器共模干扰波形测试

?原理:因为电源干扰的噪声实际上是一个共模噪声,因此我

们可以通过直接测量充电器地上波形来观察电源噪声信号

?测试方法:先把充电器插上电源插座,用示波器的探头点充

电器的GND上,探头中夹子(接地端)夹上示波器的地,观察示波器的波形,通过调整示波器来查看电源噪声的频率和

幅度。

Proprietary and Confidential

2

一个很差电源Adapter 的波形示例

Proprietary and Confidential

3

LePhone手机充电器的信号波形

Proprietary and Confidential

4

iPhone原装手机充电器的信号波形

Proprietary and Confidential

5

山寨iPhone手机充电器的信号波形

Proprietary and Confidential

6

FT IC

对电源Adapter 共模干扰信号的规格要求根据实际经验,FT IC 对Adapter 规格要求大致如下表,总体来说,高频杂讯越少,频率越低,幅度越小,Adapter 就越不容易产生干扰。

芯片系列共模干扰信号幅度Vpp(V)频率要求(Hz)

270

≤60FT5x02

FT5x0120≤3K 10

≤30K 2

≤500K FT5x06270

≤6020

≤50010

≤2K 2≤500K

Proprietary and Confidential

7

Thank you !!

Proprietary and Confidential

8

波形护栏的常见规格

波形护栏板的常见规格 波形护栏板一般按设置地点和防撞等级来分类。按设置地点可以分为路侧护栏和中央分隔带护栏。按防撞等级可分为A级和S级。S级护栏属于加强型,适用于路侧特别危险的路段使用,A 级用于专用公路波形梁护栏是半刚性护栏的主要形式,它是一种以波纹状钢护栏板相互拼接并由主柱支撑的连续结构。 波形护栏板的常见规格有以下几种: 一、标准护栏板总长度4320 毫米(安装完毕后净剩 4 米)立柱间距4 米。 1、两波形梁护栏板的宽度310mm,波高85mm,板厚:3mm、4mm;理论重量:3mm 厚的为49.16kg,4mm 厚的为65.55kg; 每公里3MM 厚的重12.3 吨,4MM 厚的重16.388 吨。 2、三波形梁护栏板的规格长4320 毫米,波宽505 毫米,波高85mm, 板厚:4mm;理论重量:102kg,配合130*130 的方管立柱。 二、立柱:规格Φ114、Φ140mm 长度根据要求一般为1.85 米、1.95 米、2 米、2.15 米壁厚4.5MM;理论重量:Φ114 的12.15kg/m、Φ140mm 的15.04kg/m. 三、标准段每公里用250 块护栏板。立柱间距4 米,每公里用250 根立柱,端头 2 个,柱帽250 个,防阻块250 个,连接螺栓250 套,拼接螺栓2000 套. 波形护栏规格及重量详解 (1)护栏板:板长×板宽×波高×板厚 A、双波护栏板:4320×310×85×3.0理论重量49.16 Kg 4320×310×85×4.0 理论重量65.55 Kg B、三波护栏板:4320×506×85×4.0理论重量102 kg (2)立柱:114/140×4.5 ×长度直径×壁厚×长度 长度:1m、1.2m、1.25m、1.55m、1.85m、1.95m、2m、2.15m等, 理论重量(4.5mm厚度):114mm的12.16kg/m、140mm的15.06kg/m (3)防阻块:196×178×200×3.0/4.0 每个重 2.5kg左右,与九孔板配套使 用。 (4)柱帽:114mmx100mm 每只重0.5㎏左右 140mmX150mm 每只重0.6㎏左右 (5)托架:300 ×70 ×4mm/4.5mm 注:与十孔板配套,每只重0.8㎏左右。(6)端头:一般分路侧(R160),及中央带(R250)两种型号,常用厚度为3mm 。 可根据客户的要求可随时安排制做其他型号的特殊端头。 (7)横梁垫片(方垫片):材质:Q235,优质钢板。规格:76×44×4 重约0.08kg

公路波形护栏规范标准

公路波形护栏规 篇一:交通部行业标准JTT281—2007《高速公路波形梁钢护 栏》 交通部行业标准JT/T281—2007《高速公路波形梁钢护栏》 一、标准护栏板总长度4320毫米(安装完毕后净剩4米)立柱间距4米。 1、两波形梁护栏板的宽度310mm,波高85mm,板厚:3mm、4mm;理论重量:3mm厚的为49.16kg,4mm厚的为65.44kg; 每公里3MM厚的重12.3吨,4MM厚的重16.388吨。 2、三波形梁护栏板的规格长4320毫米,波宽505毫米,波高85mm,板厚:4mm;理论重量:102kg,配合130*130的方管立柱。 二、立柱:规格Φ114、Φ140mm长度根据要求一般为1.85米、1.95米、2米、2.15米壁厚4.5MM; 理论重量:Φ114的12.15kg/m、Φ140mm的15.04kg/m. 三、标准段每公里用250块护栏板。立柱间距4米,每公里用250根立柱,端头2个,柱帽250个,防阻块250个,

连接螺栓250套,拼接螺栓2000套 本实用新型护栏解决上述技术问题所采用的技术方案是:该护栏板其特征在于板体采用高分子量的PVC材料,在生产中无需防腐、喷涂等处理,真正实现绿色环保,同时由于PVC材料成本大大低于钢材,其综合成本低;该护栏板机械结构呈M形,在板体中设置有与板体沿展方向平 行的加强孔,加强孔中热熔包覆玻璃纤维作为加强筋,同时在板体上部为加强抗冲击强度,在凸起部位设置有两排加强孔和加强筋。 PVC高速公路新型防撞护栏与现有技术相比,具有抗冲击性好、成本低、寿命长、安全性更高、绿色环保等优点栏板的宽度310MM,厚度:3MM、4MM。 1吨护栏板可铺:3MM厚的80米,4MM厚的61米。 篇二:护栏设置规细则 一,路侧波形梁防护栏的设置 1、设置路侧的波形梁护栏,按防撞等级可分为A级和S级.S 级护栏属于加强型,适合于路侧特别危险的路段使用.S级护栏的立柱中心间距为2m。 2、路侧波形梁护栏的横断布设,不应使护栏面侵入公路建筑限界以,并不得使护栏立柱外侧的侧向土压力明显减小.立柱外边缘到路肩边缘的最小距离规定为:当土路肩宽度为75cm时,不应小于25cm;当土路肩宽度为50cm时,不应小于14cm,

计算机控制系统中的抗干扰技术

第9章计算机控制系统中的抗干扰技术 ●本章的教学目的与要求 掌握各种干扰的传播途径与作用方式以及软硬件抗干扰技术。 ●授课主要内容 ●干扰的传播途径与作用方式 ●软硬件抗干扰技术 ●主要外语词汇 ●重点、难点及对学生的要求 说明:带“***”表示要掌握的重点内容,带“**”表示要求理解的内容,带“*”表示要求了解的内容,带“☆”表示难点内容,无任何符号的表示要求自学的内容 ●干扰的类型*** ●干扰的传播途径***☆ ●各类干扰的抑制方法*** ●辅助教学情况 多媒体教学课件(POWERPOINT) ●复习思考题 ●干扰的类型 ●干扰的传播途径 ●各类干扰的抑制方法 ●参考资料 刘川来,胡乃平,计算机控制技术,青岛科技大学讲义

干扰是客观存在的,研究抗干扰技术就是要分清干扰的来源,探索抑制或消除干扰的措施,以提高计算机控制系统的可靠性和稳定性。 9.1 干扰的传播途径与作用方式 干扰是指有用信号以外的噪声或造成计算机设备不能正常工作的破坏因素。产生干扰信号的原因称为信号源。干扰源通过传播途径影响的器件或系统称为干扰对象。干扰源、传播途径及干扰对象构成了干扰系统的三个要素。 9.1.1 干扰的来源 1.外部干扰 2.内部干扰 9.1.2 干扰传播途径 干扰传播途径主要有:静电耦合、磁场耦合、公共阻抗耦合。 1. 静电耦合 静电耦合是通过电容耦合窜入其他线路的。 2. 磁场耦合 在任何载流导体周围都会产生磁场,当电流变化时会引起交变磁场,该磁场必然在其周围的闭合回路中产生感应电势引起干扰,它是通过导体间互感耦合进来的。 3公共阻抗耦合 公共阻抗耦合干扰是由于电流流过回路间公共阻抗,使得一个回路的电流所产生的电压降影响到另一回路。 9.1.3 干扰的作用方式 按干扰作用方式的不同,可分为串模干扰、共模干扰和长线传输干扰。 1. 串模干扰 串模干扰是指叠加在被测信号上的干扰噪声,它串联在信号源回路中,与被测信号相加输入系统. 图9.6 串模干扰示意图图9.7 共模干扰示意图

波形护栏的常见规格

波形护栏的常见规格 波形护栏板的常见规格 波形护栏板一般按设置地点和防撞等级来分类。按设置地点可以分为路侧护栏和中央分隔带护栏。按防撞等级可分为A级和S级。S级护栏属于加强型,适用于路侧特别危险的路段使用,A级用于专用公路波形梁护栏是半刚性护栏的主要形式,它是一种以波纹状钢护栏板相互拼接并由主柱支撑的连续结构。 波形护栏板的常见规格有以下几种: 一、标准护栏板总长度4320毫米(安装完毕后净剩4米)立柱间距4米。 1、两波形梁护栏板的宽度310mm,波高85mm,板厚:3mm、4mm;理论重量:3m m厚的为,4mm厚的为;每公里3MM厚的重吨,4MM厚的重吨。 2、三波形梁护栏板的规格长4320毫米,波宽505毫米,波高85mm,板厚:4mm;理 论重量:102kg,配合130*130的方管立柱。 二、立柱:规格Φ114、Φ140mm长度根据要求一般为米、米、2米、米壁厚;理论 重量:Φ114的m、Φ140mm的m. 三、标准段每公里用250块护栏板。立柱间距4米,每公里用250根立柱,端头2 个,柱帽250个,防阻块250个,连接螺栓250套,拼接螺栓2000套. 规格及重量详解 (1)护栏板:板长×板宽×波高×板厚 A、:4320×310×85×理论重量Kg 4320×310×85×理论重量Kg B、三波护栏板:4320×506×85×理论重量102kg (2)立柱:114/140××长度直径×壁厚×长度 长度:1m、、、、、、2m、等, Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

理论重量(厚度):114mm的m、140mm的m (3)防阻块:196×178×200×每个重左右,与九孔板配套使用。 (4)柱帽:114mmx100mm每只重㎏左右 140mmX150mm每只重㎏左右 (5)托架:300×70×4mm/注:与十孔板配套,每只重㎏左右。 (6)端头:一般分路侧(R160),及中央带(R250)两种型号,常用厚度为3mm。可根据客户的要求可随时安排制做其他型号的特殊端头。 (7)横梁垫片(方垫片):材质:Q235,优质钢板。规格:76×44×4重约 用于托架(防阻块)与护栏板、连接螺孔位垫衬之用。 (8)螺栓:M16×170(150)立柱与防阻块、托架连接; M16×42(40)防阻块、托架与板连接; M16×35板与板连接;

电源纹波的产生、危害、测量和抑制

1 引言 对于电子产品来说唯一不可缺少的是电源,但是它除了提供能量外,也带来了纹波、噪声等影响电子产品正常工作的影响。纹波电压对高放、本振、混频、滤波、检波、A/D变换等电路都会产生影响,在设计控制设备、电子仪器、电视、摄像机等电子产品时都要想办法尽量减小纹波。为此就要了解纹波、知道它是如何产生的、如何测量以及抑制方法。 2 电源纹波 纹波是附着于直流电平之上的包含周期性与随机性成分的杂波信号,指在额定输出电压、电流的情况下,输出电压中的交流电压的峰值。狭义上的纹波电压,是指输出直流电压中含有的工频交流成分。 纹波用示波器可以看到,在直流电压上下轻微波动,就像水平面上波动的水纹一样,所以被称为纹波(见图1)。 图1 RIGOL示波器DS1302观察的纹波信号波形 2.1 电源纹波产生 我们通常在产品中用的电源主要有线性电源和开关电源二大类,输出的直流电压是一个固定值,由交流电压经整流、滤波、稳压后得到。由于滤波不干净,直流电压中含有交流成分,这就产生了纹波。纹波是一种复杂的杂波信号,它是围绕输出直流电压上下来回波动的周期性信号,但周期和振幅不是定值,随时间而变,不同电源的纹波波形不一样。 产生电源纹波的因素有许多,即使你用电池供电也会因负载的波动而产生波纹。 线性电源

由于我国供电频率是50Hz,所以它的纹波主要来自工频50Hz变压器,纹波电压的频率常常是50nHz,n取自然数,大小取决于整流电路的类型。对于半波整流,是1;对于全波整流,是2;对于三相全波整流,是6,即300Hz。所以这种电源的输出端纹波主要是50HZ 或它的整数倍,幅值小,较易滤除,通常纹波可做到几mV。 如假定整流桥输出负载电流IL,负载电压VL,整流桥输人交流电压幅值Vm及其输人交流电压频率f,则其输出的纹波电压由表1各式计算。 表1 整流纹波电压 采用功率匹配法或等效电流源法计算纹波电压,一般表示为: △U=ILsin2wt/(2wC) (1) 从式(1)中可以看出,纹波频率为输人频率的两倍,其幅值正比于变换器的输出电流,反比于输人电压频率和平滑电容的大小。 开关电源 产生的纹波比较复杂、很难滤除且幅值较大。主要来源于五个方面:除低频纹波外还有高频纹波、共模噪声、开关器件产生的噪声和调节控制环路引起的纹波噪声。一般开关电源的纹波比线性电源的纹波要大,频率要高。 ①高频纹波。高频纹波来源于开关变换电路。开关电源的开关管在导通和截止的时候,都会有一个上升和下降时间,这时候在电路中就会出现一个与开关上升与下降时间的频率相同或者奇数倍频的噪声,一般为几十MHz。同样二极管在反向恢复瞬间,其等效电路为电阻电容和电感的串联,会引起谐振,产生的噪声频率也为几十MHz。还有高频变压器的漏感也会产生高频干扰。这些噪声一般叫做高频纹波噪声,幅值通常要比纹波大得多。

串模干扰共模干扰概念以及抑制方法

串模干扰共模干扰概念以及抑制方法 发布日期:2010-03-11 仪表在工业生产的现场使用的条件常常是很复杂的。被测量的参数又往往被转换成微弱的低电平电压信号,并通过长距离传输至二次表或者计算机系统。因此除了有用的信号外,经常会出现一些与被测信号无关的电压或电流存在。这种无关的电压或电流信号我们称之为“干扰”(也叫噪声)。 干扰的来源有很多种,通常我们所说的干扰是电气的干扰,但是在广义上热噪声、温度效应、化学效应、振动等都可能给测量带来影响,产生干扰。在测量过程中,如果不能排除这些干扰的影响,仪表就不能够正常的工作。 根据仪表输入端干扰的作用方式,可分为串模干扰和共模干扰。串模干扰是指叠加在被测信号上的干扰;共模干扰是加在仪表任一输入端与地之间的干扰。 干扰来自于干扰源,它们在仪表内外都可能存在。在仪表外部,一些大功率的用电设备以及电力设备都可能成为干扰源,而在仪表内部的电源变压器、机电器、开关以及电源线等也均可能成为干扰源 1) 串模干扰的抑制 串模干扰与被测信号所处的地位相同,因此一旦产生串模干扰,就不容易消除。所以应当首先防止它的产生。防止串模干扰的措施一般有以下这些: * 信号导线的扭绞。由于把信号导线扭绞在一起能使信号回路包围的面积大为减少,而且是两根信号导线到干扰源的距离能大致相等,分布电容也能大致相同,所以能使由磁场和电场通过感应耦合进入回路的串模干扰大为减小。 * 屏蔽。为了防止电场的干扰,可以把信号导线用金属包起来。通常的做法是在导线外包一层金属网(或者铁磁材料),外套绝缘层。屏蔽的目的就是隔断“场”的耦合,抑制各种“场”的干扰。 屏蔽层需要接地,才能够防止干扰。 * 滤波。对于变化速度很慢的直流信号,可以在仪表的输入端加入滤波电路,以使混杂于信号的干扰衰减到最小。但是在实际的工程设计中,这种方法一般很少用,通常,这一点在仪表的电路设计过程中就已经考虑了。 以上的几种方法是主要是针对与不可避免的干扰场形成后的被动抑制措施,但是在实际过程中,我们应当尽量避免干扰场的形成。譬如注意将信号导线远离动力线;合理布线,减少杂散磁场的产生;对变压器等电器元件加以磁屏蔽等等,采取主动隔离的措施。

电源纹波的定义和检测方法分析

电源纹波的定义和检测方法分析 来源:| 时间:2010年02月03日 纹波:纹波是指在直流电压或电流中,叠加在直流稳定量上的交流分量。 纹波的表示方法:可以用有效值或峰值来表示,或者用绝对量、相对量来表示,单位通常为:mV 。例如:一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压=10mv/12V=0.12%。 下面对电源纹波分量检测方法进行分析。 图1给出了一个不当使用示波器测量电源纹波的实例。在这个例子中出现了几个错误,首先是使用了接地线很长的示波器探针;其二是让由探针和接地线形成的回路靠近功率变压器和开关元件;最后是允许在示波器探针和输出电容之间形成额外的电感。其结果带来的问题是在测得的纹波波形中携带了拾取的高频成分。 在电源中有许多很容易耦合到探针中的高速的、大电压和电流信号波形,其中包括来自功率变压器的磁场耦合、来自开关节点的电场耦合、以及由变压器交绕(interwinding)电容产生的共模电流。 图1:不当的纹波测量得到糟糕的结果。 采用正确的测量技术可切实改善纹波测量的结果。首先,通常会规定纹波的带宽上限,以避免拾取超出纹波带宽上限的高频噪声,应该给用于测量的示波器设定合适的带宽上限。其次,可以通过摘掉探针的“帽子”来去掉接地长引线形成的天线。如图2所示,我们把一段短线绕在探针接地引线周围,并使之与电源地相连接。这样做附带的好处是缩短暴露在电源附近高强度电磁辐射中的探针长度,从而进一步减少高频拾取。 最后,在隔离电源中,真正的共模电流是由在探针接地引线中流动的电流产生的,这就使得在电源地和示波器地之间产生电压降,表现为纹波。要抑制这个纹波,需要在电源设计中仔细考虑共模滤波问题。 此外,把把示波器引线绕在铁芯上可减小这个电流,因为这样会形成一个不影响差分电压测量、但可降低由共模电流产生的测量误差的共模电感。图2显示了采用改进测量技术对同一电路得到的纹波电压测量结果。可以看到,高频尖刺已几乎消除。

共模干扰抑制技术

开关电源的共模干扰抑制技术 0 引言 由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。 传导是电力电子装置中干扰传播的重要途径。差模干扰和共模干扰是主要的传导干扰形态。多数情况下,功率变换器的传导干扰以共模干扰为主。本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中。理论和实验结果都证明了,它能有效地减小电路中的高频传导共模干扰。这一方案的优越性在于,它无需额外的控制电路和辅助电源,不依赖于电源变换器其他部分的运行情况,结构简单、紧凑。 1 &n bsp; 补偿原理 共模噪声与差模噪声产生的内部机制有所不同:差模噪声主要由开关变换器的脉动电流引起;共模噪声则主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起。如图1所示。共模电流包含连线到接地面的位移电流,同时,由于开关器件端子上的d/d是最大的,所以开关器件与散热片之间的杂散电容也将产生共模电流。图2给出了这种新型共模噪声抑制电路所依据的本质概念。开关器件的d/d通过外壳和散热片之间的寄生电容对地形成噪声电流。抑制电路通过检测器件的d/d,并把它反相,然后加到一个补偿电容上面,从而形成补偿电流对噪声电流的抵消。即补偿电流与噪声电流等幅但相位相差180°,并且也流入接地层。根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50Ω的阻抗平衡网络(LISN)电阻(接测量接收机的BNC端口)上的共模噪声电压被大大减弱了。 图1 CM及DM噪声电流的耦合路径示意图

如何正确地测试纹波电压

如何正确地测试纹波电压 纹波电压在产品中是一项很重要的参数,过大的纹波电压不仅会直接影响音频电路的信噪比,甚至引起电路的误动作。在实际做设计调试和测试时,我们发现很多同事并不知道如何去测试纹波,因此收集了一些网上资料结合实际经验总结出这篇文章,借此抛砖引玉。 由于目前产品中大量应用开关电源和DC-DC等电路进行供电和电压转化,此类设计由于应用了开关技术使供电的效率有了本质上的提高,大大减小了功率耗散;但同时也增加了输出的交流成分,即我们所说的纹波和噪声(Ripple & Noise)。 一、 纹波的概念: 纹波就是一个直流电压中的交流成分。直流电压本来应该是一个固定的值, 但是很多时候它是通过交流电压整流、滤波后得来的,由于滤波不干净,就会有剩余的交流成分,即便如此,就是用电池供电也因负载的波动而产生波纹。事实上,即便是最好的基准电压源器件,其输出电压也是有波纹的。 纹波应是AC和开关频率的整倍数,用傅里叶级数展开应该是mf越高,Am越小。杂噪应该是不规则的离散波,是由非线性器件对I、V互相反复调制,在负载、输入的AC变化、温度变化都使杂噪变化,其频带可能有数十MHz到1GHz,主要以辐射的形式存在。杂噪是一种常用的通俗说法。其共性就是具有随机性。但必须注意,噪声的分布一般呈现高斯分布,即白噪声,而纹波则不是。 输出纹波和输出电流和输出电压都有关系,主要是与电流的关系。 通常输出纹波近似等于输出电流乘上输出滤波电容的ESR值。所以并不是滤波电容的容量越大输出纹波越小,而应该是滤波电容的ESR值越小输出纹波越小。 纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。 通常我们所说的纹波噪声是对电压信号而言。 二、 纹波噪声的成分分析: 测试纹波噪声,我们需要先对纹波噪声信号的成分进行区分。 如上图所示,纹波噪声可分为如下四个部分:

开关电源的纹波和噪声测试方法

开关电源的纹波和噪声(图) 开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。 本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。 纹波和噪声产生的原因 开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。纹波是输出直流电压的波动,与开关电源的开关动作有关。每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。 噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。 开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。 利用示波器可以看到纹波和噪声的波形,如图1所示。纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。 图1 纹波和噪声的波形 纹波和噪声的测量方法 纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。目前测量纹波和噪声

浅谈基于EMC的共模干扰与差模干扰以及抑制方法

基于EMC的共模干扰与差模干扰以及抑制方法什么是共模与差模 电器设备的电源线,电话等的通信线, 与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号,在这两根导线之外通常还有第三导体,这就是"地线"。电压和电流的变化通过导线传输时有两种形态, 一种是两根导线分别做为往返线路传输, 我们称之为"差模";另一种是两根导线做去路,地线做返回传输, 我们称之为"共模"。 如上图, 蓝色信号是在两根导线内部作往返传输的,我们称之为"差模";而黄信号是在信号与地线之间传输的,我们称之为"共模"。 共模干扰与差模干扰 任何两根电源线或通信线上所存在的干扰,均可用共模干扰和差模干扰来表示:共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,它定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰在两导线之间传输,属于对称性干扰,它定义为任何两个载流导体之间的不希望有的电位差。在一般情况下,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。差模干扰幅度小、频率低、所造成的干扰较小。

共模干扰信号 共模干扰的电流大小不一定相等,但是方向(相位)相同的。电气设备对外的干扰多以共模干扰为主,外来的干扰也多以共模干扰为主,共模干扰本身一般不会对设备产生危害,但是如果共模干扰转变为差模干扰,干扰就严重了,因为有用信号都是差模信号。 差模干扰信号 差模干扰的电流大小相等,方向(相位)相反。由于走线的分布电容、电感、信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流。 共模干扰产生原因 1. 电网串入共模干扰电压。 2. 辐射干扰(如雷电,设备电弧,附近电台,大功率辐射源)在信号线上感应出共模干扰,原因是交变的磁场产生交变的电流,地线-零线回路面积与地线-火线回路面积不相同,两个回路阻抗不同等原因造成电流大小不同。 3.接地电压不一样,简单的说就电位差而造就了共模干扰。

公路波形护栏规范

公路波形护栏规范 篇一:交通部行业标准JTT281—2007《高速公路波形梁钢护栏》 交通部行业标准JT/T281—2007《高速公路波形梁钢护栏》一、标准护栏板总长度4320毫米(安装完毕后净剩4米)立柱间距4米。 1、两波形梁护栏板的宽度310mm,波高85mm,板厚:3mm、4mm;理论重量:3mm厚的为49.16kg,4mm厚的为65.44kg; 每公里3MM厚的重12.3吨,4MM厚的重16.388吨。 2、三波形梁护栏板的规格长4320毫米,波宽505毫米,波高85mm,板厚:4mm;理论重量:102kg,配合130*130的方管立柱。 二、立柱:规格Φ114、Φ140mm长度根据要求一般为1.85米、1.95米、2米、2.15米壁厚4.5MM; 理论重量:Φ114的12.15kg/m、Φ140mm的15.04kg/m. 三、标准段每公里用250块护栏板。立柱间距4米,每公里用250根立柱,端头2个,柱帽250个,防阻块250个,连接螺栓250套,拼接螺栓2000套

本实用新型护栏解决上述技术问题所采用的技术方案是:该护栏板其特征在于板体采用高分子量的PVC材料,在生产中无需防腐、喷涂等处理,真正实现绿色环保,同时由于PVC 材料成本大大低于钢材,其综合成本低;该护栏板机械结构呈M形,在板体中设置有与板体沿展方向平 行的加强孔,加强孔中热熔包覆玻璃纤维作为加强筋,同时在板体上部为加强抗冲击强度,在凸起部位设置有两排加强孔和加强筋。 PVC高速公路新型防撞护栏与现有技术相比,具有抗冲击性好、成本低、寿命长、安全性更高、绿色环保等优点栏板的宽度310MM,厚度:3MM、4MM。 1吨护栏板可铺:3MM厚的80米,4MM厚的61米。 篇二:护栏设置规范细则 一,路侧波形梁防护栏的设置 1、设置路侧的波形梁护栏,按防撞等级可分为A级和S级.S 级护栏属于加强型,适合于路侧特别危险的路段使用.S级护栏的立柱中心间距为2m。 2、路侧波形梁护栏的横断布设,不应使护栏面侵入公路建筑限界以内,并不得使护栏立柱外侧的侧向土压力明显减小.立柱外边缘到路肩边缘的最小距离规定为:当土路肩宽度为75cm时,不应小于25cm;当土路肩宽度为50cm时,不应小于14cm, 3、路侧护栏端头的设置:路侧波形梁护栏的起,讫点应进行

波形护栏的常见规格(终审稿)

波形护栏的常见规格公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

波形护栏板的常见规格 波形护栏板一般按设置地点和防撞等级来分类。按设置地点可以分为路侧护栏和中央分隔带护栏。按防撞等级可分为A级和S级。S级护栏属于加强型,适用于路侧特别危险的路段使用,A 级用于专用公路波形梁护栏是半刚性护栏的主要形式,它是一种以波纹状钢护栏板相互拼接并由主柱支撑的连续结构。 波形护栏板的常见规格有以下几种: 一、标准护栏板总长度 4320 毫米(安装完毕后净剩 4 米)立柱间距 4 米。 1、两波形梁护栏板的宽度 310mm,波高 85mm,板厚:3mm、4mm;理论重量:3mm 厚的为 ,4mm 厚的为 ; 每公里 3MM 厚的重吨, 4MM 厚的重吨。 2、三波形梁护栏板的规格长 4320 毫米,波宽 505 毫米,波高85mm, 板厚:4mm;理论重量:102kg,配合 130*130 的方管立柱。 二、立柱:规格Φ114、Φ140mm 长度根据要求一般为米、米、 2 米、米壁厚;理论重量:Φ114 的 m、Φ140mm 的 m. 三、标准段每公里用 250 块护栏板。立柱间距 4 米,每公里用250 根立柱,端头 2 个,柱帽 250 个,防阻块 250 个,连接螺栓 250 套,拼接螺栓 2000 套. 波形护栏规格及重量详解 (1)护栏板:板长×?板宽×波高×板厚

A、双波护栏板:4320×310×85×理论重量Kg 4320×310×85×理论重量Kg B、三波护栏板:4320×506×85×理论重量102kg (2)立柱:114/140××长度直径×壁厚×长度 长度:1m、、、、、、2m、等, 理论重量(厚度):114mm的m、140mm的m (3)防阻块:196×178×200×每个重左右,与九孔板配套使用。 (4)柱帽:114mmx100mm每只重㎏左右 140mmX150mm每只重㎏左右 (5)托架:300×70×4mm/注:与十孔板配套,每只重㎏左右。 (6)端头:一般分路侧(R160),及中央带(R250)两种型号,常用厚度为3m m。 可根据客户的要求可随时安排制做其他型号的特殊端头。 (7)横梁垫片(方垫片):材质:Q235,优质钢板。规格:76×44×4重约用于托架(防阻块)与护栏板、连接螺孔位垫衬之用。 (8)螺栓:M16×170(150)立柱与防阻块、托架连接; M16×42(40)防阻块、托架与板连接; M16×35板与板连接;

纹波测试方法

纹波测试的注意事项 纹波是叠加在直流信号上的交流干扰信号,是电源测试中的一个很重要的标准。尤其是作特殊用途的电源,如激光器电源,纹波则是其致命要害之一。所以,电源纹波的测试就显得极为重要。 电源纹波的测量方法大致分为两种:一种是电压信号测量法;另一钟是电流信号测量法。一般对于恒压源或纹波性能要求不大的恒流源,都可以用电压信号测量法。而对于纹波性能要求高的恒流源则最好用电流信号测量法。 1 )、电压信号测量纹波是指,用示波器测量叠加在直流电压信号上的交流纹波电压信号。对于恒压源,测试可以直接用电压探头测量输出到负载上的电压信号。 2 )、对于恒流源的测试,则一般是通过使用电压探头,测量采样电阻两端的电压波形。整个测试过程中,示波器的设置是能否采样到真实信号的关键。 电源纹波噪声测试方法 我们今天的电子电路(比如手机、服务器等领域)的切换速度、信号摆率比以前更高,同时芯片的封装和信号摆幅却越来越小,对噪声更加敏感。因此,今天的电路设计者们比以前会更关心电源噪声的影响。实时示波器是用来进行电源噪声测量的一种常用工具,但是如果使用方法不对可能会带来完全错误的测量结果,笔者在和用户交流过程中发现很多用户的测试方法不尽正确,所以把电源纹波噪声测试中需要注意的一些问题做一下总结,供大家参考。 由于电源噪声带宽很宽,所以很多人会选择示波器做电源噪声测量。但是不能忽略的是,实时宽带数字示波器以及其探头都有其固有的噪声。如果要测量的噪声与示波器和探头的噪声在相同数量级,那么要进行精确测量将是非常困难的一件事情。 示波器的主要噪声来源于2个方面:示波器本身的噪声和探头的噪声。所有的实时示波器都实用衰减器来调整垂直量程。设置衰减以后示波器本身的噪声会被放大。比如,当不用衰减器时,示波器的基本量程是5mV/ 格,假设此时示波器此时的底噪声是500uVRMS。当把量程改成50mV/ 格时,示

仪器仪表的抗干扰措施

仪器仪表的抗干扰措施 仪器仪表的可靠性设计是一项系统工程,它直接影响到工业生产装置是否安全、长周期稳定运行,而系统的抗干扰能力是关系到整个系统可靠运行的关键。仪表在工业生产的现场使用的条件常常是很复杂的。被测量的参数又往往被转换成微弱的低电平电压信号,并通过长距离传输至二次表或者计算机系统。因此除了有用的信号外,经常会出现一些与被测信号无关的电压或电流存在。这种无关的电压或电流信号我们称之为“干扰”(也叫噪声)。 仪器仪表干扰来源有很多种,通常我们所说的干扰是电气的干扰,但是在广义上热噪声、温度效应、化学效应、振动等都可能给测量带来影响,产生干扰。在测量过程中,如果不能排除这些干扰的影响,仪表就不能够正常的工作。根据仪表输入端干扰的作用方式,可分为串模干扰和共模干扰。串模干扰是指叠加在被测信号上的干扰;共模干扰是加在仪表任一输入端与地之间的干扰。 1、主要干扰源 (1)静电感应 静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。 (2)电磁感应 当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。例如变压器及线圈的漏磁、通电平行导线等。 (3)漏电流感应 由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。尤其当漏电流流入测量电路的输入级时,其影响就特别严重。

3)附加热电势和化学电势。 主要是由于不同金属产生的热电势以及金属腐蚀等原因产生的化学电势,当它处于电回路时会成为干扰,这种干扰大多以直流的形式出现。在接线端子板或是干簧继电器等处容易产生热电势。 4) 振动。 导线在磁场中运动时,会产生感应电动势。因此在振动的环境中把信号导线固定是很有必要的。以上这4种干扰都是和信号串联,也就是以串模干扰的形式出现。 5)不同地电位引入的干扰。 在大地中,各个不同点之间往往存在电位差。尤其在大功率的用电设备附近,当这些设备的绝缘性能较差时,这一电位差更大。而在仪表的使用中往往又会有意或无意的是输入回路存在两个以上的接地点。这样就会把不同接地点的电位差引入仪表,这种地电位差有时能达1~10伏以上,它是同时出现在两根信号导线上。 通过静电耦合的方式,能在两输入端感应出对地的共同电压,以共模干扰的形式出现。由于共模干扰它不和信号相叠加,它不直接对仪表产生影响。但它能通过测量系统形成到地的泄漏电流,这漏电流通过电阻的耦合就能直接作用于仪表,产生干扰。 (4)射频干扰

波形梁护栏专业知识

波形梁护栏专业知识 波形护栏板的常见规格 波形护栏板一般按设置地点和防撞等级来分类。按设置地点可以分为路侧护栏和中央分隔带护栏。按防撞等级可分为A级和S级。S级护栏属于加强型,适用于路侧特别危险的路段使用,A级用于专用公路波形梁护栏是半刚性护栏的主要形式,它是一种以波纹状钢护栏板相互拼接并由主柱支撑的连续结构。 波形护栏板的常见规格有以下几种: 一、标准护栏板总长度4320毫米(安装完毕后净剩4米)立柱间距4米。 1、两波形梁护栏板的宽度310mm,波高85mm,板厚:3mm、4mm;理论重量:3mm厚的为49.16kg,4mm厚的为65.55kg;每公里3MM厚的重12.3吨,4MM厚的重16.388吨。 2、三波形梁护栏板的规格长4320毫米,波宽505毫米,波高85mm,板厚:4mm;理论重量:102kg,配合130*130的方管立柱。 二、立柱:规格Φ114、Φ140mm长度根据要求一般为1.85米、1.95米、2米、 2.15米壁厚4.5MM;理论重量:Φ114的12.15kg/m、Φ140mm的15.04kg/m. 三、标准段每公里用250块护栏板。立柱间距4米,每公里用250根立柱,端头2个,柱帽250个,防阻块250个,连接螺栓250套,拼接螺栓2000套. 波形梁护栏按防撞等级可分为B、A、SB、SA、SS五级,高速公路防撞护栏是典型的冷弯型钢产品;二波护栏板常用规:4320mm×310mm×85mm×3/4mm,立柱为?114/140mm×4.5mm;三波护栏板常用:4320mm×506mm×85mm×3/4mm,立柱为?130mm×130mm×6mm。系统原理:1、波形梁护栏是半钢性护栏的主要形式,它是一种以波纹状钢护栏板相互拼接并由立柱支撑的连续结构。2、它利用土基、立柱、横梁的变形来吸收碰撞能量,并迫使失控车辆改变方向,回复到正常的行驶方向,防止车辆冲出路外,以保护车辆和乘客,减少事故造成的损失。 3、波形梁护栏钢柔相兼,具有较强的吸收碰撞能量的能力,具有较好的视线诱导功能,能与道路线形相协调,外形美观,可在小半径弯道上使用,损坏处容易更换。产品特点:具有抗冲击性好、成本低、寿命长、安全性更高、绿色环保等优点材质:优质钢板经防腐处理产品用途:主要用于公路车道的隔离防护波形护栏实用新型涉及一种公路中央分隔带开口处用组合型波形板活动式钢护栏,该护栏由两片波形钢护栏板及两者之间固定夹放的两根立柱构成,两根立柱固定夹装在两片波形钢护栏板之间。在公路正常营运时,该护栏利用插拔立柱可方便地插入开口处预先设置的插拔孔内,起到隔离和防护作用,同时与公路外边上的护栏带相呼应,整齐划一,美观配套。车辆对其碰撞时,由于波形钢护栏板有良好的耐撞性能和吸收能量的作用,不容易被撞毁,同时又可对车辆和司乘人员起到很好的保护作用。当路面维修或其它原因需要并通时,可方便地把开口处的各组护栏立柱拔出移走,开辟通道,便于车辆通行。波形梁扩栏是半刚性护栏的主要形式,它是一种以波纹状钢护栏板相互拼接并由主柱支撑的连续结构。它利用土基、立柱、横梁的变形来吸收碰撞能量,并迫使失控车辆改变方向,回复到正常的行驶方向,防止车辆冲出路外,以保护车辆和乘客,减少事故造成的损失。波形梁护栏钢柔相兼,具有较强的吸收碰撞能量的能力,具有较好的视线诱导功能,能

纹波的测试

纹波是叠加在直流信号上的交流干扰信号,是电源测试中的一个很重要的标准。尤其是作特殊用途的电源,如激光器电源,纹波则是其致命要害之一。所以,电源纹波的测试就显得极为重要。 电源纹波的测量方法大致分为两种:一种是电压信号测量法;另一钟是电流信号测量法。 一般对于恒压源或纹波性能要求不大的恒流源,都可以用电压信号测量法。而对于纹波性能要求高的恒流源则最好用电流信号测量法。 电压信号测量纹波是指,用示波器测量叠加在直流电压信号上的交流纹波电压信号。对于恒压源,测试可以直接用电压探头测量输出到负载上的电压信号。对于恒流源的测试,则一般是通过使用电压探头,测量采样电阻两端的电压波形。整个测试过程中,示波器的设置是能否采样到真实信号的关键。 所用的仪器是:配有电压测量探头的TDS1012B示波器。测量之前需要进行如下设置。 1.通道设置: 耦合:即通道耦合方式的选择。纹波是叠加在直流信号上的交流信号,所以,我们要测试纹波信号就可以去掉直流信号,直接测量所叠加的交流信号就好。 宽带限制:关 探头:首先选用电压探头的方式。然后选择探头的衰减比例。必须与实际所用探头的衰减比例保持一致,这样从示波器所读取数才是真实的数据。比如,所用电压探头放在×10档,则此时,这里的探头的选项也必须设置为×10档。 2.触发设置: 类型:边沿 信源:实际所选择的通道,如,准备用CH1通道进行测试,则此处就应该选择为CH1。 斜率:上升。 触发方式:如果是在实时地观察纹波信号,则选择‘自动’触发。示波器会自动跟随实际所测信号的变化,并显示。这个时候,你也可通过设置测量按钮,实时地显示你所需要的测量的数值。但是,如果你想要捕捉某次测量时的信号波形,则需要将触发方式设置为‘正常’触发。此时,还需要设置触发电平的大小。一般当你知道你所测量的信号峰值时,将触发电平设置为所测信号峰值的1/3处。如果不知道,则触发电平可以设置的稍微小一些。 耦合:直流或交流…?(似乎没什么区别) 3.采样长度(秒/格): 采样长度的设置决定能否采样到所需要的数据。当所设置的采样长度过大时,就会漏掉实际信号中的高频成分;当所设置的采样长度过小时,就只能看到所测实际信号的局部,同样无法得到真实的实际信号。所以,在实际测量时,需来回旋转按钮,仔细观察,直到所显示波形是真实的完整的波形。 4.采样方式:

共模干扰抑制实例

共模干扰抑制实例 安徽电子科学研究所李浩 共模干扰无处不在,一般情况下,消除或抑制共模干扰是设计信号调理电路必须面对的问题。尤其是针对微弱信号采集调理电路,只有采集妥当的措施才能保证电路具备良好的抑制共模干扰性能,并正常工作。例如心电采集电路,电路所要采集的是人体不同电位点间的电位差,此电位差正常在8mV以下,典型值为1mV。人体又通常不可避免的暴露在工频干扰的空间之中,良好的抑制50Hz工频共模干扰是心电采集电路的基本要求之一。下面以单导联心电采集电路为例,分析共模干扰转化为差模干扰对测量产生影响及右腿驱动电路引入对共模干扰的抑制能力。 单导联包括LA、RA和LL。LA和RA为I导联检测电极,LL为右腿驱动电极。心电芯片中集成的仪表放大器本身具有一定的共模抑制能力,但由于所接导联线长度长,线路布局差异等因数,导致差分输入的两端阻抗不能完全对称,较强的共模干扰就会转换为差分干扰进入仪表放大器,造成较大的输出干扰。心电电路中LL电极实际上是取差分输入端的共模电压经反相后输入到人体,以将差分输入端的共模电压成分抵消或减小。 通过图示分析如下。 (1)理想状态下,无共模干扰,差分输入两端阻抗完全匹配,输出信号完全是两点间电位差。 图1 (2)实际情况下,空间存在共模干扰。 图2 (3)为便于立即结算等效为下图,如果差分输入两端阻抗完全匹配,一定范围内的共模干扰电压V仍不会对输出产生影响。

图3 (4)实际上,差分输入端存在阻抗,如果两端阻抗完全对称,则仍不会对输出产生影响。 图4 (5)等效为以下电路便于理解计算,R LA和R RA等效为两个输入端的阻抗,其差异设计为51kΩ(依据YY1139-2013标准),该阻抗的差异主要源自皮肤-电极阻抗不平衡,即同一患者身上连接的两个电极间的阻抗预期变化较大。如果皮肤-电极阻抗存在不平衡,考虑到任何电极对地的有限阻抗,共模电路将产生差分信号。共模电压之所以取值10V,也是依据YY1139-2013标准。 按下图电路举例计算,差分输入两端将存在0.5mV的差异。由于人体心电信号本身就是在8mV以下,典型值为1mV,由此可见0.5mV的干扰信号不容忽视,如果不采取有效措施,将对输出产生较严重的干扰。 图5 (6)引入驱动电极,抵消共模电压,有效降低共模电压转换为差模电压,进入测量系统产生干扰。右腿驱动电路部分的作用是,获取LA和RA两端的共模电压,经过反相后变

解决电力系统的谐波污染的措施和方法

匡兴杰 北京和利时系统工程股份有限公司(100096) 摘要:为了解决电力系统的谐波污染问题,专家们进行了大量的研究尝试了各种谐波抑制和无功功率补偿措施,从传统的LC滤波到有源电力滤波,各种各样的谐彼抑制技术层出不穷。文中针对电力系统的实际情况,就抑制谐波、补偿无功功率、消除谐波引起的谐振等问题进行了研究和探讨,对LC无源滤技术作了分析,对混合型有源滤波器等系统作了简单介绍;本文论述了多种防止电力谐波污染的方法和措施,并论述了对高次谐波的抑制具体办法。 关健词:谐波,污染,无功功率补偿,防治措施 1. 前言 电能或电力是公认的清洁动力。但众所周知,它也存在着污染。在电能的形成过程中,如火力发电厂的烟气、灰渣造成的常规环境污染、核电站可能造成的核辐射污染,大型水电站的建设可能出现的生态平衡问题等等。电能形成后,在传递、变换过程中电磁波辐射造成的环境污染等等。 现代技术装备,要求高质量的电能,电能质量,包括电压、频率与波形。电能的质量不仅直接影响用电器具的使用效能,而且它影响到整个国民经济的整体效益以及我国产品在国际上的竞争能力。大量非线性元件引人电力系统,使系统电压波形及电流波形发生畸变。波形畸变给产生畸变波形电流的装置自身、与其相接的其它装置以及电力系统运行都带来不良影响。这些不良影响或危害可以归纳为以下八个方面: 1、激发谐振,引起破坏性的过电流与过电压; 2、产生附加功率损耗,降低效率; 3、引起发热,加速绝缘老化,缩短设备使用寿命; 4、使测量仪表误差增加,影响监控效果与经济效益; 5、使自动装置失灵,控制失控,使设备不能正常运行; 6、使继电保护不能正确动作一误动或拒动; 7、大的有功和无功冲击,造成电压和频率的大幅度波动,将会造成负载,甚至系统的不稳定; 8、电压闪变,恶化工作环境,有害人体健康与工作效率。 这些影响已经严重影响电力用户和供电网的正常工作,并已造成了严重的损失。电压及电流波形畸变最早是由整流器引起的,这种整流器引起的畸变通常都是工频周期的周期性畸变。这类畸变波用傅里叶级数分析最为方便。傅里叶级数把周期畸变波分解为与畸变波频率相同的及无穷多与该频率成整数倍的正弦分量。这些正弦分量就是我们常称的“谐波”。把畸变波引起的危害称为“谐波污染”。这类谐波是电力的电压和电流的谐波。我们把它称为“电力谐波”,习惯上也把谐波污染称作“电力污染”。 电力污染随着现代电力的发展不断出现并日趋严重。电力污染与系统关系密切,实质上是电能质量问题,涉及面广,具有独特的复杂性,难于认识并难于治理。电力污染也随着技术的发展可以得到有效的控制,并最终将与电网运行控制结合起来。电力污染的理论发展与实践,逐步形成自己的理论体系与工程实践,并因此而形成一门新的边缘分支学科一电力环境工程学。 2. 谐波的产生和危害

相关文档