文档库 最新最全的文档下载
当前位置:文档库 › 八年级数学勾股定理及其常考题型

八年级数学勾股定理及其常考题型

八年级数学 勾股定理及其常考题型

勾股定理也称毕达哥拉斯定理,文字表述:直角三角形两直角边的平方和等于斜边的平方.结合直角三角形

形,用字母可表示为:222

a b c +=,如下图,a 、b 为直角边,c 为斜边。

勾股定理揭示了直角三角形三边之间的数量关系,完美地体现了“数形统一”的数学思想,将初中几何与

数很好的联系起来。因此,学好勾股定理这一知识点对于我们解决数学问题有很大的帮助,下面我们具体

看看初中数学有关勾股定理的一些常见题型及其解答方法。 一、边的计算

1、在Rt△ABC 中,∠C =90°,若a =6,b =8,则c = .

解:因为222a b c +=,所以c=10。

评论:直接由勾股定理所以得

2、在Rt△ABC 中,∠C =90°,AC =3,BC =4,则斜边上的高CD 的长为( )

A .125

B .

5

52

C .52

D .57

解:由勾股定理知:AB=5,又因为S △ABC =2

1AC ×BC=2

1AB ×CD

即:2

1×3×4=2

1×5×CD,所以CD=

125

评论:通过勾股定理求出斜边,再利用面桥关系求出斜边上的高。

3、若一直角三角形两边的长为12和5,则第三边的长为( )

A .13

B .13或119

C .13或15

D .15

解:当12当12对应的边是直角边时,则第三边为斜边,由222a b c +=得第三边的长为13

评论:勾股定理结合分类讨论思想,学生要注意这类试题的多解性。

4.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )

A 、121

B 、120

C 、132

D 、不能确定

解:设该Rt △的三边分别为a 、b 、c ,a 、b 为直角边,c 为斜边

由勾股定理知:222a b c +=,即:112

+b 2

= c

2

所以(b+c )(c -b )=121

因为b 、c 都为自然数,所以b+c ,c -b ,都为正自然数。

又因为121只有1、11、121这三个正整数因式,所以b+c=121,c -b=1。所以b=60,c=61

评论,本题以直角三角形为载体,同过勾股定理将初中几何知识和代数知识很好地串联起来考察学生的能力二、直角三角形的判定

5、 在△ABC 中中,a 、b 、c 为∠A 、∠B 、∠C 的对边,给出如下的命题:

①若∠A :∠B :∠C =1:2:3,则△ABC 为直角三角形;②若∠A =∠C 一∠B ,则△ABC 为直角三角形;③若4

5

c a =

3

5

b a =,则△ABC 为直角三角形;④若a :b :

c =5:3:4,则△ABC 为直角三角形;⑤若(a +c )

(a -c )=b 则△ABC 为直角三角形;⑥若(a +c)2=2ac +b 2

,则△ABC 为直角三角形;⑦若AB=12,AC=9,B C=15,

△ABC 为直角三角形。 上面的命题中正确的有( )

A .6

B .7

C .8

D .9

解:对①,因为三角形内角和为180度,所以∠A+∠B+∠C=180°,因为∠A:∠B:∠C=1:2:3,所以∠C=180°×

2

1

所以∠C=9则△ABC为直角三角形,①正确。对②,因为∠A+∠B+∠C=180°,而∠A=∠C一∠B,所以∠C一∠B+∠B+∠C=180°所以∠C=90

即△ABC为直角三角形,②正确。对③,设a=5k,因为

4

5

c a

=,

3

5

b a

=,则c=4k,

C2+b2 =a2 所以为△ABC直角三角形.③正确,同理易知④正确,对⑤,因为(a+c)(a-c)=b2 所以a2–=b2,所以△ABC为直角三角形.⑤正确,对⑥,因为(a+c)2=2ac+b2,所以a2+c2+2ac=2ac+b2 所以a2+c2=正确,对⑦,因为AB=12,AC=9,AC=15,所以AB2 +AC2=BC2所以正确。答案选B

评论:直角三角形的评定可以从角和边两方面来进行,从角来判定需结合三角形内角和定理,从边来判定需结合勾股定理。一般是证最大边的平方是否等于两小边的平方和。

三、翻折

6、矩形纸片ABCD中,AD=4c m,AB=10c m,按如图18-1方

式折叠,使点B与点D重合,折痕为EF,则DE=_______c m.

解:设DE为x,因为DE是由BE翻折过来的,

所以DE=BE=x,则AE=10-x,在Rt△ABD中:

AD2 +AE2=DE2

所以:42 +(10-x) 2= x 2

解得x=5.8 c m

评论:翻折和旋转是初中数学常见的题型,解答这类题的关键在于把握翻折和旋转前后的联系,主要是看哪些量没变,抓住这些不变的量,以此为突破口便可以顺利解决。本题的不变量是DE和BE的长度,抓住个关系,再通过勾股定理建立等式,在直角三角形中便可解出边长的长度。

四、爬行

A

B

C

D

BˊCˊ

7.如图,有一个圆柱,它的高等于16cm,底面半径等于4cm,在

圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B

点处的食物,需要爬行的最短路程是 cm.(π取3)

解:蚂蚁要沿圆柱体侧面爬,将圆柱体的侧面沿蚂蚁所在的垂直于底面的直线切开,展开后是一个长为8π,宽为16的长方形,蚂蚁在的是一个顶点,而相对的点则是对面那条长为8π的边的中点。所以根据勾股定理,两点之间的距离为d,d2=(8π)2 +(16)2从而解出d。

评论:爬行问题是勾股定理的一大重要应用,关键在于将立体图形转化为平面图形,从而简单便捷地找出短距离,然后再利用勾股定理求出边长。

8.已知长方体的长为2cm、宽为1cm、高为4cm,一只蚂蚁如果沿长方体的表面从A点爬到B点,那么沿哪路最近,最短的路程是多少?

解:将长方体的侧面B BˊCˊC展开到与长方体的正面AC CˊAˊ在同一平面内,

得到长方形AB BˊAˊ,长AB=3 cm,宽A Aˊ=4,

蚂蚁沿长方体的表面从A点爬到B点最短距离即为长方形AB BˊAˊ的对角线

A B长。由勾股定理易知A B=5.

五、图形变换

9.如图2(1),是小红用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c 如图2(2)是以c为直角边的等腰直角三角形,她想将它们拼成一个能证明勾股定理的图形,可以吗?(1)如果能,请你画出拼成的这个图形的示意图,写出它是什么图形?

(2)用这个图形证明勾股定理.

(3)假设图2(1)中的图有若干个,你能运用(1)中所示的直角三角形拼出另一个能证明勾股定理的图吗?请画出拼后的示意图.(无需证明)

23,(1)如图是直角梯形.

(2)因为S梯形=1

2(a+b)(a+b)=1

2

(a+b)2,S=2×1

2

ab+1

2

c2=ab+1

2

c2,所以1

2

(a+b)2=ab+1

2

c2,即a2+b2=c

(3)如图所示.

评论:这是一道图形换的题,具体涉及到图形的拼凑,解决勾股定理这方面的试题关键是要对课本勾股定证明涉及到的几种常见的图形以及证明过程和原理要熟练掌握,再利用适当的迁移便可以解答了。

六、实际应用

10,某校把一块形状为直角三角形的废地开辟为生物园,如图5所示,∠ACB=90°,AC=80米,BC=60米若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠造价最低?最低造价是多少?

解:当CD为斜边上的高时,CD最短,从而水渠造价最低.因为CD·AB=AC·BC,所以CD=AC BC

AB

g

=48米所以AD=2222

8048

AC CD

-=-=64米.所以,D点在距A点64米的地方,水渠的造价最低,其最低造价480元.

11.有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?解:如图所示,根据题意,得AC=20-4=16,BC=12.图5

根据勾股定理,得AB=20.则小鸟所用的时间是20÷4=5(s).

评论:解答勾股定理的实际应用题,首先要审清题意,然后找出试题情景中涉及到的直角三角形,再结合股定理便可以求出了。在该题中,我们关键是要根据题意画出勾股定理涉及到的直角三角形图形,只需求AB的长.根据已知条件,得BC=12,AC=20-4=16,再根据勾股定理就可求解.

补充:

勾股定理常见题型

专题一:勾股定理与面积 知识点精讲: 类型一“勾股树”及其拓展类型求面积 典型例题: 1.如图(16),大正方形的面积可以表示为,又可以表示为,由此可得等量关系______________________,整理后可得:___________. 2.图中字母所代表的正方形的面积为144的选项为( ) 3.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则大正方形与小正方形的面积差是() A.9 B.36 C.27 D.34 4.如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3=________. 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=() A.25 B.31 C.32 D.40 6.如图,已知在Rt ABC △中,? = ∠90 ACB,4 AB=,分别以AC,BC为直径作半圆,面积分别记为1S,2S, 则 12 S S +的值等于________ 7.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积是________.8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( ) A.2 B.4 C.8 D.16 a a a a b b b b c c c c 图(16) 8 6 C B A

【人教版】八年级下数学《勾股定理》单元训练(含答案)

勾股定理专项训练 专训1.巧用勾股定理求最短路径的长 名师点金: 求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离).用计算法求平面中最短问题 1.如图,学校有一块长方形花圃,有极少数人从A走到B,为了避免拐角C走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草. (第1题) 2.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80 km,BC=20 km,∠ABC=120°.请你帮助小明解决以下问题: (1)求A,C之间的距离.(参考数据21≈4.6) (2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间) (第2题) 用平移法求平面中最短问题 3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30c m,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬( ) A.13 cm B.40 cmC.130 cm D.169 cm

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

八年级数学《勾股定理》讲义全

【课题名称】八上数学《勾股定理》 【考纲解读】 1.掌握勾股定理的含义; 2.理解勾股数,并且会熟练地运用勾股数; 3.能够根据勾股定理,解决实际问题。 【考点梳理】 考点1:勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)勾股定理的表示:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。 考点2:勾股定理的适用围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 考点3:勾股数 (1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。 (2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。 考点4:勾股定理的应用 (1)已知直角三角形的任意两边长,求第三边。在A B C ?中,90C ∠=?,则c , b ,a ; (2)已知直角三角形一边,可得另外两边之间的数量关系; (3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。 【例题讲解】 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

最新人教版八年级下学期数学勾股定理》知识点归纳

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一: 4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=, 化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以 222a b c += 方法三: 1 ()()2S a b a b =+?+梯形, 211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简 得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=?, 则c b ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b , c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是 否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a , b , c 为三边的三角形是直角三角形;若 222a b c +<,时,以a ,b ,c 为三边的三角形 是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理题型归纳

勾股定理复习小结 一、 二. 1、 勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、 如何判定一个三角形是直角三角形 (1) 先确定最大边(如c ) (2) 验证2 c 与2 2b a +是否具有相等关系 (3) 若2 c =22b a +,则△ABC 是以∠C 为直角的直角三角形;若2c ≠2 2b a + 则△ABC 不是直角三角形。 3、 勾股数 满足2 2 b a +=2 c 的三个正整数,称为勾股数 如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41 勾股定理培优经典题型归纳 题型一:利用勾股定理解决实际问题 训练1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开? 训练2、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响 的时间为多少?

题型二、与勾股定理有关的图形问题 训练3.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长是____ _____. 题型三、关于翻折问题 训练4、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG. 训练5、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F.若AB=4,BC=6,求△FAC 的周长和面积. 训练6、如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=, 求BF 的长. G A B F E D C B A

《勾股定理》典型例题

《勾股定理》典型例题 例1 在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗? 它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52. (1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢? (2)请你观察下列图形,直角三角形ABC 的两条直角边的长分别为AC =7,BC =4,请你研究这个直角三角形的斜边AB 的长的平方是否等于42+72? 解: (1)边长的平方即以此边长为边的正方 形的面积,故可通过面积验证.分别以这个直 角三角形的三边为边向外做正方形,如右 图:AC =4,BC =3, S 正方形ABED =S 正方形FCGH -4S Rt △ABC =(3+4)2-4×2 1×3×4=72-24=25 即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2 (2)如图(图见题干中图)

S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×2 1×4×7=121-56=65=42+72 例2 下图甲是任意一个直角三角形ABC ,它的两条直角边的边长分别为a 、b ,斜边长为c .如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为a +b 的正方形内. ①图乙和图丙中(1)(2)(3)是否为正方形?为什么? ②图中(1)(2)(3)的面积分别是多少? ③图中(1)(2)的面积之和是多少? ④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗? 解: ①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形, (2)是以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形. ②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2. ③图中(1)(2)面积之和为a 2+b 2. ④图中(1)(2)面积之和等于(3)的面积. 因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面

八年级数学下册知识点总结-勾股定理

第十八章勾股定理 知识点一:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 知识点二:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 用勾股定理的逆定理判定一个三角形是否是直角三角形应注意: (1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

中考“勾股定理”题型归纳

中考“勾股定理”题型归纳 勾股定理是我国劳动人民智慧的结晶,是研究几何的基础和数形结合的典型代表,更是历年中考不可缺少的组成部分,为了方便同学们的学习与运用,并及时了解中考中有关勾股定理的题型,现就中考试题归纳剖析如下,供参考. 一、求线段的长度 例1(滨州市)如图,已知△ABC中,AB=17,AC=10, BC边上的高AD=8,则边BC的长为() A.21 B.15 C.6 D.以上答案都不对 分析由于AD是高,所以可得到两个直角三角形,这样可分别利用勾股定理求得线段BD和CD. 解因为AD是高,所以∠ADB=∠ADC=90°,即△ADB与△ADC都是直角三角形. 因为AB=17,AC=10,AD=8,所以由勾股定理,得BD = ==15,CD 6, 所以BC=BD+CD=15+6=21.故应选A. 说明利用勾股定理求解有关线段的大小是中考中随时都会遇到的问题,同学们一定要掌握其运用,并避免出现错误. 二、求图形的周长 例2(牡丹江市)有一块直角三角形的绿地,量得两直角边长分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长. 分析由于两直角边长分别为6m,8m,于是,可利用勾股定理求出其斜边的长,而题目只说明扩充成等腰三角形,并没有指明等腰三角形的底边和腰,所以应分情况求解. 解在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理,得AB=10,扩充部分为Rt△ACD,扩充成等腰△ABD应分以下三种情况:①如图1,当AB=AD=10时,可求CD=CB=6,于是,△ABD的周长为32m;②如图2,当AB=BD=10时,可求CD =4,由勾股定理,得AD= ABD的周长为 m;③如图3,当AB D B A

新人教版八年级下册数学勾股定理教案

第十七章 勾股定理 勾股定理(一) 教学内容: 新课标对本节课的要求: 教学目标 知识与技能:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 过程与方法:培养在实际生活中发现问题总结规律的意识和能力。 情感态度价值观:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 教学重点、难点 重点:勾股定理的内容及证明。 难点:勾股定理的证明。 教学过程 1.引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? 命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c , 那么 。 2、合作探究: 方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、 ∠C 的对边为a 、b 、c 。 A B

勾股定理及常见题型分类

勾股定理及常见题型分类 一、知识要点: 1、勾股定理 2、勾股定理证明方法及勾股树 3、勾股定理逆定理 4、勾股定理常见题型回顾 二、典型题 题型一:“勾股树”及其拓展类型求面积 1. 右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ) A.13 B.26 C.47 D.94 2.如图,直线l 上有三个正方形a,b,c,若a,c 的边长分别为6和8,求b 的面积。 3. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 4、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 S 3 S 2 S 1 甲 乙 图1

5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 题型二:勾股定理与图形问题 1、已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 . 2.如图,求该四边形的面积 3.如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 . 4.某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 . 5.如图是一块地,已知AD=8m ,CD=6m ,∠D=90°,AB=26m ,BC=24m ,求这块地的面积。 题型三:在直角三角形中,已知两边求第三边 A B C D E F G

勾股定理题型总结83533

勾股定理知识技能和题型归纳(一)——知识技能 一、本章知识内容归纳 1、勾股定理——揭示的是平面几何图形本身所蕴含的代数关系。 (1)重视勾股定理的叙述形式: ①直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积. ②直角三角形斜边长度的平方,等于两个直角边长度平方之和. 从这两种形式来看,有“形的勾股定理”和“数的勾股定理”之分。 (2)定理的作用: ①已知直角三角形的两边,求第三边。 ②证明三角形中的某些线段的平方关系。 ③作长为n 的线段。(利用勾股定理探究长度为,3,2……的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。) 2、勾股定理的逆定理 (1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。 (2)逆定理的作用:判定一个三角形是否为直角三角形。 (3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。要注意叙述及书写格式。运用勾股定理的逆定理的步骤如下: ①首先确定最大的边(如c ) ②验证2 2 b a +与2 c 是否具有相等关系: 若2 2 2 c b a =+,则△ABC 是以∠C 为90°的直角三角形。 若2 2 2 c b a ≠+,则△ABC 不是直角三角形。 补充知识: 当222c b a >+时,则是锐角三角形;当2 22c b a <+时,则是钝角三角形。 (4)通过总结归纳,记住一些常用的勾股数。如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;……以及这些数组的倍数组成的数组。 勾股数组的一般规律: ① 丢番图发现的:式子n m n m mn n m >+-(,2,2 2 2 2 的正整数) ② 毕达哥拉斯发现的:122,22,122 2 ++++n n n n n (1>n 的整数) ③ 柏拉图发现的:1,1,222 +-n n n (1>n 的整数)

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

《勾股定理》典型例题分析

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果 直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。公式的变形:a 2 = c 2 - b 2, b 2= c 2-a 2 。 2、勾股定理的逆定理 如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2 + b 2= c 2 ,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+ 中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a 2 + b 2= c 2 的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10) (7,24,25) (8,15,17 )(9,40,41 ) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆. 2. 如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 3、如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 S 3 S 2 S 1

人教版数学八年级下册《勾股定理》基础练习题

勾股定理 一、选择题(每小题4分,共12分) 1.(2013·黔西南州中考)一直角三角形的两边长分别为3和4.则第三边的长为 ( ) A.5 B. C. D.5或 2.如图,有一块直角三角形纸板ABC,两直角边 AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜 边AB上,且点C落到点E处,则CD等于( ) A.2cm B.3cm C.4cm D.5cm 3.(2013·资阳中考)如图,点E在正方形ABCD内,满足 ∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( ) A.48 B.60 C.76 D.80 二、填空题(每小题4分,共12分) 4.(2013·莆田中考)如图是一株美丽的勾股树,其中所有 的四边形都是正方形,所有的三角形都是直角三角形,若 正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形 E的面积是. 5.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD= cm.

6.(2013·桂林中考)如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE= . 三、解答题(共26分)[ 7.(8分)已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长. 8.(8分)在△ABC中,AB=15,AC=20,BC边上的高AD=12,试求BC边的长. 【拓展延伸】 9.(10分)有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)

勾股定理常见题型

1 .如图(16),大正方形的面积可以表示为 ,又可以表示为 ,由此可得等量关系 ABCD 正方形EFGH .ACB=90 , AB=4,分别以AC , BC 为直径作半圆,面积分别记为 专题一:勾股定理与面积 知识点精讲: 类型一 “勾股树”及其拓展类型求面积 典型例题: 3 .“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角 边的长分别是3和6,则大正方形与小正方形的面积差是 ( ) 4 .如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形 正方形MNKT 勺面积分别为 S 、S 2、S.若正方形EFGH 勺边长为2,贝U S + S 2+ S 3 = _____________________________________ . 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知 Si = 4, S 2= 9, S 3 = 8, S= 10,则S =( ) A. 25 B . 31 C . 32 D . 40 7?如图,已知直角厶ABC 的两直角边分别为 6, 8,分别以其三边为直径作半圆, 则图中阴影部分的面积是 ____________ 8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形, 然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为 64,则正方形⑤的面积 _________________________ ,整理后可得: _______________ C 6 .如图,已知在Rt A ABC 中, C 6 8 ①

最新部编人教版初中八年级下册数学勾股定理知识点

勾股定理知识点 一、勾股定理: 1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦 股 勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。 2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是 勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角 形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c); (2)若c2=a2+b2,则△ABC是以∠C为直角的三角形; 若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边); 若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边) 4.注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 5. 勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。

八年级数学-勾股定理及其常考题型

八年级数学 勾股定理及其常考题型 勾股定理也称毕达哥拉斯定理,文字表述:直角三角形两直角边的平方和等于斜边的平方.结合直角三角形图形,用字母可表示为:222 a b c +=,如下图,a 、b 为直角边,c 为斜边。 勾股定理揭示了直角三角形三边之间的数量关系,完美地体现了“数形统一”的数学思想,将初中几何与代数很好的联系起来。因此,学好勾股定理这一知识点对于我们解决数学问题有很大的帮助,下面我们具体来看看初中数学有关勾股定理的一些常见题型及其解答方法。 ` 一、边的计算 1、在Rt△ABC 中,△C =90°,若a =6,b =8,则c = . 解:因为2 2 2 a b c +=,所以c=10。 评论:直接由勾股定理所以得 2、在Rt△ABC 中,△C =90°,AC =3,BC =4,则斜边上的高CD 的长为( ) A . 125 B . 552 C . 52 D .57 解:由勾股定理知:AB=5,又因为S △ABC = 21A C ×BC=2 1 A B ×CD 即:21×3×4=21 ×5×CD,所以CD=125 — 评论:通过勾股定理求出斜边,再利用面桥关系求出斜边上的高。 3、若一直角三角形两边的长为12和5,则第三边的长为( ) A .13 B .13或119 C .13或15 D .15

解:当12当12对应的边是直角边时,则第三边为斜边,由222 a b c +=得第三边的长为13 评论:勾股定理结合分类讨论思想,学生要注意这类试题的多解性。 4.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121 B 、120 C 、132 D 、不能确定 , 解:设该Rt △的三边分别为a 、b 、c ,a 、b 为直角边,c 为斜边 由勾股定理知:222a b c +=,即:112+b 2 = c 2 所以(b+c )(c -b )=121 因为b 、c 都为自然数,所以b+c ,c -b ,都为正自然数。 又因为121只有1、11、121这三个正整数因式,所以b+c=121,c -b=1。所以b=60,c=61 评论,本题以直角三角形为载体,同过勾股定理将初中几何知识和代数知识很好地串联起来考察学生的能力。 二、直角三角形的判定 5、 在△ABC 中中,a 、b 、c 为∠A 、∠B 、∠C 的对边,给出如下的命题: 。 ①若∠A :∠B :∠C =1:2:3,则△ABC 为直角三角形;②若∠A =∠C 一∠B ,则△ABC 为直角三角形;③若4 5 c a = ,3 5 b a =,则△ABC 为直角三角形;④若a :b : c =5:3:4,则△ABC 为直角三角形;⑤若(a +c ) (a -c )=b 2,则△ABC 为直角三角形;⑥若(a +c)2=2ac +b 2 ,则△ABC 为直角三角形;⑦若AB=12,AC=9,B C=15, 则△ABC 为直 角三角形。 上面的命题中正确的有( ) A .6 B .7 C .8 D .9 解:对①,因为三角形内角和为180度,所以∠A+∠B+∠C =180°,因为∠A :∠B :∠C =1:2:3,所以∠C=180°× 2 1 所以∠C=90°则△ABC 为直角三角形,①正确。对②,因为∠A+∠B+∠C =180°,而∠A =∠C 一∠B ,所以∠C 一∠B+∠B+∠C =180°所以∠C=90°,即△ABC 为直角三角形,②正确。对③,设a=5k ,因为45c a = ,3 5 b a =,则c=4k ,

(完整版)初二(八年级)下册数学勾股定理典型习题

初二(八年级)下册数学勾股定理典型习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面 积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为 222()2S a b a ab b =+=++ 所以222a b c +=方法三:1 ()()2 S a b a b =+?+梯形, 211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠= ?,则c = ,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些 实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

相关文档
相关文档 最新文档