文档库 最新最全的文档下载
当前位置:文档库 › 三角形的中线与角平分线

三角形的中线与角平分线

三角形的中线与角平分线
三角形的中线与角平分线

一.选择题(共10小题)

1.(2016秋?阿荣旗期末)三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形

C.直角三角形 D.周长相等的三角形

【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.

【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形.

故选:B.

【点评】考查了三角形的中线的概念.构造面积相等的两个三角形时,注意考虑三角形的中线.

2.(2016秋?大安市校级期中)如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线()

A.△ABE B.△ADF C.△ABC D.△ABC,△ADF

【分析】根据三角形的角平分线的定义得出.

【解答】解:∵∠2=∠3,

∴AE是△ADF的角平分线;

∵∠1=∠2=∠3=∠4,

∴∠1+∠2=∠3+∠4,即∠BAE=∠CAE,

∴AE是△ABC的角平分线.

故选D.

【点评】三角形的角平分线是指三角形一个内角的平分线与对边交点连接的线段.

3.(2016春?蓝田县期中)如图,AE是△ABC的中线,D是BE上一点,若EC=6,DE=2,则BD的长为()

A.1 B.2 C.3 D.4

【分析】根据三角形中线的定义可得BE=EC=6,再根据BD=BE﹣DE即可求解.【解答】解:∵AE是△ABC的中线,EC=6,

∴BE=EC=6,

∵DE=2,

∴BD=BE﹣DE=6﹣2=4.

故选D.

【点评】本题考查了三角形的中线的定义,是基础题,准确识图并熟记中线的定义是解题的关键.

4.(2017?泰州)三角形的重心是()

A.三角形三条边上中线的交点

B.三角形三条边上高线的交点

C.三角形三条边垂直平分线的交点

D.三角形三条内角平行线的交点

【分析】根据三角形的重心是三条中线的交点解答.

【解答】解:三角形的重心是三条中线的交点,

故选:A.

【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.

5.(2017?诸暨市模拟)已知△ABC在正方形网格中的位置如图所示,则点P叫做△ABC的()

A.中心B.重心C.外心D.内心

【分析】观察图发现,点P是三角形的三条中线的交点.结合选项,得出正确答案.

【解答】解:A、等边三角形才有中心,故错误;

B、三角形的重心是三角形的三条中线的交点,故正确;

C、三角形的外心是三角形的三条垂直平分线的交点,故错误;

D、三角形的内心是三角形的三条角平分线的交点,故错误.

故选B.

【点评】本题考查三角形的重心、外心、内心的概念,牢记并能熟练运用.

6.(2017春?吉安县期末)如图,小明用铅笔可以支起一张质地均匀的三角形卡

片,则他支起的这个点应是三角形的()

A.三边高的交点B.三条角平分线的交点

C.三边垂直平分线的交点D.三边中线的交点

【分析】根据题意得:支撑点应是三角形的重心.根据三角形的重心是三角形三边中线的交点.

【解答】解:∵支撑点应是三角形的重心,

∴三角形的重心是三角形三边中线的交点,

故选D.

【点评】考查了三角形的重心的概念和性质.注意数学知识在实际生活中的运用.

7.(2015秋?河东区期末)如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()

A.2 B.3 C.6 D.不能确定

【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.

【解答】解:∵BD是△ABC的中线,

∴AD=CD,

∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5

﹣3=2.

故选A.

【点评】本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键.

8.(2015秋?芦溪县期末)如果所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()

①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.

A.1 B.2 C.3 D.4

【分析】根据角平分线的定义进行判断即可.

【解答】解:AD不一定平分∠BAF,①错误;

AF不一定平分∠DAC,②错误;

∵∠1=∠2,∴AE平分∠DAF,③正确;

∵∠1=∠2,∠3=∠4,

∴∠1+∠3=∠2+∠4,即∠BAE=∠CAE,

∴AE平分∠BAC,④正确;

故选:B.

【点评】本题考查的是三角形的角平分线、中线和高的概念和性质,掌握角平分线的定义是解题的关键.

9.(2015秋?莆田校级月考)如图,BD=DE=EF=FC,那么()是△ABE的中线.

A.AD B.AE C.AF D.以上都是

【分析】根据三角形中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得答案.

【解答】解:∵BD=DE,

∴AD是△ABE的中线,

故选:A.

【点评】此题主要考查了三角形的中线,关键是掌握三角形中线定义.

10.(2014秋?株洲县期末)一个三角形的三条角平分线的交点在()A.三角形内B.三角形外

C.三角形的某边上D.以上三种情形都有可能

【分析】根据三角形角平分线的定义,可作出三角形的三条角平分线,并且都在三角形的内部,则交点一定在三角形的内部.

【解答】解:可画出三角形的三条角平分线,都在三角形的内部,

则三角形的三条角平分线的交点在三角形内,

故选A.

【点评】本题考查了三角形的角平分线、中线和高,三角形的角平分线、中线的

交点一定在三角形的内部,而高的交点不一定在三角形的内部.

二.填空题(共3小题)

11.(2017春?宝安区校级期末)如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B= 50°.

【分析】由AE平分∠BAC,可得角相等,由∠1=30°,∠2=20°,可求得∠EAD 的度数,在直角三角形ABD在利用两锐角互余可求得答案.

【解答】解:∵AE平分∠BAC,

∴∠1=∠EAD+∠2,

∴∠EAD=∠1﹣∠2=30°﹣20°=10°,

Rt△ABD中,∠B=90°﹣∠BAD

=90°﹣30°﹣10°=50°.

故答案为50°.

【点评】本题考查了三角形的角平分线、中线和高的相关知识;求得∠EAD=10°是正确解答本题的关键.

12.(2016秋?大冶市期末)如图,已知△ABC的周长为27cm,AC=9cm,BC 边上中线AD=6cm,△ABD周长为19cm,AB= 8cm .

【分析】设AB=xcm,BD=ycm,由三角形中线的定义得到BC=2BD=2ycm,再根据△ABC的周长为27cm,△ABD周长为19cm列出关于x、y方程组,解方程组即可.

【解答】解:设AB=xcm,BD=ycm,

∵AD是BC边的中线,

∴BC=2BD=2ycm.

由题意得,

解得,

所以AB=8cm.

故答案为8cm.

【点评】本题考查了三角形的周长和中线,本题的关键是由三角形的中线的定义得到BC=2BD=2ycm,再根据三角形周长的定义列出方程组,题目难度中等.

13.(2012春?永泰县期中)能把一个任意三角形分成面积相等的两部分是三角形的中线(填“角平分线”、“中线”或“高”)

【分析】把一个任意三角形分成面积相等的两部分就是把一个任意三角形分成两个等底同高的三角形,那么只有三角形的中线.

【解答】解:能把一个任意三角形分成面积相等的两部分是三角形的中线.【点评】等底同高的两个三角形面积相等.

三.解答题(共7小题)

14.(2014春?苏州期末)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.

【分析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BD的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.

【解答】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,

∴BD=15﹣6﹣5=4cm,

∵AD是BC边上的中线,

∴BC=8cm,

∵△ABC的周长为21cm,

∴AC=21﹣6﹣8=7cm.

故AC长为7cm.

【点评】考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.

15.(2014春?榆树市期末)如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC 于D,AE是∠BAC的平分线.

(1)求∠DAE的度数;

(2)指出AD是哪几个三角形的高.

【分析】(1)根据三角形的高和角平分线的性质,可求∠DAE的度数;

(2)三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.

【解答】解:(1)∵AD⊥BC于D,

∴∠ADB=∠ADC=90°,

∵∠ABC=40°,∠C=60°,

∴∠BAD=50°,∠CAD=30°,

∴∠BAC=50°+30°=80°,

∵AE是∠BAC的平分线,

∴∠BAE=40°,

∴∠DAE=50°﹣40°=10°.

(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.

【点评】考查了三角形的高和角平分线的概念和性质,能够正确找出三角形一边上的高.第(2)题难度较大.

16.如图所示,AD是△ABC的中线,AE是△ACD的中线,已知DE=2cm,求BD,BE,BC的长.

【分析】运用中线定义求DC,而CD=BD,BD=2DE.

【解答】解:∵AD是△ABC的中线,AE是△ACD的中线,

∴BD=CD=2DE=4cm,

∴BE=BD+DE=6cm,

∴BC=2BD=8cm.

【点评】考查了中线的概念.能够根据中线的概念用几何式子表示相关线段的长.

17.在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,求△ABC 的面积.

【分析】首先根据重心到顶点的距离与重心到对边中点的距离之比为2:1,判断出BO=2OE,进而求出S△DOE、S△BDE的大小;然后根据点D是BC的中点,判断出S△CDE=S△BDE,进而求出S△BCE的大小;最后根据点E是AC的中点,判断出S △ABE=S△BCE,进而求出S△ABC的大小即可.

【解答】解:如图,连接DE,,

∵中线AD、BE相交于点O,

∴点O是△ABC的重心,

∴BO=2OE,

∴S△DOE=S△BOD==,

∴S△BDE=5,

∵点D是BC的中点,

∴BD=DC,

∴S△CDE=S△BDE,

∴S△BCE=,

∵点E是AC的中点,

∴AE=CE,

∴S△ABE=S△BCE,

∴S△ABC=15×2=30,

即△ABC的面积是30.

【点评】(1)此题主要考查了三角形的重心的判断和性质的应用,要熟练掌握,解答此题的关键是要明确:重心到顶点的距离与重心到对边中点的距离之比为2:1.

(2)此题还考查了三角形的面积的求法,要熟练掌握,解答此题的关键是要明确:两个三角形的高一定时,它们面积的比等于它们底边的长度的比.

18.如图,已知在△ABC中,CF、BE分别是AB、AC边上的中线,若AE=2,AF=3,且△ABC的周长为15,求BC的长.

【分析】根据三角形中线的定义求出AB、AC,再利用三角形的周长的定义列式计算即可得解.

【解答】解:∵CF、BE分别是AB、AC边上的中线,AE=2,AF=3,

∴AB=2AF=2×3=6,

AC=2AE=2×2=4,

∵△ABC的周长为15,

∴BC=15﹣6﹣4=5.

【点评】本题考查了三角形的角平分线、中线和高,熟记概念并准确识图是解题的关键.

19.已知AD、AE分别是△ABC的中线和高,△ABD的周长比△ACD大3cm,且AB=7cm.

(1)求AC的长;

(2)求△ABD与△ACD的面积关系.

【分析】(1)首先根据中线定义可得BD=CD,再根据周长差可得AB﹣AC=3cm,再代入AB的长可得答案;

(2)利用三角形面积公式表示出△ABD与△ACD的面积,再根据BD=CD可得答案.

【解答】解:(1)∵AD是△ABC的中线,

∴BD=CD,

∵△ABD的周长比△ACD大3cm,

∴AB+BD+AD﹣(AD+AC+DC)=3cm,

AB﹣AC=3cm,

∵AB=7cm,

∴AC=4cm;

(2)△ABD与△ACD的面积相等;

∵S△ADB=DB?AE,S△ADC=DC?AE,

∴S△ADB=S△ADC.

【点评】此题主要考查了三角形的中线,关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.

20.(2016春?淮安期中)在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.

【分析】由CD⊥AB与∠B=60°,根据两锐角互余,即可求得∠BCD的度数,又由∠A=20°,∠B=60°,求得∠ACB的度数,由CE是∠ACB的平分线,可求得∠ACE的度数,然后根据三角形外角的性质,求得∠CEB的度数.

【解答】解:∵CD⊥AB,

∴∠CDB=90°,

∵∠B=60°,

∴∠BCD=90°﹣∠B=90°﹣60°=30°;

∵∠A=20°,∠B=60°,∠A+∠B+∠ACB=180°,

∴∠ACB=100°,

∵CE是∠ACB的平分线,

∴∠ACE=∠ACB=50°,

∴∠CEB=∠A+∠ACE=20°+50°=70°,

∠ECD=90°﹣70°=20°

【点评】此题考查了三角形的内角和定理,三角形外角的性质以及三角形高线,角平分线的定义等知识.此题难度不大,解题的关键是数形结合思想的应用.

【精品】三角形角平分线专题讲解

【关键字】精品 二由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是笔直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE、DF,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。 例1.如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。

角平分线定理

角平分线定理 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 ■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 ■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 ■定理1:在角平分线上的任意一点到这个角的两边距离相等。 ■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 ■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 提供四种证明方法: 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 已知和证明1图 证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比,

证明2图 即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN‖AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC 证明3图 方法3(相似形) 过M作MN‖AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC

三角形的三条内角平分线练习及答案

F E O D C A B 三角形的三条内角平分线练习及答案 1.三角形中,到三边距离相等的点是( ) (A )三条高线交点. (B )三条中线交点. (C )三条角平分线交点. (D )三边垂直平分线交点. 2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( ) A .△ABC 的三条中线的交点 B .△AB C 三条角平分线的交点 C .△ABC 三条高所在直线的交点 D .△ABC 三边的中垂线的交点 3.在△ABC 中,∠B ,∠C 平分线的交点P 恰好在BC 边的高AD 上,则△ABC 一定是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 4.如图,△ABC 中,∠C =90o ,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且AB =10cm ,BC =8cm ,CA =6cm ,则点O 到三边AB 、AC 和BC 的距离分别等于( ) (A )2cm 、2cm 、2cm . (B )3cm 、3cm 、3cm . (C )4cm 、4cm 、4cm . (D )2cm 、3cm 、5cm . 5.如图,O 是△ABC 内一点,且O 到三边AB 、BC 、CA 的距离OF=OD=OE ,若∠BAC=70°,∠BOC=_______.

6.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有________处. 7.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,求△ABC的面积.

(完整版)解析三角形中两条角平分线组成的角

解析三角形中两条角平分线组成的角 当同学们学完三角形的角平分线后,利用角平分线来解决相关几何题就应运而生。这儿作者只是给大家归纳了几种利用三角形两条角平分线组成的角的解析方法,以便大家在平时的作业时可简便计算。 一、三角形两内角角平分线组成的角: 如图,△ABC 中 ∠A=n o ∠ABC 与∠ACB 的角平分线BO,CO 相交与点O ,求∠BOC 的度数? 解:在△ABC 中 ∠A+∠ABC+∠ACB= 180o 又 ∵∠A=n o ∴∠ABC+∠ACB=180o -n o ∵BO,CO 是∠ABC 与∠ACB 的角平分线 ∴∠OBC= 2 1∠ABC ∠OCB =2 1∠ACB ∴∠OBC+∠OCB=21∠ABC+2 1∠ACB =2 1(∠ABC+∠ACB) ∴∠OBC+∠OCB=2 1(180o -n o ) =90o -21 n o 在△BOC 中 ∠OBC+∠OCB+∠BOC= 180o ∴∠BOC=180o -(∠OBC+∠OCB) =180o -(90o - 21 n o ) =180o -90o + 21 n o =90o +2 1 n o 即:∠BOC=90o +2 1 ∠A 通过上述解题过程不难发现,其实三角形的两内角平分线组成的角应为90o 与第三角的一半的和。 二、三角形两外角角平分线组成的角: 如图,△ABC 中 ∠A=n o ∠CBD 与∠BCE 的角平分线BO,CO 相交与点O ,求∠BOC 的度数? 解:在△ABC 中 ∠A+∠ABC+∠ACB= 180o C

又 ∵∠A=n o ∴∠ABC+∠ACB=180o -n o ∵∠ABC+∠CBD=180o ∠ACB+∠BCE=180o ∴∠CBD+∠BCE=360o -(∠ABC+∠ACB) =360o -180o +n o =180o +n o ∵BO,CO 是∠DBC 与∠ECB 的角平分线 ∴∠OBC= 2 1∠CBD ∠OCB =2 1∠BCE ∴∠OBC+∠OCB=21∠CBD+2 1∠BCE =2 1(∠CBD+∠BCE) ∴∠OBC+∠OCB=2 1(180o +n o ) =90o +21 n o 在△BOC 中 ∠OBC+∠OCB+∠BOC= 180o ∴∠BOC=180o -(∠OBC+∠OCB) =180o -(90o + 2 1 n o ) =180o -90o -2 1 n o =90o -2 1 n o 即:∠BOC=90o -21 ∠A 由此我们可发现三角形的两个外角角平分线所组成的角等于90o 与第三角的一半的差。 三、三角形一内角角平分线与一外角角平分组成的角: 如图,△ABC 中 ∠A=n o ∠ABC 与∠ACD 的角平分线BO,CO 相交与点O ,求∠BOC 的度数? 解:∵∠ACD 为△ABC 的外角 ∴∠ACD=∠A+∠ABC ∵BO,CO 是∠ABC 与∠ACD 的角平分线 ∴∠OBC=2 1∠ABC ∠OCB =2 1∠ACD =21(∠A+∠ABC) A E

三角形角平分线专题讲解(精选.)

二由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这 种尝试与猜想是在一定的规律基本之图1-1 B

上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠∠,如取,并连接、,则有△≌△,从而为我们证明线段、角相等创造了条件。 例1. 如图 1-2,,平分∠,平分∠, 点E 在上,求证:。 分析:此题中就涉及到角平分线, 可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。 简证:在此题中可在长线段上截取,再证明,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长与的延长线交于一点来证明。自已试一试。 例2. 已知:如图 1-3,2,∠∠,,求证⊥ 图1-2 D B C

三角形的角平分线中线高以及三角形稳定性知识点练习与作业

三角形的高,中线,角平分线知识点及练习 知识点一:认识并会画三角形的高线,利用其解决相关问题 1、作出下列三角形三边上的高: 2、上面第1图中,AD 是△ABC 的边BC 上的高,则∠ADC= ∠ = ° 3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 点;(2)锐角三角形的三条高相交于三角形的 ;(3)钝角三角形的三条高所在直线相交于三角形的 ;(4)直角三角形的三条高相交三角形的 ;(5)交点我们叫做三角形的垂心。 练习一:如图所示,画△ABC 的一边上的高,下列画法正确的是( ). 知识点二:认识并会画三角形的中线,利用其解决相关问题 1、 作出下列三角形三边上的中线 2、AD 是△ABC 的边BC 上的中线,则有BD = = 2 1 , 3、由作图可得出如下结论:(1)三角形的三条中线相交于 点;(2)锐角三角形的三条中线相交于三角形的 ;(3)钝角三角形的三条中线相交于三角形的 ;(4)直角三角形的三条中线相交于三角形的 ;(5)交点我们叫做三角形的重心。 练习二:如图,D 、E 是边AC 的三等分点,图中有 个三角形,BD 是三角形 中 边上的中线,BE 是三角形 中________上的中线; 知识点三:认识并会画三角形的角平分线,利用其解决相关问题 1、作出下列三角形三角的角平分线: 2、AD 是△ABC 中∠BAC 的角平分线,则∠BAD=∠ = 3、由作图可得出如下结论:(1)三角形的三条角平分线相交于 点;(2)锐角三角形的三条角平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的 ;(4)直角三角形的三条角平分线相交三角形的 ;(5)交点我们叫做三角形的内心。 练习三:如图,已知∠1= 2 1 ∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC 的平分线为 . 总结:三角形的高、中线、角平分线都是一条线段。 三、综合练习 A C B A C B A C B A C B A C B A C B

三角形的高、中线与角平分线(全国优质课一等奖)

2008年全国第六届初中数学优质课比赛教案 课题:§7.1.2三角形的高、中线与角平分线 教材:人教版义务教育课程标准实验教科书七年级数学下册第65~66页 授课教师:临川一中陈良琴 [教材分析] 1、本节教材的地位与作用: 学生已学习了角的平分线,线段的中点,垂线和三角形的有关概念及边的性质等,本节课在此基础上进一步认识三角形,为今后学习三角形的内切圆及三心等知识埋下了伏笔.本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段——中线、角平分线. 通过本节内容学习,可使学生掌握三角形的高、中线、角平分线与垂线、角平分线的联系与区别.另外,本节内容也是日后学习等腰三角形等特殊三角形的基础.故学好本节内容是十分必要的. 2、教学重点: 能够正确地画出三角形的“高”、“角平分线”和“中线”,并理解它们概念的含义、联系和区别.3、教学难点: 在钝角三角形中作高. 4、教学关键: 运用好数形结合的思想,特别是研究三角形的角平分线、中线、高时,从折叠、度量入手,获得三种线段的直观形象,以便准确理解上述基本知识。 [教学目标] 基于上述对教材地位与作用的分析,结合学生已有的认知水平的年龄特征,制定本节如下的教学目标: (1)知识与技能目标:通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分线、中线,通过画图、折纸了解三角形的三条高线、三条角平分线、三条中线会交于一点. (2)过程与方法目标:经历画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力.(3)情感与态度目标:通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心. [学情分析] 七年级的孩子思维活跃,模仿能力强,对新知事物满怀探求的欲望.同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.但是受年龄特征的影响,他们知识迁移能力不强,推理能力还需进一步培养. [教学过程] 本节课按照“创设情境,引入新课”——“合作交流,探求新知”——“拓展创新,挑战自我”——“课堂小结,感悟反思”——“走出课堂,应用数学”的流程展开.

三角形内角平分线的性质定理的证明

三角形内角平分线的性质定理的证明 一、定理 三角形内角平分线分对边为两部分与两邻边成比例. 二、证明 已知:如图,2∠1∠=. 求证: BC AC BD AD =. 方法一:利用平行线作等比代换. 证明:作DE//BC ,DE 交AC 于点E ,则EC AE BD AD =.3∠2∠=,BC AC DE AE = 又2∠1∠=,∴3∠1∠=,于是DE=EC. ∴BC AC DE AE BD AD == 方法二:应用平行线分线段成比例定理,等比代换中辅以等量代换. 如图,作BE//DC ,BE 交AC 的延长线于点E ,则CE AC BD AD =,E ∠1∠=,3∠2∠=.

又2∠1∠=,得E ∠3∠=,于是 BC=CE , 则BC AC BD AD =. 方法三:进行逆推分析,若在AC 的延长线上作一个CE=BC ,则只要BE//DC. 延长AC 到点E ,使CE=BC ,连接BE ,则)(E ∠3∠21 3∠+=.又∠ACB 2 12∠=, ∠E ∠3∠+=ACB ,∴3∠2∠=,于是 BE//DC. 则CE AC BD AD ==BC AC . 证法4:如图20.改变△ADC 的一个内角的大小,把它改造为△AEC ,使之与△BDC 相似并作等量代换. 第一种情况:当BC AC ≠ 时,不妨设BC AC >,B CAB ∠∠<,以AC 为一边,在CAB ∠的同侧,作B CAE ∠∠=,AE 与CD 的延长线交于点E.又2∠1∠=,∴△ACE ∽△BCD. 则BC BD AC AE =,而E CA E B ∠∠-1∠-180∠-2∠-1804∠3∠=°=°==. ∴AE=AD ,于是 BC BD AC AD =,即BC AC BD AD =.

三角形角平分线部分经典题型

1.如图1所示,在△ABC中,∠A=90°,BD平分∠ABC,AD=2 cm,则点D到BC的距离为________cm. 图1图2 2.如图2所示,在RtΔABC中,∠C=90°,BD是∠ABC的平分线,交AC于D,若CD=n,AB=m,则ΔABD的面积是() A .mn 3 1 B. mn 2 1 C.mn D.2mn 3.如图,在△ABC中,∠C=900,BC=40,AD是∠BAC的平分线交BC于D,且DC∶ DB=3∶5,则点D到AB的距离是。 4.如图,已知BD是∠ABC的角平分线,CD是∠ACB的外角平分线,由D出发,作点D到BC、AC和AB的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系是。 5.如图,已知AB∥CD,O为∠A、∠C的角平分线的交点,OE⊥AC于E,且OE=2, 则两平行线间AB、CD的距离等于。 6.AD是△BAC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( ) A、DE=DF B、AE=AF C、BD=CD D、∠ADE=∠ADF 7.到三角形三条边的距离都相等的点是这个三角形的() A.三条中线的交点B.三条高的交点 C.三条边的垂直平分线的交点D.三条角平分线的交点 8.已知△ABC中,∠A=80°,∠B和∠C的角平分线交于O点,则∠BOC= 。 9.如图,已知相交直线AB和CD,及另一直线EF。如果要在EF上找出与AB、CD距离相等的点,方法是,这样的点至少有个,最多有个。 3题图 D C B A z .. ..

z .. .. D C B A 10.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,则△DEB 的周长为( )。 A.9 cm B.5 cm C.6 cm D.不能确定 11.如图,AB //CD ,CE 平分∠ACD ,若∠1=250 ,那么∠2的度数是 . 12.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP 13.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和∠ABD ,CD 过点E ,则AB 与AC+BD?相等吗?说明理由. 14、如图所示,已知AD 为等腰三角形ABC 的底角的平分线,∠C =90° 求证:AB =AC +CD . 15、如图,在四边形ABCD 中,BC>BA ,AD=DC,BD 平分∠ABC,求证:∠A+∠C=180° 16、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE. O B A P A B C D E D C A B E

三角形角平分线性质资料讲解

三角形内角平分线定理 三角形任意两边之比等于它们夹角的平分线平分对边之比。即在ΔABC中,若AD是∠A的平分线,则 BD/DC=AB/AC 应用:不用计算即可将一条线段按要求分成任意比例三角形内角平分线内平分对边,所得的两条线段与这个角的两边对应成比例. 三角形外角平分线的性质定理: 三角形外角平分线平分对边,所得的两条线段与其内角的两边对应成比例,均可以用相似△证明. 角平分线性质定理 角平分线的性质: 1.角平分线可以得到两个相等的角。 2.角平分线上的点到角两边的距离相等。 3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 证明 ●三角形内角平分线分对边所成的两条线段,和两条

邻边成比例. 即在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC. 证明:如图,AD为△ABC的角平分线,过点D向边AB,AC分别引垂线DE,DF.则DE=DF. S△ABD:S△ACD=BD:CD 又因为S△ABD:S△ACD=[(1/2)AB×DE]:[(1/2)AC ×DF]=AB:AC 所以BD/CD=AB/AC. 1.角平分线可以得到两个相等的角。 角平分线,顾名思义,就是将角平分的射线。 如右图,若射线AD是角CAB的角平分线,则角CAD 等于角BAD。 2.角平分线线上的点到角两边的距离相等。 如右上图,若射线AD是∠CAB的角平分线,求证:

CD=BD ∵∠DCA=∠DBA ∠CAD=∠BAD AD=AD ∴△ACD≌△ABD ∴CD=BD 3.三角形的三条角平分线交于一点,称作三角形的内心。三角形的内心到三角形三边的距离相等。 这一条是第二条的引申,详细证明过程参照第二条和三角形内心。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 如右下图,平面内任意一小于180度的∠MAN,AS 平分∠MAN,直线BC分别交射线AM、AN、AS于B、C、D,求证:AB/BD=AC/CD: 作BE=BD交射线AS于E,如图1: ∵BE=BD, ∴∠BED=∠BDE, ∴∠AEB=∠ADC 又∵∠BAE=∠CAD,

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

等腰三角形+角平分线

第一部分:知识点回顾 角平分线的性质及判定: 1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线; 2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离; 3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上。 4.注意在证明中用到这两个定理,如何把文字叙述转化成数学符号: 例:如图 角的平分线的性质定理的几何语言: ∵OC是∠AOB的平分线,PD⊥OA于D,PE⊥OB于E, ∴PD=PE 角的平分线的判定定理的几何语言: ∵PD⊥OA于D,PE⊥OB于E,PD=PE ∴点P在∠AOB的平分线上 等腰三角形的性质及判定: 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 2.等腰三角形的性质和判定 性质1 等腰三角形的两个底角相等(简写成“等边对等角”) 性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”) 判定 (1)有两条边相等的三角形,叫做等腰三角形 (2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”) 3.等边三角形 三条边都相等的三角形叫做等边三角形. 4.等边三角形的性质 (1)等边三角形的三个内角都相等,并且每一个角都等于60°. (2)等边三角形是轴对称图形,共有三条对称轴. (3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合. 5.等边三角形有关判定 (1 )三条边都相等的三角形是等边三角形 (2)三个角都相等的三角形是等边三角形. (3)有一个角是60°的等腰三角形是等边三角形. 6.由对等边三角形推出的一个关于直角三角形的一个性质 在直角三角形中,如果有一个锐角等于30°,那么它对的直角边等于斜边的一半. 第二部分:典型例题

三角形中线与角平分线专题(二)

三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点,BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A ,=∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______.

三角形——角平分线专题训练

1 垂直平分线和角平分线专项练习 1、如图,Rt △ABC 的斜边AB 中点为E ,ED ⊥AB 交BC 于D ,且∠CA D ︰∠BAD =1︰7,求∠BAC 的度数。 2、如图,在△ABC 中,DE 垂直平分AB 于E,交AC 于D,若AB =AC =32,BC =21,求△BCD 的周长。 3、如图,在△ABC 中,∠BAC =α>90°,PM 、QN 分别垂直平分AB 、AC ,垂足分别为M 、N ,交BC 于P 、Q ,求∠PAQ 的度数。 4、已知在△ABC 中∠ABC 、∠ACB 的平分线交于点I ,过点I 作DE//BC ,分别交AB 、AC 于点D 、E 。AB=15cm ,AC=13cm,试求△ADE 的周长。 5、如图,AF 平分∠BAC ,P 是AF 上任一点,过P 向AB 、AC 作垂线PD 、PE ,D 、E 分别为垂足,连结DE ,求证:AF 垂直平分DE 。 6、如图,在△ABC 中,AD 为∠BAC 的平分线,FE 垂直平分AD ,E 为垂足,EF 交BC 的延长线于F ,求证:∠CAF =∠B A B C D E C A B D E A B C P Q M N A B C E P D F A B C D E F 3 2 1 I E D A B C

2 7、如图,在△ABC 中,∠ACB =90°,D 是BC 延长线上一点,BD 的垂直平分线交AB 于P ,PD 交AC 于E ,求证:点P 也在AE 的垂直平分线上。 9、如图,AD ⊥DC ,BC ⊥DC ,E 是DC 上一点,AE 平分∠DAB ,BE 平分∠ABC , 求证:AB=AD+BC。 10、如图,在等边△ABC 中,AE =CD ,AD 、BE 交于点P ,BQ ⊥AD 于Q ,求证:BP =2PQ 11、如图,已知△ABC 中,AB =AC ,F 在AC 上,在BA 的延长线上取AE =AF ,求证EF ⊥BC (用多种方法) 15、如图,已知△ABC 中,AB =AC ,∠A =100°,∠B 的平分线交AC 于D ,求证:AD +BD =BC 16、如图,已知△ABC 中,BC =AC ,∠C =90°,∠A 的平分线交BC 于D ,求证:AC +CD =AB A B C P D E F A C B D A C B D A B C D E A E B C D A B C D Q E P

三角形中线和角平分线在解题中的应用(整理八种方法)

解三角形题目的思考 文科:在△ABC 中,D 是BC 的中点,若AB=4,AC=1,∠BAC=60°,则AD=_______; 理科:在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 常规解法及题根: (15年新课标2理科)?ABC 中,D 是BC 上的点,AD 平分∠BAC ,?ABD 是?ADC 面积的2倍。 (Ⅰ)求C B ∠∠sin sin ; (Ⅱ) 若AD =1,D C = 22求BD 和AC 的长. (15年新课标2文科)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (I )求sin sin B C ∠∠ ; (II )若60BAC ∠=o ,求B ∠. 重点结论:角平分线性质: (1)平分角 (2)到角两边距离相等 (3)线段成比率 中点性质与结论: (1)平分线段; (2)向量结论; (3)两个小三角形面积相等。 题目解法搜集: 解法1(方程思想):两边及夹角,利用余弦定理求第三边,然后在小三角形中求解; 在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 解:在△ABC 中,222BC =AB +AC -2AB AC cos BAC=7∠g g ,则7 因为AD 平分∠BAC ,则AB BD AC DC = ,所以BD=37,DC=7; 在△ABD 中,设AD=x ,利用cos ∠BAD=cos30°=222 2AB AD BD AB AD +-g 即2 22373323x x +-??=?,解得x= 933344。 若在△ADC 中,设AC=m ,则273=1216x x +-,解得x=333。

小专题(一) 与三角形的角平分线有关的角度计算(选做)

小专题(一) 与三角形的角平分线有关的角度计算 模型1 两个内角平分线的夹角 方法归纳:三角形的两个内角平分线交于一点,所形成的夹角的度数等于90°加上第三角度数的一半. 如图,在△ABC 中,∠ABC 与∠ACB 的角平分线相交于点O ,则∠BOC=90°+1 2 ∠A. 1.如图,点O 是△ABC 的∠AB C 与∠ACB 两个角的平分线的交点,若∠BOC=118°,则∠A 的角度是________°. 2.如图所示,在△ABC 中,BO 、CO 是角平分线. (1)∠ABC=50°,∠ACB =60°,求∠BOC 的度数,并说明理由; (2)题(1)中,如将“∠ABC=50°,∠ACB =60°”改为“∠A=70°”,求∠BOC 的度数; (3)若∠A=n °,求∠BOC 的度数. 模型2 一个内角平分线与一个外角平分线的夹角 方法归纳:三角形的一个内角平分线与一个外角平分线交于一点,所形成的夹角的度数等于第三角度数的一半. 如图,在△ABC 中,BD 、CD 分别平分∠ABC、∠ACE,则∠BDC=1 2∠A. 3.如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于点D ,∠A =50°,则∠D=________. 4.如图,在平面直角坐标系中,A ,B 分别是x ,y 轴上的两个动点,∠BAO 的平分线与∠ABO 的外角平分线相交于点C ,在A ,B 的运动过程中,∠C 的度数是一个定值,这个定值为________. 5.(达州中考改编)如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的

三角形的内角与外角角平分线培优练习题

三角形的内角与外角角平分线 1、如图1,点D是△ABC两个内角平分线的交点。 (1)∠ABC=50°,∠ACB=80°则∠D=. (2)∠A=100°,则∠D=. (3)∠D=150°,则∠A=. (4)写出∠D和∠A的关系 2、如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点, (1)∠ABC=50°,∠A=80°则∠D=. (2)∠A=100°,则∠D=. (3)∠D=50°,则∠A=. (4)写出∠D和∠A的关系 3、如图所示,在△ABC中,∠ABC和∠ACB的外角平分线交于点O, (1)∠1=80°,∠2=50°则∠O=. (2)∠A=100°,则∠O=. (3)∠D=50°,则∠A=. (4)设∠BOC=a,则∠A等于. 4、如图已知△ABC中,∠A=39°,∠B和∠C的三等分线分别 交于D、E两点,则∠BDC度数是() A.133°B.86°C.109.5°D.88° 5、如图所示,已知△ABC中,∠A=84°,点B、C、M在一条直线上,∠ABC和∠ACM两角的平分线交于点P1,∠P1BC和∠P1CB两角的平分线交于点P2,∠P2BC和∠P2CB两角的平分线交于点P3,则∠P3的度数是. 6、如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1 ∠A1BC与∠A1CD的平分线相交于点A2,依次类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为() 7、如图所示,已知△ABC中,∠A=84°,点B、C、M在一条直线上,∠ABC和∠ACM两角的平分线交于点P1,∠P1BC和∠P1CM两角的平分线交于点P2,∠ P2BC和∠P2CM两角的平分线交于点P3,则∠P3的度数是. 8、如图所示,∠ABC,∠ACB的内角平分线交于点O,∠ABC的内角平分线与 ∠ACB的外角平分线交于点D,∠ABC与∠ACB的相邻外角平分线交于点E, 且∠A=60°,则∠BOC=_______,∠D=_____,∠E=_______. P3 P2 P1 C B

角平分线在三角形中的比例关系

角平分线在三角形中的比例关系 关于角平分线,除了知道它把一个角平分为二,以及平分线上任意一点到其两边的距离相等外,它在三角形中还存在一些美丽的对称性质。 1,角平分线定理:如图P2,AD平分∠BAC交BC于点D,求证:BD∶DC=AB∶AC 【解析】用面积法来证明:如图P2-1,作DE⊥AC于点E,DF⊥AB于点F。则DE=DF,∴S△ABD∶S△ACD=AB∶BC;又S△ABD∶S△ACD=BD∶CD,故BD∶DC=AB∶AC。 2,如图JP2,在△ABC中,AD是∠BAC的外角平分线,则有AB∶AC=BD∶DC。 【解析】用面积法可证明此结论,方法同上,具体略。 利用上述结论,我们可以快速解决一些问题: 3,如图JP3,I是△ABC内角平分线的交点,AI交对应边于点D,求证:AI∶ID=(AB+AC)∶BC。

【解析】根据角平分线定理,AI∶ID=AB∶BD=AC∶CD,∴AI∶ID=(AB+AC)∶(BD+CD)=(AB+AC)∶BC。 4,如图JP4,已知:PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。求AD·DC的值。 【解析】如图JP4-1,过点P作∠APB的角平分线,交AC于点E。 根据角平分线定理,AP∶PD=AE∶ED=4∶3, ∴ED=3AD/7;又∠APB=2∠ACB, ∴∠EPD=∠BCD,∠ PDE=∠CDB,故△PDE∽△CDB, ∴PD∶DC=ED∶BD,即ED·DC=PD·BD=3, ∴(3AD/7)·DC=3,故AD·DC=7。 5,如图XZ5,已知:AD、AE分别为△ABC的内、外角平分线, 【解析】根据角平分线定理,AC∶AB=DC∶BD = EC∶BE, ∴(CD+BD)∶BD=(EC+BE)∶BE,

三角形角平分线经典习题

例1.如图,已知:AD 是ABC ?的角平分线,DE 、DF 分别是ABD ?和ACD ?的高. 求证:AF AE =. 例2.已知:如图,BD 是ABC ∠的平分线,BC AB =,P 在BD 上,AD PM ⊥,CD PN ⊥. 求证:PN PM =. 例3.如图,已知:在ABC ?中AD 是BAC ∠的平分线,AB DE ⊥于E ,AC DF ⊥于F . 求证:EF AD ⊥. 例4.已知:如图,在ABC ?中,?=∠90C ,BC AC =,AD 是A ∠的平分线. 求证:AB CD AC =+. 例5、如图,已知DC AB //,?=∠=∠90D A ,点E 在AD 上,BE 平分ABC ∠,CE 平分BCD ∠。 求证:DC AB BC +=。 例6.已知:如图,在ABC ?中,BE 、CF 分别平分ABC ∠、ACB ∠,且交于点O , 求证:点O 在A ∠的平分线上. E D C B A

针对性练习 1、下列说法正确的有几个( ) (1) 角的平分线上的点到角的两边的距离相等; (2) 三角形两个内角的平分线交点到三边距离相等; (3) 三角形两个内角的平分线的交点到三个顶点的距离相等; (4) 点E 、F 分别在∠AOB 的两边上,P 点到E 、F 两点距离相等,所以P 点在∠AOB 的平分线上; (5) 若OC 是∠AOB 的平分线,过OC 上的点P 作OC 的垂线,交OB 于D ,交OA 于E ,则线段PD 、PE 的长分别是P 点到角两边的距离 A .2 B 3 C 4 D 5 2、在△ABC 中,∠C =090,BC =16cm ,∠A 的平分线AD 交BC 于D , 且CD :DB =3:5,则D 到AB 的距离等于____ 3、已知:如图1,BD 是∠ABC 的平分线,DE ⊥AB 于E ,2 36cm S ABC =? AB =18cm,BC =12cm,求DE 的长 4.如图,已知:CD BD =,AC BF ⊥于F ,AB CE ⊥于E . 求证:D 在BAC ∠的平分线上. 5、已知:如图2, ∠B =∠C =0 90,M 是BC 中点,DM 平分∠ADC 求证:AM 平分∠DAB 6.如图,ABC ?是等腰直角三角形,?=∠90A ,BD 是ABC ∠的平分线,BC DE ⊥于E ,cm BC 10=,求DEC ?的周长. C B 图1 A D E A B C D M 图2 O B F C E A

三角形内外角平分线定理上课讲义

三角形内外角平分线 定理

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分 线。 ABC AD BAC AB BD AC CD ∠=在中,若为的平分线,则:

求证: BA/AC=BD/DC 证明2:过D作DE⊥AB于E,DF⊥AC于F; ∵∠BAD=∠CAD;(已知) ∴ DE=DF; ∵ BA/AC=S△BAD/S△DAC;(等高时,三角形面积之比等于底之比) BD/DC=S△BAD/S△ABCDAC;(同高时,三角形面积之比等于底之比)∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD是△ABC中∠BAC的外角∠CAF的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD的平行线。 证明1:过C作CE∥DA与BA交于E。则: BA/AE=BD/DC ∵∠DAF=∠CEA;(两线平行,同位角相等) ∠DAC=∠ECA;(两线平行,内错角相等) ∠DAF=∠DAC;(已知) ∴∠CEA=∠ECA;(等量代换) ∴ AE=AC; ∴ BA/AC=BD/DC 。

三角形角平分线

例1 如图1,已知△ABC的∠B和∠C的平分线BD、CE相交于点O,求证: ∠BOC= 90°+∠A。 解:∵BD平分∠ABC ∴∠ABC=2∠ABD=2∠DBC 同理:∠ACB=2∠ACE=2∠ECB. 在△BOC中,∠BOC+∠DBC+∠ECB= 180°, ∴∠BOC=180°-(∠DBC+∠ECB) ∵在△ABC中, ∠A+∠ABC+∠ACB= 180°, ∴∠ABC+∠ACB =180°-∠A ∴2∠DBC+2∠ECB =180°-∠A ∴∠DBC+∠ECB =90°-∠A ∴∠BOC=180°-(90°-∠A) 即∠BOC= 90°+∠A。 结论1:在一个三角形中,任意两个内角的角平分线相交形成的钝角等于90°加上第三个角的一半。 例2 如图2,已知BO平分∠EBC,CO平分∠FCB,BO、CO相交于点O,探究∠BOC与∠A的关系。

解:∵BO平分∠EBC ∴∠EBC=2∠CBO=2∠EBO 同理:∠FCB=2∠BCO=2∠FCO 又∵∠ABC+∠EBC=180° ∴∠ABC=180°-∠EBC=180°-2∠CBO 同理:∠ACB=180°-∠FCB=180°-2∠BCO ∵∠A+∠ABC+∠ACB=180° ∴∠A+180°-2∠CBO+180°-2∠BCO =180° ∴∠CBO+∠BCO= 90°+∠A 又∠BOC+∠CBO+∠BCO =180° ∴∠BOC =180°-(∠CBO+∠BCO) =180°-(90°+∠A) =90°-∠A 结论2:三角形两个外角的角平分线相交形成的角等于90°减去第三个外角对应的内角的一半。

例3 如图3,已知△ABC中,BE平分∠ABC,CE平分∠ACD,BE、CE相交于点E,探究∠E与∠A的关系。 解:∵BE平分∠ABC ∴∠ABC=2∠ABE=2∠EBC 同理:∠ACD=2∠ACE=2∠ECD 又∵∠ACB+∠ACD=180° ∴∠ACB=180°-∠ACD=180°-2∠ACE 在△ABC中,∠A+∠ABC+∠ACB=180° ∴∠A+2∠EBC+180°-2∠ACE=180° ∴∠ACE-∠EBC=∠A。① 在△BEC中,∠EBC +∠BCE+∠E=180° ∴∠EBC +∠ACB+∠ACE+∠E =180° 即∠EBC +180°-2∠ACE +∠ACE+∠E =180° ∴∠ACE-∠EBC=∠E. ② 由①和②得:∠E=∠A。 结论3:三角形的一个内角的角平分线与另一个内角的邻补角的角平分线相交形成的角等于三角形中的第三个内角的一半。

相关文档
相关文档 最新文档