文档库 最新最全的文档下载
当前位置:文档库 › 拉氏变换对照表

拉氏变换对照表

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ??????-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()() ( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

拉氏变换和z变换表(精选.)

word. 附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 1()([n n k f t dt s s -+=+∑? 个

2.常用函数的拉氏变换和z变换表 word.

word. 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

拉氏变换与反变换

拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 拉普拉斯变换的定义 如果有一个以时间 t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,那么 ()t f 的拉普拉斯变换定义为 ()()()0e d st F s L f t f t t ∞ -=?????? 式中, s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0 e st 称为拉 普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 几种典型函数的拉氏变换

1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞→st t 。 所以 []s s s t L st 1)1(00e 1)(1= ??????--=∞-=-()

拉氏变换、传递函数、数学模型18页word文档

拉普拉斯变换的数学方法 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数()t F ,其中0t ≥,则f(t)的拉氏变换记作: 称L —拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。 f(t)—原函数 拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。 2)当∞→t 时,at Me )t (f ≤,M ,a 为实常数。 2、拉氏反变换:将象函数F (s )变换成与之相对应的原函数f(t)的过程。 1L -—拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。 1.单位阶跃函数 2.单位脉冲函数 3.单位斜坡函数 4.指数函数at e 5.正弦函数sinwt 由欧拉公式:wt sin j wt cos e jwt += 所以,)e e (j 21wt sin jwt jwt --= 6.余弦函数coswt 其它的可见表2-1:拉氏变换对照表

三、拉氏变换的性质 1、线性性质 若有常数k 1,k 2,函数f 1(t),f 2(t),且f 1(t),f 2(t)的拉氏变换为F 1(s),F 2(s), 则 有 : F k )s (F k )]t (f k )t (f k [L 2112211+=+,此式可由定义证明。 2、位移定理 ?? ?复数域的位移定理实数域的位移定理 (1)实数域的位移定理 若f(t)的拉氏变换为F(s),则对任一正实数a 有 ) s (F e )]a t (f [L as -=-, 其中,当t<0时,f(t)=0,f(t-a)表 f(t)延迟时间a. 证明:?∞ --=-0st dt e )a t (f )]a t (f [L ,

拉氏变换与反变换(严选内容)

2.5 拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间 t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,那么 ()t f 的拉普拉斯 变换定义为 ()()()0 e d st F s L f t f t t ∞ -=??????(2.10) 式中, s 是复变数, ωσj +=s (σ、ω均为实数), ? ∞ -0 e st 称为拉普拉斯积分; )(s F 是 函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 2.5.2 几种典型函数的拉氏变换 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 ?? ?≥s ,则 e lim →-∞ →st t 。

拉氏变换

控制原理补充讲义——拉氏变换 拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作: 称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。2)当时, ,M,a为实常数。 2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。 —拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。 注意:六大性质一定要记住 1.单位阶跃函数

2.单位脉冲函数 3.单位斜坡函数 4.指数函数 5.正弦函数sinwt 由欧拉公式: 所以,

6.余弦函数coswt 其它的可见下表:拉氏变换对照表

三、拉氏变换的性质 1、线性性质 若有常数k 1,k 2 ,函数f 1 (t),f 2 (t),且f 1 (t),f 2 (t)的拉氏变换为F 1 (s),F 2 (s), 则有:,此式可由定义证明。 2、位移定理 (1)实数域的位移定理 若f(t)的拉氏变换为F(s),则对任一正实数a有 , 其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a. 证明:, 令t-a=τ,则有上式= 例:求其拉氏变换

常用的拉氏变换表

精选资料,欢迎下载 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s) 时间函数e(t) Z 变换E(z) 1 1 δ(t) 1 2 Ts e --11 ∑∞ =-=0)()(n T nT t t δδ 1 -z z 3 s 1 )(1t 1 -z z 4 21s t 2 )1(-z Tz 5 3 1s 2 2t 3 2 )1(2)1(-+z z z T 6 1 1+n s !n t n )(!)1(lim 0aT n n n a e z z a n -→-??- 7 a s +1 at e - aT e z z -- 8 2 )(1a s + at te - 2 )(aT aT e z Tze --- 9 )(a s s a + at e --1 ) )(1()1(aT aT e z z z e ----- 10 ) )((b s a s a b ++- bt at e e --- bT aT e z z e z z ---- - 11 22ω ω +s t ωsin 1 cos 2sin 2+-T z z T z ωω 12 2 2ω+s s t ωcos 1 cos 2)cos (2+--T z z T z z ωω 13 22)(ω ω++a s t e at ωsin - aT aT aT e T ze z T ze 22cos 2sin ---+-ωω 14 2 2)(ω+++a s a s t e at ωcos - aT aT aT e T ze z T ze z 222cos 2cos ---+--ωω 15 a T s ln )/1(1- T t a / a z z -

(完整word版)常用函数的拉氏变换

附录A 拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)(ΛΛ (F-1) 式中,n s s s ,,,21Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可 按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= +Λ = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换

拉普拉斯变换 拉普拉斯变换简称拉氏变换。它是一种函数的变换,经变换后,可将时域的微分方程变换成复数域的代数方程。并且在变换的同时,即将初始条件引入,避免了经典解法中求积分常数的麻烦,可使解题过程大为简化。因此,对于那些以时间t 为自变量的定常线性微分方程来说,拉氏变换求解法是非常有用的。 在经典自动控制理论中,自动控制的数学模型是建立在传递函数基础之上的,而传递函数的概念又是建立在拉氏变换的基础上,因此,拉氏变换是经典控制理论的重要数学基础,是分析研究线性动态系统的有力数学工具。本章着重介绍拉氏变换的定义,一些常用时间函数的拉氏变换,拉氏变换的性质以及拉氏反变换的方法。最后,介绍用拉氏变换解微分方程的方法。在学习中应注重该数学方法的应用,为后续章节的学习奠定基础。 2.1拉氏变换 2.1.1拉氏变换的定义 若()f t 为实变量时间t 的函数,且0t <时,函数()0f t =,则函数()f t 的拉氏变换记作 [()]f t L 或)(s F ,并定义为: [()]()()e d L st f t F s f t t +∞-==? (2.1) 式中s j σω=+为复变量,()F s 称为()f t 的象函数,称()f t 为()F s 的原函数。原函数是实变量t 的函数,象函数是复变量s 的函数。所以拉氏变换是将原来的实变量函数()f t 转化为复变量函数()F s 的一种积分运算。在本书中,将用大写字母表示相对应的小写字母所代表的函数的拉氏变换。 必

e 1 [1()]1e d L st st t t s s +∞ -+∞-=?=- =? (2.2) 在自动控制系统中,单位阶跃函数相当于一个实加作用信号,如开关的闭合(或断开),加(减)负载等。 ⑵单位脉冲函数 单位脉冲函数如图2.2所示。 其定义为 ()0 t t t δ∞ =?=? ≠? 同时, ()d 1t t δ+∞=? ,即脉冲面积为1。而且有如下特性: ()()d (0)t f t t f δ+∞-∞ ?=? (0)f 为()f t 在0t =时刻的函数值。 (0) ()(0) t f t t t

拉氏变换常用公式

常用拉普拉斯变换总结 1、指数函数 00)(≥

? ? ∞ -∞ -∞ ----==0 d d ][t s e s e t t te t L st st st 2 01d 1s t e s st == ?∞- 6、正弦函数 0sin 0 )(≥

(完整版)拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==----ΛΛ (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b -Λ都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F ΛΛ 式中,Sn 2S 1S ,,,Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1 i i n 1i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为

里氏硬度转化抗拉强度对照表 (1)

里氏硬度转换抗拉强度对照表 HLD HRC HRB HV 抗拉 强度 HLD HRC HRB HV 抗拉 强度 35260.3104 375 64841.2395 35461105379 65041.5398 35661.7106381 65241.7401 35862.4107384 65442404 36063.1108386 65642.3407 36263.8109388 65842.6411 36464.5110393 66042.8414 36665.1111395 66243.1417 36865.8112399 66443.4420 37066.4114402 66643.6423 37267115404 66843.9426 37467.7116404 67044.1429 37668.3117409 67244.4433 37868.9118415 67444.7436 38069.5119418 67644.9439 38270.1120421 67845.2442 38470.6121424 68045.5446 38671.2123427 68245.7449 38871.8124433 68446452 39072.3125437 68646.2456 39272.9126440 68846.5459 39473.4127444 69046.8463 39674129447 69247466 39874.5130451 69447.3469 40075131445 69647.5473 40275.5133459 69847.8476 40476134463 70048480 40676.5135467 70248.3483 40877136471 70448.6487 41077.5138475 70648.8491 41278139480 70849.1494 41478.4141484 71049.3498 41678.9142489 71249.6501 41879.3143493 71449.8505 42079.8145498 71650.1509 42280.2146498 71850.3513 42480.7148503 72050.6516 42681.1149508 72250.8520

拉普拉斯变换表

附录A拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []?? ????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ())()()() (11n r r s s s s s s s B s F ---=+ =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -+ +-+ +-+ -+ +-+ -++-- 1 1111111) () () ( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换表(包含计算公式)

1 拉氏变换及反变换公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑ 1 1 ) 1() 1(1 2 2 2 ) ()() 0()() (0)0()(]) ([) 0()(])([k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L ) ( 初始条件为0时 )(]) ([ s F s dt t f d L n n n = 3 积分定理 一般形式 ∑ ???????????==+-===+=+ + = + = n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 1 1 2 2 2 2 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L )(]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

不锈钢管的洛氏硬度、布氏硬度等硬度对照表和换算方法

不锈钢管的洛氏硬度、布氏硬度等硬度对照表和换算方法 以下资料由:天津武进不锈钢制品销售有限公司提供 一、硬度简介: 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1. 布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2. 洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: ? HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 ? HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 ? HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 word教育资料

3. 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值 (kgf/mm2)。 注:洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf);标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,然后加压至980.7N(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。 二、硬度对照表: word教育资料

控制系统拉氏变换.

【教学目的】 ※掌握拉氏变换及其性质 ※掌握系统微分方程式的建立 ※熟悉传递函数的概念及其求法 ※熟悉框图简化法及梅逊公式 【教学重点】 ※拉氏变换的定义 ※用拉氏变换的定义求常用函数的拉氏变换 ※拉氏变换的定理及其应用 ※建立简单系统的微分方程 ※传递函数的概念 ※结构图的联接方式及传递函数 ※结构图简化及简单系统的传递函数求法 【教学难点】 ※建立在复数域描述一个函数的概念。 ※时域位移定理的应用。 ※建立微分方程 ※结构图简化法则的灵活运用,梅逊公式的应用 【教学方法及手段】 采用板书讲授的方式进行授课,在课程中注意定理的应用,在理论之后加以例题辅助理解,上课时应注意对学生注意力的吸引。 【学时分配】 8课时 【教学内容】 2-1 拉普拉斯变换的数学方法

拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S 的乘积,将时间表示的微分方程,变成以S 表示的代数方程。 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数()t F ,其中0t ≥,则f(t)的拉氏变换记作: ?∞ -==0 st dt e )t (f )s (F )]t (f [L 称L —拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。 f(t)—原函数 拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。 2)当∞→t 时,at Me )t (f ≤,M ,a 为实常数。 2、拉氏反变换:将象函数F (s )变换成与之相对应的原函数f(t)的过程。 ?+σ-σ-π==jw jw st 1 ds e )s (F j 21)]s (F [L )t (f 1L -—拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。 1.单位阶跃函数 ()[]()s 1e s 1dt e 0dt e .t 10t 1L 0 st st st =-=???∞=???∞=∞ --- 2.单位脉冲函数 ()?? ?=10t 10 t 0t ≥?

Laplace拉氏变换公式表

拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质 2.表A-2 常用函数的拉氏变换和z变换表 1

2

3 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将 )(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:

拉氏变换表(包含计算公式)

拉氏变换及反变换公式 1

2

3 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)(ΛΛ 式中,n s s s ,,,21Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计 算: )()(lim s F s s c i s s i i -=→ 或 i s s i s A s B c ='= )() ( 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= +Λ = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换

拉普拉斯变换 拉氏变换的物理意义 拉氏变换是将时间函数f(t)变换为复变函数F(s),或作相反变换。 时域(t)变量t 是实数,复频域F(s)变量s 是复数。变量s 又称“复频率”。 拉氏变换建立了时域与复频域(s 域)之间的联系。 s=jw ,当中的j 是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL 、电容X=1/jwC ,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL 、KVL 、叠加法 Laplace 变换是工程数学里的重要变换,主要是实现微分积分电路的代数运算,建议参看《积分变换》这书.在一阶和高阶电路中,有一些问题在频域中分析比在时域中分析要方便的多,而拉氏变换就是一个很好的分析工具。它将时域中的信号输入,变换成S 域中的信频输入,再由S 域的输出,转换成时频的输出,很简洁明了,又可以分析出信号的多种变化.工程数学或者积分变换都可以解决你所提的问题. 拉普拉斯变换简称拉氏变换。它是一种函数的变换,经变换后,可将时域的微分方程变换成复数域的代数方程。并且在变换的同时,即将初始条件引入,避免了经典解法中求积分常数的麻烦,可使解题过程大为简化。因此,对于那些以时间t 为自变量的定常线性微分方程来说,拉氏变换求解法是非常有用的。 在经典自动控制理论中,自动控制的数学模型是建立在传递函数基础之上的,而传递函数的概念又是建立在拉氏变换的基础上,因此,拉氏变换是经典控制理论的重要数学基础,是分析研究线性动态系统的有力数学工具。本章着重介绍拉氏变换的定义,一些常用时间函数的拉氏变换,拉氏变换的性质以及拉氏反变换的方法。最后,介绍用拉氏变换解微分方程的方法。在学习中应注重该数学方法的应用,为后续章节的学习奠定基础。 2.1拉氏变换 2.1.1拉氏变换的定义 若()f t 为实变量时间t 的函数,且0t <时,函数()0f t =,则函数()f t 的拉氏变换记作 [()]f t L 或)(s F ,并定义为: [()]()()e d L st f t F s f t t +∞-==? (2.1) 式中s j σω=+为复变量,()F s 称为()f t 的象函数,称()f t 为()F s 的原函数。原函数是实变量t 的函数,象函数是复变量s 的函数。所以拉氏变换是将原来的实变量函数() f t

相关文档