文档库 最新最全的文档下载
当前位置:文档库 › 刀具的基础知识

刀具的基础知识

刀具的基础知识

刀具正常使用是否磨损判断

1、刀具是否磨损,磨损量的大小,最直接的判断方法是听声音,如果切削声音十分沉重或者尖叫刺耳,说明刀具的加工状态不正常,此时可进行简要分析,如果排除了刀具本身质量问题,刀具装夹问题,用刀参数问题,此时应该可以判断是刀具磨损了,需要暂停加工,更换刀具。

2、通过加工中的机床运动状态来判断刀具的磨损情况,如果加工参数,切削用量等设置均合理,加工中机床振动很大,发出―嗡嗡‖,此时可以确定刀具达到了急剧磨损状态,需要更换刀具。

简述刀片使用消耗过程中注意的一些事项

通常五金加工业内,都认同把太多的钱花费在错误的刀片上。虽然知道这个问题存在,但解决方案是什么呢?大多数的五金企业仅是试图采购更便宜的刀片。那的确有一些帮助,但它不是这个问题的解决方案。所以为什么不选择一个更结构化的方法呢?

一些采购员通常在谈判更低的价格过程中花费相当多的时间。但这对整个生产成本的影响是可以忽略的,更不用说生产率了。

实效研究

所有的工厂都有一个废刀片的收集点。不存在比研究废刀片更有兴趣的事情,它导致了一个刀片是被如何使用(滥用)的实用主义观点的形成,而且这种手段能被用于实现成本的降低。

考虑事项应该是以下这些易于测量的因素:

使用多少种不同形式的刀片?

刀片拥有的切削刃数量的平均值是多少?

相对于切削刃长度而言,所使用的切削刃占据多大的百分比?

磨损、破坏或未使用的切削刃各有多少数量?

本文的内容是以对一个山高刀具的大客户所进行的研究为基础的。这个研究的结果代表了我们公司常规开展的与此类似的研究工作。

刀片的差异

要确定的第一个事实是所使用的刀片具有很大的差异。在我们的样本中,共有638种不同的刀片来维持六台CNC车床的运转。好的一面是每种刀片都是各个类别的冠军。但是638种刀片采用每盒10片的包装,意味着要库存6,380个刀片。而所有这些仅仅是维持六台车床的运转。下一个事实是每个刀片的切削刃数量相对较少。在很多车间,车刀片仍然是三角形或菱形。最佳组合切削刃数量(三角形刀片)和切削刃强度(菱形刀片)的凸三角刀片所提供的可能性显然在很多车间还没有足够的认知。

守旧派

在20世纪70年代,最佳的建议是使用大尺寸、强壮的刀片。那个时代所使用的硬质合金虽硬,但韧性不够好。刀片的强度通过其尺寸(大刀片=厚刀片=强度高的刀片)来保证。一个刀片要求其切削刃长度至少大于切削深度的三倍。两样东西已经在同时发生了改变。一方面,用于车削的平均切削深度已经明显降低。

由山高刀具开展的一项研究表明,当今车削加工的平均切削深度约为2.5~3mm.另一方面,当今的第四代硬质合金(以TP2500为例)具有很好的韧性,而且同时其硬度(耐磨性)更高。这意味着对于今日的刀片,

切削刃长度和切削深度之间的关系能发生彻底的改变。最新一代(以MF5为例)的刀片几何角度显然能适合这种新的形势。

破坏未使用的切削刃

当你根据它们在使用中的磨损方式来审视刀片时,形势真的变得清晰起来。切削刃磨损的正确形式是后刀面安全、可预计和可控制的磨损。切削刃不应该破裂。切削刃破裂是因为不正确的使用或者是切削刃的不当选用。在被丢到装磨损切削刃的盒子之前,切削刃必须是被―磨损‖的。还没有用于加工就被丢弃的―新‖切削刃总是惹人注目的。

刀具加工:如何提高车刀的耐用度

除了好的刀具涂层好的切削液外,还有切断热电流回路这种新工艺。

众所周知,金属切削过程中由于切屑变形和摩擦,使切削区域产生了高温,同时由于刀具和工件材料不同,构成了热电偶的两极而产生热电动势,产生了直流热电流。热电流容易强化刀具工作表面的氧化过程,加速了刀具的磨损。在一定条件下,刀具与机床、工件与机床的接触区中,以及机床本身的磨擦副之间的接触区中也会产生热电动势--热电流。切削过程中还产生热磁效应和电磁效应,在高温接触区表面还会产生电子发射--放电现象。

近几年国内外科技人员研究表明,切削过程中所产生的热电流以及其它因素所引起的热电流,这两股热电流都是通过机床--刀具--工件--机床系统形成回路。与此同时还有局部的热电流在刀具--工件有限的接触区内循环,因此,加剧了刀具的磨损。所以,提高刀具切削性能和提高刀具耐用度除上述基本途径外,还可采用一种新的途径--即与强化刀具磨损的热电流效应作斗争,即采取切断热电流回路。

切断热电流回路的方法很简单,即使刀具与机床或工件与机床绝缘,使热电流无法通过切削区域不能形成回路,这样就可以减少金属间亲和性,减少了积屑瘤和鳞刺的产生,从而提高了刀具切削性能,提高了刀具耐用度和加工质量。

如何切断热电流回路。对车工来说,在车刀上下面上各用一块胶木垫刀板或塑料垫刀板,使刀杆上下平面、侧面与机床上的方刀架绝缘;对铣工、刨工来说,若用平口钳装夹工件,在钳口与工件之间垫胶木板或橡胶板,使工件与平口钳绝缘;对钻头和立铣刀来说,可采用高强度塑柄钻头和塑柄立铣刀,使刀柄与机床主轴孔绝缘。

通过生产实践证明,切断热电流回路特别适用于加工高强度、高硬度、难切削加工材料的加工才能显示其效果,通常可提高刀具耐用度1~2倍。因此,它是行之有效的一种最简单、最容易实现的方法。

刀具补偿的定义及分类

阅读:819

1、定义

由于CNC系统通过控制刀架的参考点实现加工轨迹,但实际上切削时是使用刀尖或刀刃边缘完成,这样就需要在刀架参考点与刀具切削点之间进行位置偏置,从而使数控系统的控制对象由刀架参考点变换到刀尖或刀刃边缘。这种变换的过程就称之为刀具补偿。

2、分类

刀具补偿一般分成刀具长度补偿和刀具半径补偿.并且对于不同类型的机床与刀具,需要考虑的补偿形式也不一样。对于铣刀而言,主要是刀具半径补偿:对于钻头而言.只有刀具长度补偿;但对于车刀而言,却需要两坐标长度补偿和刀具半径补偿。其中有关的刀具参数,如刀具半径、刀具长度、刀具中心的侗移量等均是预先存入刀补表的,不同的刀补号对应着不同的参数,偏程员在进行程序编制时,通过调用不同的刀具号来满足不同的刀补要求。

3、不同刀具补偿示意图

刀具真空热处理技术突出的优点

据了解,刀具真空热处理技术具有一系列突出的优点:真空热处理具有防氧化的作用。表面不氧化、不脱碳、并有还原除锈作用,省却刀具的粗加工工序,可节约昂贵的刀具钢材和原辅材料的消耗,节省加工时间,降低产品成本;真空热处理具有真空脱气、脱脂作用并无氢脆危险,防止刀具材料难熔金属的表面脆化,使刀具材料表面纯度提高,提高刀具的疲劳强度、塑性和韧性及耐腐蚀性,提高刀具的使用寿命;真空热处理具有淬火变形小,可减少常规淬火变形的校正应力存在,降低刀片使用过程中断裂的可能性,真空热处理刀片的变形为盐浴淬火的1/2-1/10,淬火后一般不需要校正就可精磨加工至成品;真空热处理工艺的稳定性和重复性好。一旦工艺确定,只要输入工艺程序,热处理操作将自动运行。避免常规热处理工艺不稳定造成的刀具质量波动;真空热处理耗电少,电能消耗为常规热处理的80%,生产成本低,但一次性投资成本大;真空热处理操作安全、自动化程度高,工作环境好,无污染无公害,符合我国工业企业清洁生产和持续发展的要求。

深冷技术在刀具产品上的应用是从模具工业应用演变而来。深冷处理与热处理一样,它与材料特性,处理温度,处理速度有很大关系,不同的处理方法其效果有明显不同。深冷技术是对材料在低于-130℃进行处理的一种工艺方法,深冷处理不仅可以显著提高刀具的力学性能和使用寿命,稳定尺寸,改善均匀性、减少变形,而且操作简便,不破坏工件,无污染,成本低,对刀具质量的提高有很大的帮助。

刀具结构和分类

刀具的分类

刀具按工件加工表面的形式可分为五类:

■ 加工各种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉刀和锉刀等;

■ 孔加工刀具,包括钻头、扩孔钻、镗刀、铰刀和内表面拉刀等;

■ 螺纹加工刀具,包括丝锥、板牙、自动开合螺纹切头、螺纹车刀和螺纹铣刀等;

■ 齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀具等;

■ 切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等。

此外,还有组合刀具。

按切削运动方式和相应的刀刃形状,刀具又可分为三类:

■ 通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;

■ 成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;

■ 展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。

刀具的结构

各种刀具的结构都由装夹部分和工作部分组成。整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。

刀具的装夹部分有带孔和带柄两类。带孔刀具依靠内孔套装在机床的主轴或心轴上,借助轴向键或端面键传递扭转力矩,如圆柱形铣刀、套式面铣刀等。

带柄的刀具通常有矩形柄、圆柱柄和圆锥柄三种。车刀、刨刀等一般为矩形柄;圆锥柄靠锥度承受轴向推力,并借助摩擦力传递扭矩;圆柱柄一般适用于较小的麻花钻、立铣刀等刀具,切削时借助夹紧时所产生的摩擦力传递扭转力矩。很多带柄的刀具的柄部用低合金钢制成,而工作部分则用高速钢把两部分对焊而成。

刀具的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。有的刀具的工作部分就是切削部分,如车刀、刨刀、镗刀和铣刀等;有的刀具的工作部分则包含切削部分和校准部分,如钻头、扩孔钻、铰刀、内表面拉刀和丝锥等。切削部分的作用是用刀刃切除切屑,校准部分的作用是修光已切削的加工表面和引导刀具。

刀具工作部分的结构有整体式、焊接式和机械夹固式三种:

■ 整体结构是在刀体上做出切削刃;

■ 焊接结构是把刀片钎焊到钢的刀体上;

■ 机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。

硬质合金一般制成焊接结构或机械夹固结构;瓷刀具都采用机械夹固结构。

刀具切削部分的几何参数对切削效率的高低和加工质量的好坏有很大影响。增大前角,可减小前刀面挤压切削层时的塑性变形,减小切屑流经前面的摩擦阻力,从而减小切削力和切削热。但增大前角,同时会降低切削刃的强度,减小刀头的散热体积。

在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。

刀具应具备的性能

金属切削过程中,刀具切削部分承受很大切削刀和剧烈摩擦,并产生很高的切削温度;在断续切削工作时,刀具将受到冲击和产生振动,引起切削温度的波动。为此,刀具材料应具各下列基本性能:

1.硬度和耐磨性

2.强度和韧性

3.热硬性

4.工艺性与经济性

选择刀具时也应当关注精度原则

除了在《刀具选择的效率原则》中介绍的加工效率原则之外,刀具对加工精度的影响也是需要考虑的,尤其是在精加工等加工精度、表面质量要求比较高的应用场合。

在粗加工的条件下,我们一般都会采用效率优先原则。在这一阶段,快速去除工件毛坯上的加工余量,快速接近工件完工尺寸的―净尺寸‖状态,是我们考虑刀具选择及加工参数的第一因素。

但在精加工的条件下,情况会有很大差别。精加工时我们应该采用精度优先原则,即首先保证加工的尺寸精度、表面粗糙度和表面质量。

现在典型的一种以保证精度为优先考虑的刀具被国外许多刀具厂商所青睐,这就是接近完美90°主偏角的立铣刀。我们从数学上可以得出,如果用一个平面(对于刀具是前刀面)去截一个圆柱面(理想的切削刃绕刀具轴线所形成的表面),只有在该平面包含圆柱面轴线(即刀具轴向前角为零)时,其截交线才会时一段直线。但这时刀刃受力通常不理想,我们常常需要用一个正的轴向前角来改善刀具的切削性能。但这样一来就产生了回转面的形状精度问题:一根交错的直线(切削刃)绕刀具轴线回转所产生的不是圆柱面,而是双曲面。只有切削刃成为椭圆的一部分时,它绕刀具轴线回转的结果才会形成圆柱面。于是国外一些刀具公司先后开发了这样的刀具:肯纳金属的被称为Mill1,山特维克可乐满的被称为R390,而瓦尔特的则被称为F4042。这些刀具的本质都是一样的,他们用一段曲线形的切削刃来构筑接近完美的圆柱面。虽说不同直径的铣刀应该有不同的曲线,而刀片生产的经济性要求又不允许这样做,各厂用在不同直径上选用不同轴向前角的方法来改善其中的差异。

这种产品开发的思路值得国内厂家好好学习。研究用户的需要,分析目前存在的问题,进而想方设法去为客户解决这些问题,是企业不断创新、不断进步、不断满足客户增长的需求的有效手段。

还有一些刀具是经过改进,能够一次加工达到最终质量要求的。也就是在原本用于粗加工的刀具上引入精度改进方案,从而使一次加工获得更好的精度和表面质量。

2006年5月在苏州举行的高速加工国际研讨会(ICHSM, InternationalConference of High SpeedMachine)上,德国达姆斯特大学的PTW研究所介绍了他们对钻削的一些研究成果。其中有一部分就是关于钻头不对称对钻削精度的影响。研究表明,对称的钻头的两个切削刃形成的是一个完整的圆形,如下图(黑色是钻芯轨迹,红色与蓝色分别是两个钻尖拐角的轨迹)。

而如果钻芯不对称,则会形成非圆的形状。

我知道那是一种叫等轴曲线。等轴曲线的特点是任何对边的尺寸是相等的。这样就是钻头钻出的孔(尤其是钻入部分)丧失精度。一些廉价的钻头和廉价的刃磨设备导致或是助长了这种现象。最终用户可能不得不增加一道扩孔的工序来纠正这种形状精度的误差。

因此,重视刀片选择的精度原则同样可以帮助我们提高竞争能力。

刀具的选择和切削用量的确定

刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。

现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。

一、数控加工常用刀具的种类及特点

数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种;②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。

数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点:

⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小;

⑵互换性好,便于快速换刀;

⑶寿命高,切削性能稳定、可靠;

⑷刀具的尺寸便于调整,以减少换刀调整时间;

⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除;

⑹系列化,标准化,以利于编程和刀具管理。

二、数控加工刀具的选择

刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便,刚性好,耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。

选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。

在进行自由曲面加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般取得很能密,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。

在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具,迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。目前我国的加工中心采用TSG工具系统,其刀柄有直柄(三种规格)和锥柄(四种规格)两种,共包括16种不同用途的刀柄。

在经济型数控加工中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则:①尽量减少刀具数量;②一把刀具装夹后,应完成其所能进行的所有加工部位;③粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具;④先铣后钻;⑤先进行曲面精加工,后进行二维轮廓精加工;⑥在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。

三、数控加工切削用量的确定

合理选择切削用量的原则是,粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书、切削用量手册,并结合经验而定。

刀具库的基本结构及设置方法

本文主要对刀具库的基本结构及设置方法进行探讨,以建立适合车间使用的刀具库。

1.铣削刀具库的结构及设置规定

刀具库由刀具库规定说明以及若干个单独的刀具描述段组合而成,每个描述段又由9行组成,对刀具作具体说明,单个刀具描述段之间由一个空描述段隔开。下面分别对各行进行详细说明。

(1)刀具库的注释说明注释说明的每行以#开头,后接说明语句,包括刀具库的建立日期,设置方法,各参数意义等。如#刀具库格式MonJan1414:51:192002。

(2)刀具描述段的组成刀具描述段共由9行组成。第1行以TOOL开始,说明刀具定义开始,行号必须标出,而且后跟―‖,两者中间以空格隔开,结果为:1——TOOL,以下各行规定和本行相同。第2行说明刀具材料,系统规定各数字代表材料为:1——HSS, 2——CARBIDE,3——COATEDCAR,4——CERAMIC, 5——BORZON, 10——UNKNOWN,设置时应用数字代表填入。第3行为对刀具进行注解。第4行指定刀具名称。第5行指定刀具制造厂。第6行指定刀具夹头。第7行指定刀具各项参数。按照刀具号码、刀具型式、半径型式、直径、刀角半径crad、螺纹头数thds、刀尖角度、半径补正、刀长补正、XY进给率、Z轴进给率、提刀速率、主轴转速、冷却液、刃数顺序指定各个刀具的各项参数,各参数之间以空格隔开,0可以不带小数点。第8行指定刀具钻孔、铣削属性。钻孔属性包括以下内容:循环类型cycle,首次下刀深度peck1,其余下刀深度peck2,安全间隙peckclr,切削回缩量chipbrk,暂留时间dwell,肩部角度shldrangle,螺纹小径rootdia(tap),镗孔偏移量boreshift。铣削属性包括以下内容:适用切削形态cutable(粗加工、精加工或者两者都可以),粗加工步距rghx(以刀具直径的百分率指定),粗加工步距rghz,精加工步距finx,精加工步距finz,刀尖角度tipdia,刀具根圆直径rootdia(螺纹铣刀),刀尖角度thdangle。第9行指定夹头以及刀具几何参数,刀端中心孔直径pilotdia,切刃长flutelen,刀长oalen,刃长shldrlen,刀柄直径arbordia,夹头直径hldrdia,夹头长度hldrlen,主轴旋转方向spindleccw,转速sfm(线速度),每刃切削量fpt,计量方法metric。

必须注意,所有的刀具设定必须包含9行以及―TOOL‖标头,如果不标定则必须以空格代替内容。

(3)各参数描述段中所有信息(如刀具型式、刀具切削能力、刀角半径、冷却液形式、主轴旋转方向、加工循环等)应遵循有关规定。

2.铣削刀具库的设置方法

(1)基本刀具库的建立在mill-tools目录下系统已经建立起各常用刀具的基本图形,我们可以利用它建立基本刀具库。

1)用记事本建立一文本文件(*.TXT),按规定格式将刀具参数加入文件中,将文件存入C:-Mcam8-mill-tools目录下,文件名的命名规则按照通常规定,如slider.txt。

2)运行Mill8,在主菜单中单击―NC管理‖→―定义刀具‖→―资料库‖,在出现的刀具管理对话框中单击右键,在快捷菜单中单击―由文字产生刀具库‖,如打开读取对话框,指定你产生的文本文件slider.txt后,按确定,出现指定保存的刀具库的路径对话框,命名slider确定即可。

3)将slider.txt和slider.tl8保存到C:-Mcam8-Mill-Tools目录下(假设软件安装在C:-Mcam8目录下)。

4)使用时调用刀具库。

(2)自定义刀具的建立

1)绘制刀具的半剖图存至C:-MCAM8-MILL-TOOLS目录中,绘图时x方向半径的长度按照1mm绘制。

2)在主菜单中单击―NC管理‖→―定义刀具‖→―当前‖,打开刀具管理对话框,右键点击快捷菜单中―建立新刀具‖,打开定义刀具框,指定直径。

3)点击刀具类型标签中自定义按钮。

4)点击―参数标签‖中的―选择‖按钮,选择前面保存的刀具后保存。

5)如果要保存至刀具库,选择―savetolibrary‖。

(3)使用效果实际加工时可根据车间现有刀具进行切削方式的选用,杜绝了NC程序的不适用性,在进行刀具路径的参数设置时,刀具部分的参数已经不用再重新定义,减少刀具参数的设置时间。

如何保养刀具

一把保养得好的刀是你有用的伙伴。每一个负责和爱惜刀具的使用者(指我们所有人!)应该懂得保养刀具的基本方法。术语"刀照料"当然不仅仅是磨刀,在这篇文章中我将重点谈到刀具保养的几个要点,把这些建议和提示与你已有的磨刀知识结合起来,可以帮助你把你的刀具始终保持在最佳状况。

刀锋:不生锈!

刀具最大的敌人就是生锈,即使厂商使用不锈钢来制造刀刃,你也不要傻到以为你的刀永不可能生锈。只要条件合适,锈斑会毫不犹豫地出现在不锈钢面上。尤其是在沿海环境中使用刀具时,更加要注意这个问题,因为海边的空气比其他地方潮湿,并混合有盐份。因此在刀锋表面涂上一层润滑油来保护刀刃的钢面不直接接触含盐份的潮湿空气侵蚀。任何一款润滑油都可以起到这个作用。我用的是―三合一‖(3In-One)的牌子的润滑油,你可以在附近的五金店或家居中心买到它。另外,它还可以用来作为折刀润滑油,但是,在你这样用它之前,我建议你最好先读后面关于折刀润滑油的部分。WD-40也非常有效,但我不太愿意用它,因为当你用刀的时候,油的味道会沾到手上。如果刀直接沾到海水,你应该在用完后立刻用净水冲洗,然后上油。

给很受欢迎的―蝴蝶‖BenchmadeCQC7用户的忠告是电镀表面很容易生锈。这种生锈被我称为表面锈,它不会渗入钢材内部。我曾亲身经历过这种情况,那是在一个又炎热有潮湿的夏天,我一连好几天把我的CQC7970S别在腰带上,汗水在刀刃上凝干后,留下了淡褐色的锈迹。我一发现,就滴了几滴3In-One油在有锈斑的地方,并用布轻轻地揩拭,很容易就把锈斑去掉了,后来我常常记得上油,刀也没有再生锈。

折刀润滑油——很重要的章节

保养折刀的另一个要点是注意折刀的枢轴部分的润滑,3In-One润滑油同样很有用,只要几滴就足够了。在用过不同润滑剂之后,我很高兴告诉大家我终于找到了完美的折刀润滑油。它叫?quot;Dri-Lube",是美洲的首位枪品牌厂商,雷明顿(Remington)出品的。它用的是喷雾头(不含CFC,可以放心使用!),含有特氟隆。我一直用这种润滑油,质感润滑,很棒!

建议用Dri-Lube来作折刀润滑油的几个理由是:

1、它不含水分,喷后只留下薄层,不沾染,不会形成凝结状水迹,总之不会弄脏刀身;

2、这个薄层不会吸附纤维和灰尘,不知是什么原因,折刀很容易吸附微层和纤维;

3、只要喷一点就行了,它不会被冲洗掉或脱落,因此很少一点都可以重复使用,是"很少一点起很大作用的"那类东西。

如果你只用于折刀的话(不过我保证你会忍不住把它用在其他东西的枢轴润滑上!)。在喷口中有一根细管,方便很精确地喷用。请注意使用时要很小心,尤其是用在黑色刀刃的战术折刀上的时候,因为润滑油在黑色电镀材料上干了以后会留下一个反光亮斑,如果不小心沾上了,只要用肥皂和水洗掉就行了。

有了润滑油是一回事,而知道把它用在哪是另一回事,象Dri-Lube这样的喷雾润滑油最好用在线锁刀上。将喷头细管口对准刀具枢轴部分喷上即可,然后再开、关刀几次,如果需要就再多喷一点。对背锁式和滑动联结式的刀来说,技巧有点不同。将喷头对准刀刃和刀柄交界处的空隙上油就行了。最好的做法是,打开刀刃与刀柄成90度垂直,然后上油,再反复开关刀多次,使润滑油完全渗进去。定期地作好这个工作,确保你的折刀始终在最佳状态。

刀是我们每天生活中的不可缺少伙伴和工具,也是一种投资,所以我们有充分的理由来保养好我们的刀。

精心保养的好刀更好用,也用得更久,能陪伴我们更长时间。以上的心得是建立在我多年收集和使用刀具的经验的基础上的,除此之外,你还应该查阅制造商随刀具一起销售的保养文档。

预调和测量刀具的重要性

预调和测量刀具正在变得越来越重要。从机床制造商将对刀仪和测量设备与他们的机床一起打包销售开始,似乎每个人都开始意识到测量和预调刀具的重要性。

但是,事实上测量和预调刀具并未得到应有的重视。人们往往根据价格决定购买哪种对刀仪和测量设备–许多公司都希望以低廉的价格获得高质量且能立刻投入使用的对刀仪,因此他们通常的选择就是以低价购买一台简单的对刀仪,但结果往往事与愿违!

图示: 在 ?pilot 3.0?系统中显示存储的刀具数据

简单且低价的对刀仪通常都很难操作,并且其精度完全取决于操作者,因此出现设备碰撞是难以避免的。 ZOLLER 可以避免您的加工中心出现设备碰撞!全自动的ZOLLER 对刀仪和测量设备非常易于操作,在您使用它的第一年就能因为没有设备碰撞而挣回价格高出的部分 (与手动对刀仪相比) 。

ZOLLER 对刀仪和测量设备的操作员只需为要预调的刀具选择相应的设备。零点,用于指定格式数据输出的网络、路径和后处理器,用于刀具识别系统的数据串,所有这些数据都已事先定义,从而可以避免输入错误。

图示: 在 ?pilot 3.0?系统中显示存储的刀具数据

操作员可以立刻获得此台机床上所用全部刀具的总览,或者需使用刀具的刀具列表。选择要预调或测量的刀具,按开始键立即开始测量刀具,也可根据需要手动预调刀具,预调精度可达μ 级。整个操作过程万无一失,彻底杜绝设备碰撞。全自动ZOLLER 对刀仪和测量设备可用于测量、预调和检查刀具。它能为每一位用户带来真正的收益。请设想一下,如果您有5 台CNC 数控机床,您将看到配备自动聚焦功能和各种软件的ZOLLER CNC 数控对刀仪和测量设备在一年内为您带来至少100,000.- 欧元的利润。独立于操作者且能对刀具进行全自动测量、精度可达μ级、为您实现μ 级精度的预调,所有这一切就像儿童游戏一样简单。

硬质合金刀具科普知识

刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以"刀具"一词一般就理解为金属切削刀具。切削木材用的刀具则称为木工刀具。

刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。

然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。

那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。

在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。

由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。1938年,德国德古萨公司取得关于陶瓷刀具的专利。1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。这些非金属刀具材料可使刀具以更高的速度切削。

1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。

刀具按工件加工表面的形式可分为五类。加工各种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉刀和

锉刀等;孔加工刀具,包括钻头、扩孔钻、镗刀、铰刀和内表面拉刀等;螺纹加工工具,包括丝锥、板牙、自动开合螺纹切头、螺纹车刀和螺纹铣刀等;齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀具等;切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等。此外,还有组合刀具。

按切削运动方式和相应的刀刃形状,刀具又可分为三类。通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。

各种刀具的结构都由装夹部分和工作部分组成。整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。

刀具的装夹部分有带孔和带柄两类。带孔刀具依靠内孔套装在机床的主轴或心轴上,借助轴向键或端面键传递扭转力矩,如圆柱形铣刀、套式面铣刀等。

带柄的刀具通常有矩形柄、圆柱柄和圆锥柄三种。车刀、刨刀等一般为矩形柄;圆锥柄靠锥度承受轴向推力,并借助摩擦力传递扭矩;圆柱柄一般适用于较小的麻花钻、立铣刀等刀具,切削时借助夹紧时所产生的摩擦力传递扭转力矩。很多带柄的刀具的柄部用低合金钢制成,而工作部分则用高速钢把两部分对焊而成。

刀具的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。有的刀具的工作部分就是切削部分,如车刀、刨刀、镗刀和铣刀等;有的刀具的工作部分则包含切削部分和校准部分,如钻头、扩孔钻、铰刀、内表面拉刀和丝锥等。切削部分的作用是用刀刃切除切屑,校准部分的作用是修光已切削的加工表面和引导刀具。

刀具工作部分的结构有整体式、焊接式和机械夹固式三种。整体结构是在刀体上做出切削刃;焊接结构是把刀片钎焊到钢的刀体上;机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。硬质合金刀具一般制成焊接结构或机械夹固结构;瓷刀具都采用机械夹固结构。

在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度,在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小,制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。

通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。

聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。

硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上

由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。

机夹可转位车刀基本知识

一、车刀的结构

机夹可转位车刀是将可转位硬质合金刀片用机械的方法夹持在刀杆上形成的车刀,一般由刀片、刀垫、夹紧元件和刀体组成(见图1)。

图1 机夹可转位车刀组成

根据夹紧结构的不同可分为以下几种形式。

·偏心式(见图2)

偏心式夹紧结构利用螺钉上端的一个偏心心轴将刀片夹紧在刀杆上,该结构依靠偏心夹紧,螺钉自锁,结构简单,操作方便,但不能双边定位。当偏心量过小时,要求刀片制造的精度高,若偏心量过大时,在切削力冲击作用下刀片易松动,因此偏心式夹紧结构适于连续平稳切削的场合。

图2 偏心式夹紧结构组成

·杠杆式(见图3)

杠杆式夹紧结构应用杠杆原理对刀片进行夹紧。当旋动螺钉时,通过杠杆产生夹紧力,从而将刀片定位在刀槽侧面上,旋出螺钉时,刀片松开,半圆筒形弹簧片可保持刀垫位置不动。该结构特点是定位精度高、夹固牢靠、受力合理、适用方便,但工艺性较差。

图3 杠杆式夹紧结构组成

·楔块式(见图4)

刀片内孔定位在刀片槽的销轴上,带有斜面的压块由压紧螺钉下压时,楔块一面靠紧刀杆上的凸台,另一面将刀片推往刀片中间孔的圆柱销上压紧刀片。该结构的特点是操作简单方便,但定位精度较低,且夹紧力与切削力相反。

图4 楔块式夹紧结构

不论采用何种夹紧方式,刀片在夹紧时必须满足以下条件:①刀片装夹定位要符合切削力的定位夹紧原理,即切削力的合力必须作用在刀片支承面周界内。②刀片周边尺寸定位需满足三点定位原理。③切削力与装夹力的合力在定位基面(刀片与刀体)上所产生的摩擦力必须大于切削振动等引起的使刀片脱离定位基面的交变力。夹紧力的作用原理如表1所示。

表1

二、几何参数和切削性能

可转位车刀片的形状有三角形、正方形、棱形、五边形、六边形和圆形等,是由硬质合金厂压模成形,使刀片具有供切削时选用的几何参数(不需刃磨);同时,刀片具有3个以上供转位用的切削刃,当一个切削刃磨损后,松开夹紧机构,将刀片转位到另一切削刃,即可进行切削,当所有切削刃都磨损后再取下,换上新的同类型的刀片。

可转位车刀片按照用途可分为外圆、端面半精车刀片,外圆精车刀片,内孔精车刀片,切断刀片和内外螺纹车刀片。此外,刀片又分为带孔无后角和不带孔有后角两种,刀片中的孔是为夹持刀片用,若刀片有后角,刀片在装人刀槽时,就不需要安装出后角,若刀片无后角,则在刀片装人刀槽时,就需要将刀片安装出一定后角。下面是两种典型机夹车刀片和车刀的几何参数。

·精车机夹车刀刀片:前角γ=20°,主后角α=8°~9°,副后角α'=6°~8°,主偏角K r=90°,副偏角K r'=5°,刃倾角λ=0°~1°,倒刃为-5°×(0.05~0.1),过渡圆弧半径R=0.1~0.2mm(见图5)。

图5 精车刀片刃磨(工作)几何参数

·半精车机夹车刀刀片:前角γ=20°,后角α=6°~7°,主偏角K r=90°、45°和80°三种,副偏角K r'=10°和45°两种,倒刃为-5°×(0.2~0.5),过渡圆弧半径R=0.2~0.5mm(见图6)。

图6 半精车刀片刃磨(工作)几何参数

精车机夹车刀一般采用工作前角20°,主后角8°~9°,楔角β≤62°。通过切削实践可知,增大楔角会使切削抗力增大,反之减小楔角,切削抗力也会减小,在精加工时应采用较小楔角,从而使刀具锋利,切削轻快。刃倾角通常选为0°~1°,选择小的刃倾角能使切屑在断屑槽内向刀体后部排出,以免划伤已加工表面。副后角、副偏角较小,使副后刀面与工件已加工面有较长的接触面积,达到修整切削谷峰轨迹、降低表面粗糙度的目的。主偏角为90°,既能降低径向切削抗力,又能适应多台阶零件的加工。

半精车机夹车刀多用于粗加工和半精加工,切削时多带有冲击负荷,对切削时有冲击负荷的刀具主偏角通常设为45°和80°两种,切削时不带冲击负荷的刀具主偏角通常为90°。主偏角45°和80°的半精车机夹车刀刀尖角为90°,以增强刀尖强度;主偏角为90°的半精车机夹车刀刀尖角为80°。刃倾角为0°~1°,后角为6°~7°,倒刃为-10°×(0.1~0.2),有时可根据切削实际情况刃磨至0.5mm宽。

由上述分析可知,精加工机夹车刀设计的原则是增强刀具锋利度和获得较理想的表面质量,半精加工机夹车刀设计的原则是增强刀具强度。由于可转位车刀的角度是由刀片的角度和刀杆上刀片槽底面的角度综合而成,因此其值为相关部分几何角度的代数和。

表2

CBN等超硬材料。高速钢刀具锋利、韧性好,硬质合金刀具硬度高但韧性差。硬质合金刀具的密度明显大于高速钢刀具。这二种材料是钻头、绞刀、铣刀和丝锥的主要材料。粉末冶金高速钢的性能介于上述二者材料之间,主要用于制造粗铣刀和丝锥。

高速钢刀具因材料韧性好,故对碰撞不太敏感。但硬质合金刀具硬度高而脆,对碰撞很敏感,刃口易蹦。所以,在修磨过程中,必须对硬质合金刀具的操作和放置十分小心,防止刀具间的碰撞或刀具摔落。

二、刀具磨床

由于刀具材料很硬,所以,一般只能采用磨削来改变其外形。在刀具的制造、修磨中常见的刀具磨床有以下几种:

1磨槽机:磨钻头、立铣刀等刀具的槽或背。

2磨顶角机:磨钻头的锥形顶角。

3修横刃机:修正钻头的横刃。

4手动万能刀具磨床:磨外圆、槽、背、顶角、横刃、平面、前刀面等。常用于数量少、形状复杂的刀具。

5 五轴联动CNC磨床:功能由软件确定。一般用于修磨数量大、精度要求高、但不复杂的刀具,如钻头、立铣刀等。

三、砂轮

1 磨粒

不同材质的砂轮磨粒适合于磨削不同材质的刀具。刀具的不同部位需要使用的磨粒大小也不同,以确保刃口保护和加工效率的最佳结合。

氧化铝:用于磨HSS刀具。砂轮价廉,易修正成不同的外形用于修磨复杂的刀具。

碳化硅:用于修正CBN砂轮和金刚石砂轮。

CBN(立方碳化硼):用于磨HSS刀具。价高,但耐用。国际上,砂轮用B来表示,如B107,其中107表示磨粒直径的大小。

金刚石:用于磨HM刀具,价高,但耐用。砂轮上用D来表示,如D64,其中64表示磨粒直径的大小。

2 形状

为了方便磨削刀具的不同部位,砂轮应有不同的形状。最常用的有:

- 平行砂轮(1A1):磨顶角、外径、背等。

- 碟形砂轮(12V9, 11V9):磨螺旋槽、铣刀的主、副切削刃,横刃等。

砂轮经过一段时间的使用后需要修正其外形(包括平面、角度及圆角R)。砂轮必须经常用清理石把填充在磨粒间的切屑清理掉以提高砂轮的磨削能力。

四、刀具参数

1名称定义

在此约定:在硬质合金钻头中,使刀刃钝化的工序叫―倒刃‖,倒刃的宽度与被切削材料有关,一般在

0.03-0.25mm之间。在棱边上(刀尖点)倒角的工序叫―倒棱‖。

在立铣刀中,圆周面上的刃为主切削刃。端面上的刃为副切削刃。

2 HM钻头与HSS钻头的区别

HSS钻头:顶角一般是118度,有时大于130度;刀刃锋利;对精度(刃高差、对称度、周向跳动)要求相对低。横刃有多种修法。

HM钻头:顶角一般为140度;直槽钻常常为130度,三刃钻一般为150度。刀刃和刀尖(棱边上)不锋利,往往被钝化,或称倒刃和倒棱;对精度要求高。横刃常被修成S-形,以利于断屑。

五、修磨要则

1 正确选用砂轮(种类、型号)。

2对新到的刀具,先测量主要几何参数并作记录存档,尤其要记录钻头的倒刃、倒棱及横刃修正情况。

3 先输入砂轮数据,再输入刀具的数据。

4 修磨后测量刀具主要参数、并与修磨标准比较后再修正。

切削加工行业切削刀具专业术语

切屑量:刀具每个刀槽切去材料的量

进料速率:刀具每个刀刃进入工件的速率——英寸/每分

英寸/每分(IPM):刀具每分钟内进入工件的线形距离,用英寸表示。

切削深度(DOC):端铣刀沿轴向方向进入部件表面后的深度。使用电脑数控机器铣削时,通常以Z轴方向为标准。

英寸/每转(IPR):刀具每转的进料速率。以英寸为单位,刀具的进料速率可以用它来计算。

I.P.R. = 切削量×刀槽数

毫米/每转(MMPR):刀具每转的进料速率。以米制为单位,刀具的进料速率可以用它来计算。

M..M.P.R. = 切削量×刀槽数

米/每分(MPM):端铣刀的切削速度,这种米制单位在所有地区均适用。该单位表示刀具穿过部件的速率。

转/每分(RPM):刀具接轴的运行速率,这个值可用MPM或SFPM单位计算而得。

表面英尺/每分(SFPM):这是美国使用的端铣刀切削速率的单位。它表示刀具在一个给定位置每分钟转过的周长,用英尺来表示。

使用刀具时要选择合适的切削速度、进料速度以及切削深度

购买者在使用端铣刀时一定要注意以下参数:

SFPM:刀具表面切削速率

切屑量:刀具每个刀槽切去材料的量

切削深度:根据具体的部件选择

注意:切削深度不要超过刀具槽深,切的太深会有损刀具。如果需要切的更深时,就换一个直径再大一些的刀具,要始终保持刀具直径和切削深度的比例为1:1

切削宽度:最大不要超过刀具直径的2/3。

切削工具的分类与选型

刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。

绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以―刀具‖一词一般就理解为金属切削刀具。切削木材用的刀具则称为木工刀具。

刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。

然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。

那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。

在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。

由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。1938年,德国德古萨公司取得关于陶瓷刀具的专利。1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。这些非金属刀具材料可使刀具以更高的速度切削。

1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。

刀具按工件加工表面的形式可分为五类。加工各种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉刀和锉刀等;孔加工刀具,包括钻头、扩孔钻、镗刀、铰刀和内表面拉刀等;螺纹加工工具,包括丝锥、板牙、自动开合螺纹切头、螺纹车刀和螺纹铣刀等;齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀具等;切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等。此外,还有组合刀具。

按切削运动方式和相应的刀刃形状,刀具又可分为三类。通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。

各种刀具的结构都由装夹部分和工作部分组成。整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。

刀具的装夹部分有带孔和带柄两类。带孔刀具依靠内孔套装在机床的主轴或心轴上,借助轴向键或端面键传递扭转力矩,如圆柱形铣刀、套式面铣刀等。

带柄的刀具通常有矩形柄、圆柱柄和圆锥柄三种。车刀、刨刀等一般为矩形柄;圆锥柄靠锥度承受轴向推力,并借助摩擦力传递扭矩;圆柱柄一般适用于较小的麻花钻、立铣刀等刀具,切削时借助夹紧时所产生的摩擦力传递扭转力矩。很多带柄的刀具的柄部用低合金钢制成,而工作部分则用高速钢把两部分对焊而成。

刀具的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。有的刀具的工作部分就是切削部分,如车刀、刨刀、镗刀和铣刀等;有的刀具的工作部分则包含切削部分和校准部分,如钻头、扩孔钻、铰刀、内表面拉刀和丝锥等。切削部分的作用是用刀刃切除切屑,校准部分的作用是修光已切削的加工表面和引导刀具。

刀具工作部分的结构有整体式、焊接式和机械夹固式三种。整体结构是在刀体上做出切削刃;焊接结构是把刀片钎焊到钢的刀体上;机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。硬质合金刀具一般制成焊接结构或机械夹固结构;瓷刀具都采用机械夹固结构。

刀具切削部分的几何参数对切削效率的高低和加工质量的好坏有很大影响。增大前角,可减小前刀面挤压切削层时的塑性变形,减小切屑流经前面的摩擦阻力,从而减小切削力和切削热。但增大前角,同时会降低切削刃的强度,减小刀头的散热体积。

在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。

制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。

通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。

聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。

硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。

由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。

刀具选择的效率原则

在金属切削加工中,刀具选择几乎是每一个工艺工程师必须面临的问题。

刀具选择要考虑许多问题,相应地就有许多原则,如效率原则,加工精度原则,稳定性原则,经济性原则等等。

今天,我在这里想简单地谈一下效率原则。

效率原则其实与其它原则不可分割,尤其是经济性原则。要求效率的主要目的,就是保证整个加工的经济性。但效率特别重要,所以我把它独立出来,单独讨论一下。

效率原则首先是在保证可接受的加工精度和可接受的稳定性前提下的效率。没有这个基本条件,效率无从谈起。就像我们希望我们的交通工具(譬如汽车)能够给我们带来更快的速度,但安全常常是第一位的。一旦有飞机失事后,许多人会慎重考虑是否真的继续选择飞机出行,航空公司也会重新审视已有的安全策略。没有安全,飞机就不会成为首选的交通工具。刀具的选择同样如此。

其次,我们也不会在所有的条件下都强调效率。追求效率有我们的一些约束条件。一个零件的加工效率提高需要与其它零件的效率相适应,一个工序的效率提高更需要与其它工序的效率相适应。如果忽视这些约束条件,一味追求效率,会吃力不讨好的。就像上海到北京的火车,现在在晚上8点左右发车,第二天早上10点到达。如果能够提前到8点到达,也许最受欢迎;但如果提前到6点,也许受欢迎程度反而下降。因为列车员都会在到站前提前一个小时甚至两个小时整理旅客床铺,早上4点或5点起床大部分旅客不会太乐意的。工厂也是如此。尤其在流水线生产的条件下更是如此。我们需要解决的是整个流水线中的―瓶颈‖工序。只要提高了这个工序的生产能力,就能够提高整条生产线的生产能力,提高整个产品的生产能力,缩短制造周期,这是许多企业所期望的。

而单机或柔性制造系统的需求又不一样。他们所受的约束较少,即与其它工序的相关度较小。由于柔性化,某个零件或某个工序制造周期的缩短常常意味着能够使该设备投入其它零部件或其它工序的生产,从而创造更多的效益。

我认为在市场竞争日益激烈的今天,企业对工艺工程师的期望已经不是解决简单的工艺问题,而是期望工艺工程师们能对企业有更大的贡献度。如果我们的工艺工程师能从企业全局出发,为企业改进制造流程作出贡献,一定会获得企业主的首肯和赞许。

就国外现代金属加工企业调查的数据,刀具本身在制造成本中所占的比例并不是很高,通常在2%~4%之间,高的会到7%左右。但刀具对加工效率的影响却非常巨大。20多年前我参加机械部组织的《2000年机械产品振兴目标研究》时接触的一个观点给我留下了极其深刻的影响。10年外企的工作经历,使我对这个观点有了更深刻、更具体的感受。那就是所谓一台几十万美元的设备能否发挥应有的作用,常常取决于一把几美元的刀具。我曾经得到过的一个成本分析实例表明,减少30%的采购价格(指刀具性能没有任何改变)或延长50%的刀具寿命(通常需要依赖刀具制造者的技术进步)都只能降低制造成本1%左右——因为刀具总成本只是占到制造成本的4%,但如果提高20%的加工参数,大约可以降低15%的制造成本——虽然如果提高的是切削速度20%,刀具成本会提高50%,但因为加工周期缩短,总成本还是有大幅度的下降。

我曾经拜访过一家上海的模具企业。这是一家技术曾经非常领先的企业,我们家保存的一块机械部质量信得过的奖章的模具就是他们做的。但当我成为一家国外公司的刀具销售工程师前去拜访的时候,他们已经日薄西山,没有什么竞争能力了。我走进他们的车间,眼前的一幕使我震惊。他们进口了价值几百万人民币的德国马豪公司的5轴联动加工中心,却在这些加工中心上使用价格极低、效率同样极低的高速钢铣刀进行加工。我仿佛看到了他们衰落的问题所在,当然可能这不是唯一的原因。加工理念和管理理念的落后,导致他们的生产效率低下;高昂的设备折旧,又使他们的制造成本完全没有竞争能力。因此,从这点上说,如何选择刀具,是否重视加工效率,也许就关系着企业的生死存亡。

刀具基础知识

刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。

绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以―刀具‖一词一般就理解为金属切削刀具。切削木材用的刀具则称为木工刀具。

刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。

然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。

那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。

在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。

机械加工基本知识

机械加工培训教材 技术篇 机械加工基础知识 2011年8 月 第一部分:机械加工基础知识

一、机床 (一)机床概论 机床是工件加工的工作母机? 一个工件或零件从原始的毛胚状态加工成所需的形状和尺寸,都需在机床上完成. 从加工的对象来分类,机床可以分为: ?金属加工机床 ?木材加工机床 ?石材加工机床等等…. 机械加工的对象大多为金属材料,所以,我们以下涉及的机床只针对金属加工机床. 金属加工机床分类: ?锻压机床---通过压力使工件产生塑形变形,例如:压力机、弯板机、剪板机等等。 ?特种机床---通过特种办法加工工件,例如:电火花机床、线切割机床、激光切割机床、水压切割机床等等。 ?金属切削机床---采用刀具、砂轮等工具,除去工件上多余的材料,将其加工成所需的形状和尺寸的机床,主要包括: 车床:工件与主轴一起旋转,刀具作轴向与径向进给运动.主要用于旋转工件、 盘类零件、轴类零件的加工.车床的分类如下: 根据主轴中心线的方向:卧式车床,立式车床. 根据车床的大小:仪表车床、小型车床、普通车床、大型车床。 根据控制方式:普通(手动)车床、简易数控车床、全功能数控车床 根据控制轴数:普通(手动)车床与数控车床(X、Z轴)、车铣中心(X、Z、C 轴)、复合车铣中心(X、Y、Z、C轴) 根据主轴及刀塔数量:单主轴、双主轴、双刀塔车床。 铣____ 床L刀具旋转,工件与工作台一起作轴向运动。主要用于方型及箱体零件加 工。铣床的分类如下: 根据主轴中心线的方向:卧式铣床,立式铣床. 根据控制方式:普通(手动)铣床、数控铣床 根据控制轴数:普通铣床(X、Y、Z轴)、4轴数控铣床(X、丫、Z、A轴)、5 轴数控铣床(X、丫 Z、A、B轴) 根据主轴数量:双主轴铣床。 镗(铣)床:刀具旋转,工件与工作台一起作轴向运动。主要用于铣削与镗孔。一般为卧式。镗床分类如下: 根据镗床大小:台式镗床、大型落地镗铣床。 根据控制方式:普通(手动)镗床、坐标镗床、数控镗床 根据控制轴数:普通镗床(X、丫Z、B轴)、带W tt的数控镗床(W X、丫、Z、B轴)、带平园盘的数控镗床(W X、丫、Z、B、U轴) 钻床L钻孔用机床。有台式、摇背钻之分,也有数控钻床。 攻丝机床:攻丝用机床。一般钻床也有攻丝功能。 加工中心:带刀库及自动换刀系统的数控铣床或镗床。有钻削中心、立式加工中心、卧式加工中心、卧式镗铣加工中心、龙门加工中心、五面体加工中心、落地镗铣加工中

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

刀具基本知识

刀具基础知识 一、刀具材料 1、刀具材料的要求 (1)、硬度。刀具材料的硬度应高于工件材料的硬度 (2)、耐磨性 (3)、足够的强度和韧性 (4)、较高的耐热性。通常用红硬性来表示,指在高温下保持上述性能的能力。 (5)、磨削性 2、常用刀具材料 (1)、工具钢:T10A、9SiGr、GCr15。主要用于制造低速刀具,目前已很少使用。 (2)、高速钢 高速钢是一种含钨、铬、钼、钒等合金较多的工具钢,其红硬性较普通工具钢高,允许切削速度也要高两倍以上,因此称为高速钢。 高速钢的硬度、耐磨性、红硬性虽不及硬质合金,但其制造刀具的刃口的强度和韧性较硬质合金高,能承受较大的冲击载荷。 ①、普通高速钢W18Cr4V W6Mo5Cr4V2 硬度为HRC62~65 ②、高性能高速钢 铝高速钢W6Mo5Cr4V2 Al 硬度为HRC68~69 钴高速钢110W1.5Mo9.5Cr4VCo8 可用于制造复杂刀具 W的作用:W和Fe、Cr一起与C形成高硬度的碳化物,可以提高纲的耐磨性 Mo的作用:与W基本相同,并能减少钢的碳化物的不均匀性,细化碳化物颗粒,增加钢对机械能的吸收能力。 为了增加热硬性,添加Co、Al等元素 为了提高耐磨性,可适当增加V量,但随着V量的增加,可磨性变得越来越差。 (3)、硬质合金 硬质合金是高硬度、难熔的金属碳化物(WC、TiC)的粉末,用Co、Mo、Ni等作粘结剂烧结而成的粉末冶金制品。其中高温碳化物的含量超 过高速钢,硬度可达HRC74~81,允许切削温度可达800~1000℃,允许切 削速度可比高速钢高十几倍,并能切削工具钢无法切削的难加工

材料。但其抗弯强度和冲击刃性较高速钢低的多,刃口也不易磨得很锋利。 硬质合金的类别主要有: ①、YG 钨钴类硬质合金(WC-Co )(K 类) 钨钴类硬质合金的抗弯强度、韧性、磨削性、导热性较好,主要用 于加工脆性材料(如铸铁)、有色金属及其合金 YG3X YG3(K01、K05) YG6(K15、K20) YG8(K30) 含Co 量 ②、YT 钨钛钴硬质合金(WC-TiC-Co )(P 类) 钨钛钴硬质合金由于加入了碳化钛(TiC ),使其耐磨性提高但抗弯 强度、磨削性、导热性下降,主要用于高速切削一般钢材。 YT30(P01) YT15(P10) YT14(P20) YT5(P30) 含TiC 量 ③、涂层硬质合金 在韧性较好的硬质合金表面上涂覆一层5~12μm ,硬度和耐磨性很 高的物质,如(TiC 、TiN ),使得硬质合金既有高硬度和耐磨性表面,又 有坚韧的基体。 涂层可提高硬质合金的耐磨性,减少工件和刀具表面的摩擦系数, 减少切削力,降低切削温度,从而能提高切削速度而不降低刀具耐用度。 (4)、陶瓷刀具 陶瓷刀具主要用Al2O3,加微量添加剂经冷压烧结而成,其硬度、 耐磨性、红硬性均较硬质合金高,能在1200℃高温下切削,可采用比硬 质合金高几倍的切削速度, 可获得较高的工件表面粗糙度和尺寸稳定性,

硬质合金基础知识

硬质合金基础知识 1概述 1.1 硬质合金定义 硬质合金是由难熔金属硬质化合物和金属粘结剂经过粉末冶金方法而制成的。其中难熔金属化合物有碳化钨(WC)、碳化钛(TiC)、碳化铌(NbC)、碳化钽(TaC)等。粘结金属有铁(Fe)、钴(Co)、镍(Ni)等。 1.2 硬质合金的性能及用途 硬质合金具有熔点高、硬度高、屈服强度高;良好的耐磨性、导热性、抗腐蚀性、抗氧化性等特殊的优良性能,广泛地应用于切削刀具、耐磨零件、模具材料、矿用齿、石油控制件等方面。 1.3 硬质合金的分类 按照硬质合金的用途,可分为: (1)切削工具:用作各种各样的切削工具。如:焊接刀具、数控刀具、整体硬质合金钻头、PCB等。我国切削工具的硬质合金用量约占整个硬质合金产量的1/3。 (2)矿用工具:主要用于冲击凿岩用钎头,地质勘探用钻头,矿山油田用潜孔钻、牙轮钻以及截煤机截齿,建材工业冲击钻等。我国地矿用硬质合金约占硬质合金生产总量的25%。(3)模具:拉丝模、冷镦模、挤压模、冲压模、拉拔模以及轧辊等。用作各类模具的硬质合金约占硬质合金生产总量的8%, (4)结构零件:如压缩机活塞、车床夹头、磨床心轴、轴承轴颈等。 (5)耐磨零件:如喷嘴、导轨、柱塞、球、轮胎防滑钉、铲雪机板等。 (6)耐高压高温用腔体:顶锤、压缸等制品。 (7)其他用途:如表链、表壳、高级箱包的拉链头、硬质合金商标等。 2. 硬质合金生产流程

3 硬质合金性能与应用 硬质合金性能指标: 包括材质检测和外观尺寸检测。 ?密度D—密度是单位体积重量; ?硬度HRA、HV—表征合金抵抗变形和磨损的能力; ?相对磁饱和Ms%—现代硬质合金生产总碳控制是通过合金的磁饱和来实现的; ?矫顽磁力Hc—主要决定于钴层厚度,同时与钴相分布的均匀性和合金的碳含量有 关; ?抗弯强度TRS—表征合金在弯曲负荷的作用下,试样完全断裂时的极限强度。 ?冲击韧性a k—试样破断时的冲击消耗功与所测试样横截面积之比值。固溶度越大, 冲击韧性越大。 ?金相—微观结构特征和缺陷。微观结构特征包括合金相成份、平均晶粒度和粒度组 成,钴层厚度及其分布。缺陷包括孔隙度,夹杂,聚晶、夹粗、混料、钴池、渗碳、脱碳等。 ?尺寸——主要指合金的尺寸以及形位公差。 ?外观——主要指合金的外观颜色、缺口、掉边、凹坑等等。 如有侵权请联系告知删除,感谢你们的配合!

机械加工工艺基础知识点知识讲解

机械加工工艺基础知识点 0总体要求 掌握常用量具的正确使用、维护及保养,了解机械零件几何精度的国家标准,理解极限与配合、形状和位置公差的含义及标注方法;金属切削和刀具的一般知识、常用夹具知识;能正确选用常用金属材料,了解一般机械加工的工艺路线与热处理工序。 一、机械零件的精度 1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。 1.1基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。 1.2配合制: (1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。 (2)了解配合制的选用方法。 (3)配合类型:间隙、过渡、过盈配合 (4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。 1.3公差与配合的标注 (1)零件尺寸标注 (2)配合尺寸标注 2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。 2.1几何公差概念: 1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。 2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。 4)跳动公差:圆跳动、全跳动。

2.2几何公差带: 1)几何公差带 2)几何公差形状 3)识读 3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。 3.1常用量具: (1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。(2)识读:刻度,示值大小判断。 (3)调整与使用及注意事项:校对零点,测量力控制。 3.2专用量具: (1)种类:螺纹规、平面角度样板。 (2)调整与使用及注意事项 3.3量具的保养 (1)使用前擦拭干净 (2)精密量具不能量毛坯或运动着的工伯 (3)用力适度,不测高温工件 (4)摆放,不能当工具使用 (5)干量具清理 (6)量具使用后,擦洗干净涂清洁防锈油并放入专用的量具盒内。 二、金属材料及热处理 1.理解强度、塑性、硬度的概念。 2.了解工程用金属材料的分类,能正确识读常用金属材料的牌号。 2.1金属材料分类及牌号的识读: 2.1.1黑色金属: (1)定义:通常把以铁及以铁碳为主的合金(钢铁)称为黑色金属。

刀具基础知识及应用考试题-刀父

《刀具基础知识及应用》试题 考试时间:60分钟总分:100分 姓名:部门:得分: 一、填空题(每空1分,共30分) 1.刀具材料的种类很多,常用的金属材有高速钢、;非金属材料 有金刚石、、等。 2.材料的硬度主要有洛氏硬度、、等。 3.金属材料热处理方式有、、、。 4.钻头的钻芯形状有、两种。 5.车削刀具的‘两刃’指的是、。 6.用来作为刀具钝化的材料主要有、。 7.刀具涂层工艺的方法有磁控离子溅射、两种。 8.切削是一个从弹性变形-- --挤裂--切离的过程。 9.硬质合金的主要化学成分是、。 10.高速钢与硬质合金相比,强度高韧性好的是材料,硬度高、 脆性大的是材料。 11.下图1中刀具周刃标注参数中,19 指的是,Φ7.2指的 是,0.4±0.05指的是;下图2中刀具端刃标注参数中, 2 指的是,6 指的是,35 指的是;下图3中刀具 标注参数中,60±1指的是,12 -0.005/-0.015指的是, 2.7 +0.5/-0 指的是。 图1 图2

图3 二、判断题:(在题末括号内作记号:“√”表示对,“×”表示错)(每题2分,共20分) 1.刀具寿命的长短、切削效率的高低与刀具材料切削性能的优劣有关()2.积屑瘤的产生在精加工时要设法避免,但对粗加工有一定的好处。()3.刀具的磨钝出现在切削过程中,是刀具在高温高压下与工件及切屑产生强烈摩擦,失去正常切削能力的现象。()4.刀具材料的硬度越高,强度和韧性越低。()5.当粗加工、强力切削或承冲击载荷时,要使刀具寿命延长,必须减少刀具摩擦,所以后角应取大些。() 6.当工件表面有硬皮时,宜采用逆铣方式。() 7.切削加工中使用切削液目的是降低切削温度、润滑、冲洗切屑。() 8.立铣刀刃长越短,刚性越高,在切削过程中不容易发生弯曲和震动,提 高加工的精度。() 9.钻头顶角越大,轴向力越大,但毛刺力矩减少。() 10.一般硬质合金的硬度在92-94HRC。() 三、选择题(将正确答案填在空格内)(每题2分,共20分) 1.切削刃形状复杂的刀具有()材料制造较合适。 A.硬质合金 B、人造金刚石 C、陶瓷 D、高速钢 2.刀具磨损过程的三个阶段中,作为切削加工应用的是( )阶段。 A.初期磨损 B.正常磨损 C.急剧磨损 3.丝锥是用于加工各种( )螺纹的标准刀具。 A.内 B.外 C.内、外 4.加工塑性材料、软材料时刀具前角应________;加工脆性材料、硬材料时

数控刀具基础知识

数控刀具基础知识 本文介绍了数控刀具材料,数控刀具硬度,数控刀具材料特性等基础知识,数控刀具种类等基础知识,数控刀具切削速度基础知识,数控刀具振动知识等等。 数控机床对刀具材料的要求 较高的硬度和耐磨性 刀具切削部分的硬度必须高于工件材料的硬度,刀具材料的硬度越高,其耐磨性越好。刀具材料在常温下的硬度应在HRC62以上。 足够的强度和韧性 刀具在切削过度中承受很大的压力,有时在冲击和振动条件下工作,要使刀具不崩刃和折断,刀具材料必须具有足够的强度和韧性,一般用抗弯强度表示刀具材料的强度,用冲击值表示刀具材料的韧性。 较高的耐热性 耐热性指刀具材料在高温下保持硬度、耐磨性、强度及韧性的性能,是衡量刀具材料切削性能的主要指标,这种性能也称刀具材料红硬性。 较好的导热性 刀具材料的导热系数越大,刀具传出的热量越多,有利于降低刀具的切削温度和提高刀具的耐用度。 良好的工艺性

为便于刀具的加工制造,要求刀具材料具有良好的工艺性能,如刀具材料的锻造、轧制、焊接、切削加工和可磨削性、热处理特性及高温塑性变形性能,对于硬质合金和陶瓷刀具材料还要求有良好的烧结与压力成形的性能。 刀具材料种类 高速钢 高速钢是由W、Cr、Mo等合金元素组成的合金工具钢,具有较高的热稳定性,较高的强度和韧性,并有一定的硬度和耐磨性,因而适合于加工有色金属和各种金属材料,又由于高速钢有很好的加工工艺性,适合制造复杂的成形刀具,特别是粉沬冶金高速钢,具有各向异性的机械性能,减少了淬火变形,适合于制造精密与复杂的成形刀具。 硬质合金 硬质合金具有很高的硬度和耐磨性,切削性能比高速钢好,耐用度是高速钢的几倍至数十倍,但冲击韧性较差。由于其切削性能优良,因此被广泛用作刀具材料。 切削刀具用硬质合金分类及标志

木工刀具基础知识

木工刀具基础知识 ----------专业最好文档,专业为你服务,急你所急,供你所需------------- 文档下载最佳的地方 木工刀具基础知识 1.用刀具的机器有:四面刨、立轴机、刨花机、万能锯、手工车床、双头剪。 2.直的线条用四面刨,不足400mm 长的都须备长料过四面刨,四面刨加上套圈也可用在立轴机上(右刀或左刀),刀的钨钢片不好订做时,考虑做组合刀具,组合刀具尺寸不可自相予盾,须息息相关,外径同样,轴径一样,过四面刨考虑线条太厚或太薄,分清线型是一开二后四面刨,还是四面刨后一开二,工序流程要分清。 3.一般面板刀型要立轴机,注明材质,以便供应商选择钨钢片的硬度或密度及钢性强度。有弧形的刀具都需用立轴机,弧形是两边有弯弧,需做一正一反共2把刀。一定要注意弧形的部件是否需卧打式或立打式,一定要分清,可以参考#400 大碗碟上柜顶线刀具(组合刀),单立轴为逆转,双立轴有一正转,或一逆转,轴径为φ30mm。 4.公母刀或指接刀需注意配套画图或注明清楚。 5.刀具逆转方向: 四面刨右刀或上刀为逆转,左刀或下刀为顺转,进料0为参照物,只要记住木材进料和刀具转向须相反,刀具方向不可有一致性,单立轴为逆转,刨花机为顺转;四面刨轴径为φ40mm, 立轴机轴径为φ30mm,刨花机轴径为φ12.7mm,万能锯轴径为φ25.4mm,万能锯为顺转。 6.刀具的编码规则: (1)立轴刀流水号表示刀的数量或组合刀A,B,C(其中偶数为顺转,奇数为逆转) (2)四面刨流水号 A表示左刀,B表示右刀,C上刀,D下刀,1表示数量 S

(3)平刀以高度为准,表示100H的平方 (4)槽刀以开槽用的刀叫槽刀 (5)刨花刀,分常规则刨花刀,清底刨花刀,普通刨花刀属易耗品,画图存档 时分成轴承刨花刀,雕刻刀,龙珠刀。 7.四面刨刀: 主要用于四面刨机上,对部件进行纵向无弯曲的备料成形。钢锋刀:主要用于单压刨、双压刨、手压刨等刨光类机器上,对部件表面进行刨光。 (1) 锯片:主要用于双剪机、自动双剪机、立轴机、吊锯、纵锯、平台锯、裁 板机、自动封边机等机器上面,部件进行切齐、开小线、开口、修边、定宽、截头等加工。 (2) 锯条:主要用于带锯、线锯机上,对部件进行精略锯割等加工。 (3) 钻头:主要用于各式打孔机、刻花机上,对部件进行打孔作业。 8.直柄式钻头: 主要用于加工部件的内外牙孔、木榫孔、水平扣孔、层玻孔、& P: 9.刀具的 切削底径: 相对刀切削最小两点间的距离,底径一般为φ100或φ65,也可用φ90或 φ80。用模块打的底径需小于工作物的圆弧R的大小,不可大于 ----------专业最好文档,专业为你服务,急你所急,供你所需------------- 文档下载最佳的地方 此圆角 10.刀具的切削外径: 相对刀切削最大两点间的距离,最大一般为φ150,一般齿数为4T,万能锯为 12T或8T,槽刀齿数为6T或8T,刨花机为2T,平刀为4T,四面刨为4T。

硬质合金刀具采购合同范本

合同合同编号: 项目名称: 需方: 供方: 签订时间:

合同书 合同编号: 1.合同供货名称: 2.名称、规格型号、数量、材质: 3.合同总价:(含税) 4.交货期及交货方式 4.1 交货期: 在签订合同后30天到货。 4.2 交货地点: 4.3 运输方式:货物发到指定地点。 4.4 货物包装须适合多次搬运、防腐、防变形,防挤压磕碰,包装物不回收,不另收费。 4.5 供方负责将所供全部货物安全运抵合同交货地点。 5.到货验收

5.1 货物到货后,供方通知需方,供方必须携带“技术协议”及图纸和有关资料到交货地点与需方一起按合同验货,并在验货报告上签字。 5.2 货物验货缺损问题,按以下原则办理: 5.2.1 在验货之前(包括公路、铁路运输过程中)出现的货物缺、损、丢失件等由供方负责解决(包括索赔事宜),费用由供方承担。 5.2.2 验货过程中出现的缺、损、丢失、质量不合格等,供方须按合同要求补发,费用由供方负责。 6. 质量 6.1 质量验收按本合同“技术协议”及图纸规定执行。 6.2 质保期一年,质保期出现的货物质量问题,供方负责实行“三包”。由于供方原因出现重大质量问题,除质保期顺延外,造成的经济损失,供方还将承担相应的赔偿。由于需方责任造成的货物损坏,供方负责维修,合理收费。 6.3 供方保证所提供的设计、选材、加工制造、检验、验收要符合技术协议规定要求。 6.4 供方在规定的质量保证期负责实行“三包”,应对由于设计、制造、工艺或材料的缺陷所发生的质量问题负责,并免费修理和更换有缺陷的部分。 7. 费用结算方式与支付时间 7.1货物到货验货符合合同和技术协议要求,刀具调试验收合格后20日,支付合同金额的60%,计5.1万元(人民币);刀具试用期

刀具基础知识

第一节刀具的种类 刀具种类大概有车铣刨磨钻镗等床子上用到的刀具,其中经常涉及到的刀具有,车刀、铣刀等。由于工作范围等因素,下面主要介绍一下车刀。 一、车刀种类:外圆车刀(90度)、端面车刀(45度)、切断刀、内孔车刀、圆头刀、螺纹刀等。 二、车刀用途 1、外圆车刀(又称偏刀)用于车削工件的外圆、台阶和端面。 2、端面车刀(又称弯头车刀)用于车削工件的外圆、端面和倒角。 3、切断刀用于切断或在工件上开槽。 4、内孔车刀用于车削工件的内孔。 5、圆头刀用于车削工件的圆弧面或成型面。 6、螺纹车刀用于车削螺纹。 三、车刀几何角度与切削性能关系(用于工人的磨刀,理论基础) 车刀切削部分有六个独立的基本角度:前角、主后角、副后角、主偏角、副偏角、刃倾角。两个派生角度:楔角、刀尖角。 一)辅助平面 为了确定和测量车刀角度,需要假象三个辅助平面 1、切削平面通过切削刃上某一选定点与工件上过渡表面相切的平面。 2、基面通过切削刃上某一选定点,并与该点切削速度方向相垂直的平面。 3、截面主截面副截面 二)车刀角度 1、前角前刀面和基面间的夹角。前角增大,能使刃口锋利,减小切削变形,切削省力,排屑顺利;前角减小,可增加刀头强度、改善刀头散热条件。 2、后角后刀面和切削平面间的夹角。后角主要作用是减少车刀后刀面与工件的摩擦。 3、主偏角主切削刃在基面上的投影与进给方向间的夹角。主要作用是改变主切削刃和刀头的受力和散热情况。 4、副偏角副偏角为副切削刃在基面上的投影与进给方向间的夹角。主要作用是减少副切削刃和工件已加工表面的摩擦。 5、刃倾角主切削刃与基面间的夹角。主要作用是控制排屑方向,并影响刀头强度。当刀尖位于主切削刃上的最高点时,刃倾角为正值,切屑排向工件的待

《机械制造技术基础》知识点整理

第一章机械制造系统和制造技术简介 1.制造系统:制造过程及其所涉及的硬件,软件和人员组成的一个将制造资源转变为产品的有机体,称为制造系统。 2.制造系统在运行过程中总是伴随着物料流,信息流和能量流的运动。 3.制造过程由技术准备,毛坯制造,机械加工,热处理,装配,质检,运输,储存等过程组成。 4.制造工艺过程:技术准备,机械加工,热处理,装配等一般称为制造工艺过程。 5.机械加工由若干工序组成。 6.机械加工中每一个工序又可分为安装,工位,工步,走刀等。 7.工序:一个工人在一个工作地点对一个工件连续完成的那一部分工艺过程。 8.安装:在一个工序中,工件在机床或夹具中每定位和加紧一次,称为一个安装。 9.工位:在工件一次安装中,通过分度装置使工件相对于机床床身改变加工位置每占据一个加工位置称为一个工位。 AHA12GAGGAGAGGAFFFFAFAF

10.工步:在一个工序内,加工表面,切削刀具,切削速度和进给量都不变的情况下完成的加工内容称为工步。 11.走刀:切削刀具在加工表面切削一次所完成的加工内容。 12.按生产专业化程度不同可将生产分为三种类型:单件生产,成批生产,大量生产。 13.成批生产分小批生产,中批生产,大批生产。 14.机械加工的方法分为材料成型法,材料去除法,材料累加法。 15.材料成型法是将不定形的原材料转化为所需要形状尺寸的产品的一种工艺方法。 16.材料成型工艺包括铸造,锻造,粉末冶金,连接成型。 17.影响铸件质量关键因素是液态金属流动性和在凝固过程中的收缩性。 18.常用铸造工艺有:普通砂型铸造,熔模铸造,金属型铸造,压力铸造,离心铸造,陶瓷铸造。 19.锻造工艺分自由锻造和模膛锻造。 20.粉末冶金分固相烧结和含液相烧结。 21.连接成型分可拆卸的连接和不可拆卸的连接(如焊 AHA12GAGGAGAGGAFFFFAFAF

机械加工刀具基础知识(全彩版)

机械加工刀具基础知识
1.1 切削运动及切削要素
一、零件表面的形成 表面加工方法

1.1 切削运动及切削要素
二、切削运动及切削用量
主运动(图中Ⅰ) 切削运动
(cutting motions)
进给运动(图中Ⅱ) 切削速度VC 切削用量
(cutting conditions)
进给量f (或进给速度Vf) 背吃刀量ap 切削用量三要素
切削要素 切削层参数(parameters of undeformed chip)

1.1 切削运动及切削要素
二、切削运动及切削用量 1.主运动和切削速度
主运动(primary motion) 是使刀具和工件之间产生相 对运动,促使刀具接近工件 而实现切削的运动。

1.1 切削运动及切削要素
二、切削运动及切削用量
1.主运动和切削速度 主运动为旋转运动(如车削、铣削等),切削速度一般为其最大线速度
v
pdn c = 1000
m/s或m/min
主运动为往复直线运动(如刨削、插削等),以其平均速度为切削速度
vc =
2 Lnr
1000
m/s或m/min

1.1 切削运动及切削要素
二、切削运动及切削用量 2.进给运动和进给量
进给运动(feed movement) 使刀具与工件之间产生附加的 相对运动,加上主运动,即可 连续地切除余量。 刀具在进给运动方向上相 对工件的位移量称为进给量 (feed rate)。

金属切削刀具基本知识

技师学院 机械安装与维修系金属切削刀具基本知识郝赫(编)

金属切削刀具基本知识 1 金属切削的基本要素 1.1 机械制造过程概述 机器是由零件、组件、部件等组成的,一台机器的制造过程包含了从零件、部件加工到整机装配的全过程,这一过程可以用图1所示的系统图来表示。 首先,从图中可以看出机器中的组成单元是一个个的零件,它们都是由毛坯经过相应的机械加工工艺过程变为合格零件的,在这一过程中要根据零件的设计信息制订每一个零件的适当加工方法,加工成在形状、尺寸、表面质量等各方面都符合加工使用要求的合格零件。 其次,要根据机器的结构和技术要求,把某些零件装配成部件,部件是由若干组件、套件和零件在一个基准零件上装配而成的,部件在整个机器中能完成一定的、完整的功能,这种把零件和组件、套件装配成部件的过程称为部装过程。部装过程是依据部件装配工艺,应用相应的装配工具和技术完成的,部件装配的质量直接影响整个机器的性能和质量。 最后,在一个基准零部件上把各个部件、零件装配成一个完整的机器,我们把零件和部件装配成最终机械产品的过程称为总装过程,总装过程是依据总装工艺文件进行的,在产品总装后,还要经过检测、试车、喷漆、包装等一系列辅助过程最终形成合格的产品,如一辆汽车就是经过这样的机械制造过程而生产出来的。 图1 机械制造过程的构成

1.2机械加工工艺系统 从机械制造的整个过程来看,机器的最基本组成单元为零件,也就是首先要制造出合格的零件,然后组装成部件,再由零、部件装配成机器,因此,制造出符合要求的各种零件是机械加工的主要目的,而机械加工中绝大部分材料是金属材料,故机械加工主要是对各种金属进行切削加工。 零件的表面通常是几种简单表面如平面、圆柱面、圆锥面、球面、成形表面等的组合,而零件的表面是通过各种切削加工方法得到的,其中在金属切削机床上利用工件和刀具彼此间协调的相对运动切除被加工零件多余的材料,获得在形状、尺寸和表面质量都符合要求的这种加工方法称为金属切削加工。 金属切削加工常作为零件的最终加工方法,它需要用金属切削刀具直接对零件进行加工,它们之间要有确定的相对运动和承受很大的切削力,通常需在金属切削机床上进行加工,零件和刀具需通过机床夹具和刀架与机床进行可靠的联接,带动它们做相对的运动,实现切削加工,这种由金属切削机床、刀具、夹具和工件构成的机械加工封闭系统称为机械加工工艺系统(如图2所示),其中金属切削机床是加工机械零件的工作机械,起支承和提供动力作用;刀具起直接对零件进行切削加工作用;机床夹具用来对零件定位和夹紧,使之有正确的加工位置。本章就围绕机械加工工艺系统四个组成部分进行分析,阐述机械零件加工的整个过程。 图2 机械加工工艺系统的构成 1.3主要切削加工工艺简介

硬质合金刀具基础知识

硬质合金刀具材料基础知识 浏览: 文章来源:中国刀具信息网添加人:阿刀添加时间:2011-01-31 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在WC-Co硬质合金中添加钌,可在不降低其硬度的前提下显著提高其韧性。增加结合剂的含量也可以提高硬质合金的韧性,但却会降低其硬度。 减小碳化钨颗粒的尺寸可以提高材料的硬度,但在烧结工艺中,碳化钨的粒度必须保持不变。烧结时,碳化钨颗粒通过溶解再析出的过程结合和长大。在实际烧结过程中,为了形成

刀具基础知识培训考核试卷

基础培训考核试卷 姓名:考核日期:满分:100分 得分:考试时间:共60分钟,其中测量30分钟 一、填空题(15分,每空1分) 1、紧固砂轮轴需要的扭矩大小为_40_N.M 2、刀具柄部的形式有_有圆柄__、__直侧面__、_斜侧面_ 3、1inch=_25.4_mm 4、BT0.25/100表示每__200__mm就有0.5的直径差。 5、阿诺手动组磨出的棒料顶角一般为_____120_° 6、CNC制造的工艺流程开槽_____、___磨背___、___开刃___ 7、工艺图纸用于___手动加工___技术图纸用于___CNC加工___ 8、常用钻头的刃型有_ F _、_S_、__A_ 二、问答题(60分,每题3分) 1、回答下列各组砂轮的用途 10MM1A1D64:开槽,磨背 12A2+1A1:普钻开刃 11V9:铣刀开刃,磨刃带 12V9:铣刀GASH 6V5:铣刀R角,球头 2、CNC的一般加工工序是? 开槽~磨背~开刃 3、钻头后刀面有哪几种形式? 双弧面,四平面, 4、双棱边钻头的作用? 对切屑起导向作用,便于排屑。 5、阶梯处清根的注意点? 清根深度,长度。防止清到阶梯上。 6、线切割的开、关机流程? 按开机按钮,再按开水按钮,最后按运丝按钮,要按顺序进行,以防止在加工中出现意外。 7、外圆磨机床的开、关机流程? 旋开急停钮→打开油压电源→打开油压开关→打开砂轮旋转开关→打开工作轴开关→打开冷却水开关。 8、外圆磨顶尖的种类? 打中心孔、磨顶 9、棒料检验前要做哪2项些工作? 千分尺校准, 游标卡尺,笔等。 10、怎么区分加工HSS和HM的砂轮? HSS是以B开头,HM是以D开头 11、图纸上的倒刃代码ZY+CG表示什么意思? 中砂+粗砂

刀具基础知识

“工欲善其事,必先利其器”,公司的各种零配件,当形状,尺寸精度、表面质量要求较高时,都需经车钳加工作业。而刀具是对零件进行切削的,它的性能和质量的优劣,都直接影响加工效率、加工精度和表面质量,也将直接决定产品的品质、性能和生产成本。 一、刀具常识 1.刀具的种类繁多,形状各异。但就刀具切屑部分而言,都可看成车刀刀头的演变。它具有下述表面和切刃: 前刀面——切下的切屑沿其流出的表面; 主后刀面——和工件加工表面相对的表面; 副后刀面——和工件已加工表面相对的表面; 主切削刃——前刀面和主后刀面的交线,它担任主要切削工作; 副切削刃——前刀面和副后刀面的交线,它完成一小部分切削工作; 刀尖——主切削刃与副切削刃的交点。 (车刀切削剖分的组成) (r o为主前角,a o为主后角)

2.刀具几何角度的定义:(包括前角和后角) 前角是指前刀面与基面之间的夹角;分为主前角,法前角、进给剖面前角、切深剖面前角。前角大刃口锋利,切削层的塑性变形和摩擦阻力小,切削力和切削热降低。但前角过大将使切削刃强度降低,散热条件变坏,刀具寿命下降,甚至会造成崩刃。 后角是主后刀面与切削平面之间的夹角;分为主后角、法后角、进给剖面后角、切深剖面后角。后角的作用是减少刀具后刀面与工件之间的摩擦。但后角过大会降低切削刃强度,并使散热条件变差。从而降低刀具寿命 二、刀具材料 刀具的材料系指刀具切削部分的材料。刀具切削部分在工作中不仅受到巨大的切削压力和很高的切削温度,而且受冲击载荷和摩擦力的作用。因此刀具材料的正确选择对生产的产品的品质和生产成本有着重要的影响。 1.刀具的材料应满足下面的要求: 1)硬度和耐磨性高;一般说来,刀具的材料硬度较高,耐磨性就越高。 2)有足够的强度和韧性 3)耐磨性高 4)有良好的工艺性能;工艺性能主要包括刀具材料的热处理性能、可磨性能、锻造性能及高温性变形性能等。 2.常用的刀具材料有碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石、立方氮化硼等。 目前公司刀具使用的材料有:合金工具钢、高速钢、硬质合金。 1)合金工具钢含铬、钨、硅、锰等合金元素的低合金工具钢。用于制造刃形较复杂的低速刀具,如铰刀、拉刀、丝锥等 2)高速钢又称锋钢、风钢、白钢。它淬火后硬度高,而且耐热性、耐磨性、淬透性和回火稳定性大大提高,并有足够的韧性。除高钒高速钢的磨削性能较差外,高速钢的工艺性能也较好。所以,在各种刀具材料中,高速钢的性能最理想。它用于制造刀具,工艺简单、易刃磨成锋利的刃口,可用于制造车刀、铣刀、铰

机械制造技术基础知识点整理

1.制造工艺过程:技术准备,机械加工,热处理,装配等一般称为制造工艺过程。 2.机械加工由若干工序组成。工序又可分为安装,工位,工步,走刀。 3.按生产专业化程度不同可将生产分为三种类型:单件生产,成批(小批,中批,大批)生产,大量生产。 4.材料去除成型加工包括传统的切削加工和特种加工。 5.金属切削加工的方法有车削,钻削,镗削,铣削,磨削,刨削。 6.工件上三个不断变化的表面待加工表面,过渡表面(切削表面),已加工表面。(详见P58) 7.切削用量是以下三者的总称。 (1)切削速度,主运动的速度。 (2)进给量,在主运动一个循环刀具与工件之间沿进给方向相对移动的距离。 (3)背吃刀量工件上待加工表面和已加工表面件的垂直距离。 8.母线和导线统称为形成表面的发生线。 9.形成发生线的方法成型法,轨迹法,展成法,相切法。 10.表面的成型运动是保证得到工件要求的表面形状的运动。 11.机床的分类:(1)按机床万能性程度分为:通用机床,专门化机床,专用机床。 (2)按机床精度分为:普通机床,精密机床,高精度机床。 (3)按自动化程度分为:一般机床,半自动机床,自动机床。 (4)按重量分为:仪表机床,一般机床,大型机床,重型机床。 (5)按机床主要工作部件数目分为:单刀机床,多刀机床,单轴机床,多轴机床。 (6)按机床具有的数控功能分:普通机床,一般数控机床,加工中心,柔性制造单元等。 12.机床组成:动力源部件,成型运动执行件,变速传动装置,运动控制装置,润滑装置,电气系统零部件,支承零部件,其他装置。 13.机床上的运动:(1)切削运动(又名表面成型运动),包括: 1、主运动使刀具与工件产生相对运动,以切削工件上多余金属的基本运动。

刀具基础知识——提交版

一、选择题(30分) 1. 下面是关于常用刀具材料硬度的比较,那个选项的论述是正确的(A) A 金刚石>CBN>硬质合金>高速钢 B 金刚石>CBN>高速钢>硬质合金 C 金刚石>硬质合金>高速钢>CBN D 金刚石>高速钢>硬质合金>CBN 2. 下面属于性质脆、工艺性差的刀具材料是(C) A 碳素工具钢 B 合金工具钢 C 金刚石 D 硬质合金钢 3. 增大前角,下面正确的是(D) A 增大粗糙度 B 增大切削效率 C 切削刃与刀头的强度增大 D 减小切削的变形 4. 加工下面哪种材料时,应该采用较小的后角(C) A 工件材料塑性较大 B 工件材料容易产生加工硬化 C 脆性材料 D 硬而脆的材料 5. 在背吃刀量和进给量一定的情况下,增大主偏角时,切削层的( C) A 公称宽度减小,公称厚度减小 B 公称宽度增大,公称厚度增大 C 公称宽度减小,公称厚度增大 D 公称宽度增大,公称厚度减小 6. 下面有关主偏角和付偏角的功用的叙述,正确的是:(A) A 减小主偏角和付偏角,减小已加工的表面粗糙度 B 增大主偏角,切削层公称宽度将增大 C 增大主偏角,减小已加工的表面粗糙度 D 增大付偏角,减小已加工的表面粗糙度 7. 关于各种刀具耐用度的选择,哪中叙述是正确的:(C) A 简单的刀具如车刀、钻头等,耐用度选高些 B 同一类刀具,尺寸大的,制造成本较高的,耐用度选低些 C 结构复杂和精度高的刀具,耐用度选高些 D 可转位刀具的耐用度比焊接式刀具选高些 8. 提高切削速度、增大进给量和背吃刀量,都能提高金属的切除率。但是,这三个因素中,对刀具耐用度影响的大小为(D) A >进给量>背吃刀量>切削速度 B 切削速度>背吃刀量>进给量 C 进给量>背吃刀量>切削速度 D 切削速度>进给量>背吃刀量

数控刀具技术现状及发展

数控刀具技术现状及发展 【论文摘要】本文简介现代数控刀具科普性知识和近几年来在刀具材料、结构科技领域里的现状及发展趋势。指出拉削、滚压、搓挤刀具和复合(组合)孔加工数控刀具的创新成果往往会引起机加工观念上的巨大变革,再集成刀具材料及特种数控机床领域的创新科技成果,会产生巨大的社会效益和经济效益。 近年来,快速发展的数控机加工工艺技术促进了数控刀具结构基础科研和新产品的研发。世界各大厂商生产的数控机床用刀具种类、规格繁多,数量庞大,往往令人眼花缭乱,不得要领。现将有关数控刀具科普性知识和近几年来数控刀具材料、结构、应用等领域的新产品、科技现状及发展趋势就其精要,在此简要分述,以便了解掌握相关数控刀具新产品信息的要点。 一、数控刀具分类简要 二、数控刀具材料新产品科技近况与发展趋势 1、概述: 近年来,数控刀具材料基础科研和新产品的成果集中应用在高速(超高速)、硬质(含耐热、难加工)、干式、精细(超精)数控机加工技术领域。刀具材料新产品的研发在超硬材料(金刚石、表面改性涂层材料、TIC基类金属瓷、立方氮化硼、Al203、Si3n4基类瓷),W、CO类涂层和细颗粒(超细颗粒)硬质合金基体及含Go类粉末冶金高速钢等领域进展速度较快。 2、超硬材料领域: 金刚石(钎焊聚晶、单晶)各类刀具已迅速应用于高硬度、高强度、难加工有色金(合金)及有色金属-非金属复合材料零部件的高速、高效、干(湿)式机械切削加工行业中。其概况分述如下: 汽车、摩托车行业:聚晶、人造单晶金刚石面铣刀、镗刀、车刀、铰刀、复合(组合)孔加工等数控刀具等正大量应用于高强度、高硬度Si--Al合金零部件自动生产线上; 竹木地板、傢具行业:聚晶、CVD厚膜沉积金刚石(复合片)立铣刀、三面刃成形铣刀、面铣刀等类刀具正大量应用于高硬度复合竹木地板、傢具及门窗…等零部件自动生产线上; 航空、航天、汽车及电子信息技术行业:金刚石CVD薄膜涂层数控刀具(以整体WCO类硬质合金刀具为主)多应用于铣削、车削、钻削、铰削及锪削加工高强度铝合金(铸、锻)、纤维-金属层板、碳纤维热塑性复合材料、镁合金、石墨、瓷…等零部件,满足高速、高寿命、干式机加工技术要求。各厂商正不断地改进

相关文档