文档库 最新最全的文档下载
当前位置:文档库 › 哈工大液压大作业压力机

哈工大液压大作业压力机

哈工大液压大作业压力机
哈工大液压大作业压力机

压力机液压系统设计

1 明确液压系统设计要求

设计一台压制柴油机曲轴轴瓦的液压机的液压系统。轴瓦毛坯为长×宽×厚= 365×92×7.5(mm)的钢板,材料为08Al,并涂有轴承合金;压制成内经为Φ220mm的半圆形轴瓦。液压机压头的上下运动由主液压缸驱动,顶出液压缸用来顶出工件。其工作循环为主缸快速空程下行、慢速下压、快速回程、静止、顶出缸顶出及顶出缸回程。液压机的结构形式为四柱单缸液压机。

2 分析液压系统工况

液压机技术参数如下:

(1)主液压缸

(a)负载

压制力。压制时工作负载可区分为两个阶段。第一阶段负载力缓慢地线性增加。达到最大压制力的10%左右,其上升规律也近似于线性,其行程为90mm(压制总行程为110mm)第二阶段负载力迅速线性增加到最大压制力18×105N,其行程为20mm

回程力(压头离开工件时的力):一般冲压液压机的压制力与回程力之比为5~10,本压机取为5,故回程力为F h = 3.6×105N 移动件(包括活塞、活动横梁及上模)质量=3058kg。

(b)行程及速度

快速空程下行:行程S l = 200mm,速度v1=60mm/s;

工作下压:行程S2 = 110mm,速度v2=6 mm/s。

快速回程:行程S3 = 310mm,速度v3=53 mm/s。

(2)顶出液压缸

(a)负载:顶出力(顶出开始阶段)F d=3.6×105N,回程力F dh= 2×105N

(b)行程及速度;行程L4 = 120mm,顶出行程速度v4=55mm/s,回程速度v5=120mm/s

液压缸采用V型密封圈,其机械效率ηCm=0.91.压头起动、制动时间:0.2s

设计要求。本机属于中小型柱式液压机,有较广泛的通用性,除了能进行本例所述的压制工作外,还能进行冲孔、弯曲、较正、压装及冲压成型等工作。对该机有如下性能要求。

(a)为了适应批量生产的需要应具有较高的生产率,故要求本机有较高的空程和回程速度。

(b)除上液压缸外还有顶出缸。顶出缸除用以顶出工件外,还在其他工艺过程中应用。主缸和顶出缸应不能同时动作,以防出现该动作事故。

(c)为了降低液压泵的容量,主缸空程下行的快速行程方式采用自重快速下行。因此本机设有高位充液筒(高位油箱),在移动件快速空程下行时,主缸上部形成负压,充液筒中的油液能吸入主缸,以补充液压泵流量之不足。

(d)主缸和顶出缸的压力能够调节,压力能方便地进行测量。

(e)能进行保压压制。

(f)主缸回程时应有顶泄压措施,以消除或减小换向卸压时的液压冲击。

(g)系统上应有适当的安全保护措施。

3 确定液压缸的主要参数

(1)初选液压缸的工作压力

(a)主缸负载分析及绘制负载图和速度图

液压机的液压缸和压头垂直放置,其重量较大,为防止因自重而下滑;系统中设有平衡回路。因此在对压头向下运动作负载分析时,压头自重所产生的向下作用力不再计入。另外,为简化问题,压头导轨上的摩擦力不计。

惯性力;快速下降时起动

F az = m Δv Δt = 3058×0.060

0.2 = 917N

快速回程时起动与制动

F as = m Δv Δt = 3058×0.053

0.2 = 810N

压制力:初压阶段由零上升到F 1 = 1.8×106N×0.10 = 1.8×105N 终压阶段上升到F 2 = 1.8×106N

循环中各阶段负载见表1.1,其负载图见图1.1 a 。

表1.1 主缸的负载计算

运动分析:根据给定条件,空载快速下降行程200mm ,速度25mm/s 。压制行程110mm ,在开始的90mm 内等速运动。速度为6 mm/s ,最后的20mm 内速度均匀地减至零,回程以53mm/s 的速度上升。利用以上数据可画出速度图,见图1.1b 。

图1.1 液压机主液压缸负载速度图

(2)确定液压缸的主要结构参数

根据有关资料,液压机的压力范围为20~30MPa,现有标准泵、阀的最高工作压力为32MPa,如选此压力为系统工作压力,液压元件的工作性能会不够稳定,对密封装置的要求以较高。泄漏较大。参考系列中现已生产的其它规格同类液压机(如63、100、200、300吨液压机)所采用的工作压力,本机选用工作压力为25×106Pa

(a)主缸的内径D

D =

4F

ηcmπp=

4×1.8×106

0.91×π×25×106= 0.317m = 317mm

按标准取D = 320mm

(b)主缸无杆腔的有效工作面积

A1 = π

4D

2 =

π

4×0.32

2 = 0.0804m2 = 804cm2

(c)主缸活塞杆直径d

d = D2-4F h

ηcmπp= 0.322-

4×3.6×105

0.91×π×25×106= 0.287m = 287mm

按标准值取d = 280mm

D-d=320-280=40mm>允许值12.5mm

(据有关资料,(D-d)小于允许值时,液压缸会处于单向自锁状态。)(4)主缸有杆腔的有效工作面积

A2 = π

4(D

2-d2)=

π

4×(0.32

2-0.282)= 0.01885m2 = 188.5cm2

(d)主缸的工作压力

活塞快速下行起动时p1 =

F

ηcm A1=

917

0.91×0.0804= 12533Pa

初压阶段末p1 =

F

ηcm A1=

1.8×105

0.91×0.0804= 2.46×10

6Pa

终压阶段末p1 =

F

ηcm A1=

1.8×106

0.91×0.0804= 24.6×10

6Pa

活塞回程起动时p2 =

F

ηcm A2=

3.6×105

0.91×0.01885= 21×10

6Pa

活塞等速运动时p2 =

F

ηcm A2=

30000

0.91×0.01885= 1.75×10

6Pa

回程制动时p2 =

F

ηcm A2=

29190

0.91×0.01885= 1.7×10

6Pa

(3)计算液压缸的工作压力、流量和功率

(a)主缸的流量

快速下行时q1 = A1v1 = 804×6 = 4824cm3/s = 289.4L/min

工作行程时q2 = A2v2 = 804×0.6 = 482cm3/s = 28.9L/min

快速回程时q3 = A3v3 = 183.5×5.3 = 999cm3/s = 59.9L/min

(b)主缸的功率计算

快速下行时(起动):P1 = p1q1 = 12533×4824×10-6 = 60.46W

工作行程初压阶段末:P2 = p2q2 = 2.46×106×482×10-6 = 1186W

终压阶段:此过程中压力和流量都在变化,情况比较复杂。压力p 在最后20mm行程内由2.46MPa增加到24.6MPa,其变化规律为

p = 2.46+24.6-2.46

20S = 2.46+1.11S(MPa)

式中S——行程(mm),由压头开始进入终压阶段算起。

流量q在20mm内由482cm3/s降到零,其变化规律为q = 482(1-S

20)(cm3/s)

功率为P = pq = 482×(2.46+1.11S)×(1-S 20)

求其极值,?P

?S= 0得S = 8.9(mm)此时功率P最大

P max = 482×(2.46+1.11×8.9)×(1-8.9

20)= 3300.8W = 3.3kW

快速回程时;等速阶段P = pq = 1.75×106×999×10-6 = 1.748kW

起动阶段:此过程中压力和流量都在变化,情况也比较复杂。设启动时间0.2秒内作等加速运动,起动阶段活塞行程为

S = 0.5vt = 0.5×5.3×0.2 = 5.3mm

在这段行程中压力和流量均是线性变化,压力p由21MPa降为1.75MPa。其变化规律为

p = 21-21-1.75

5.3S = 21-3.6S(MPa)

式中S——行程(mm),由压头开始回程时算起。流量q由零增为999cm3/s,其变化规律为

q = 999

5.3S = 188S(cm

3/s)

功率为P = pq = 188S(21-3.6S)

求其极值,?P

?S= 0得S = 2.9(mm),此时功率P最大

P max= 188×2.9×(21-3.6×2.9)= 5755W = 5.76kW 由以上数据可画出主液压缸的工况图(压力循环图、流员循环图和功率循环图)见图1.2。

图1.2 主液压缸工况图

(c)顶出缸的内径D d

D d =

4F d

ηcmπp=

4×3.6×106

0.91×π×25×106= 1419m = 142mm

按标准取D d = 150mm

(d)顶出缸无杆腔的有效工作面积A1d

A1d = π

4D d

2 =

π

4×0.15

2 = 0.0177m2 = 177cm2

(e)顶出缸活塞杆直径d d

d d = D d2-4F dh

ηcmπp= 0.152-

4×2×105

0.91×π×25×106= 0.1063m = 106mm

按标准取d d = 110mm

(f)顶出缸有杆腔的有效工作面积A2d

A2 d = π

4(D d

2-d d 2)= π4×(0.152-0.112)= 0.00817m2 = 81.7cm2

(g)顶出缸的流量

顶出行程q4 = A1 d v4 = 177×5.5 = 973.5cm3/s = 58.4L/min

回程q5 = A2 d v5 = 81.7×12 = 980cm3/s = 58.8L/min

顶出缸在顶出行程中的负载是变动的,顶出开始压头离工件较大(负载为F d),以后很快减小,而顶出行程中的速度也是变化的,顶出开始时速度由零逐渐增加到v4;由于这些原因,功率计算就较复杂,另外因顶出缸消耗功率在液压机液压系统中占的比例不大,所以此处不作计算。

4 拟订液压系统原理图

(1)确定液压系统方案

液压机液压系统的特点是在行程中压力变化很大,所以在行程中不同阶段保证达到规定的压力是系统设计中首先要考虑的。

确定液压机的液压系统方案时要重点考虑下列问题:

(a)快速行程方式

液压机液压缸的尺寸较大,在快速下行时速度也较大,从工况图看出,此时需要的流量较大(289.4L/min),这样大流量的油液如果由液压泵供给;则泵的容量会很大。液压机常采用的快速行程方式可以有许多种,本机采用自重快速下行方式。因为压机的运动部件的运动方向在快速行程中是垂直向下,可以利用运动部件的重量快速下行;在压机构

的最上部设计一个充液筒(高位油箱),当运动部件快速下行时高压泵的流量来不及补充液压缸容积的增加,这时会形成负压,上腔不足之油,可通过充液阀、充液筒吸取。高压泵的流量供慢速压制和回程之用。此方法的优点为不需要辅助泵和能源,结构简单;其缺点为下行速度不易控制,吸油不充分将使升压速度缓慢,改进的方法是使充液阀通油断面尽量加大,另外可在下腔排油路上串联单向节流阀,利用节流造成背压,以限制自重下行速度,提高升压速度。由于本例的液压机属于小型压机,下行速度的控制问题不如大型压机突出,所以本例采用的回路见图1.3。

在主缸实现自重快速行程时,换向阀4切换到右边位置工作(下行位置),同时电磁换向阀5断电,控制油路K使液控单向阀3打开,液压缸下腔通过阀3快速排油,上腔从充液筒及液压泵得到油液,实行滑块快速空程下行。

(b)减速方式

液压机的运动部件在下行行程中快接近制件时,应该由快速变换为较慢的压制速度。目前减速方式主要有压力顺序控制和行程控制两种方式;压力顺序控制是利用运动部件接触制件后负荷增加使系统压力升高到一定值时自动变换速度;某些工艺过程要求在运动部件接触制件前就必须减速,本例压制轴瓦工艺就有这个要求,这时适合选用行程减速方式。本系统拟选用机动控制的伺服变量轴向柱塞泵(CCY型)作动力源,泵的输出流量可由行程挡块来控制,在快速下行时,泵以全流量供油,当转换成工作行程(压制)时,行程挡块使泵的流量减小,在最后20mm 内挡块使泵流量减到零;当液压缸工作行程结束反向时,行程挡块又使泵的流里恢复到全流量。与泵的流量相配合(协调),在液压系统中,当转换为工作行程时,电气挡块碰到行程并关,发信号使电磁换向阀5的电磁铁3YA得电,控制油路K不能通至液控单向阀8,阀8关闭,此时单向顺序阀2不允许滑块等以自重下行。只能靠泵向液压缸上腔供油强制下行,速度因而减慢(见图1.3)。

图1.3 系统回路图

(c).压制速度的调整

制件的压制工艺一般要提出一定压制速度的要求,解决这一问题的方很多,例如可以用压力补偿变量泵来实现按一定规律变化的压制速度的要求。本例中采用机动伺服变量泵,故仍利用行程挡块(块挡的形状)来使泵按一定规模变化以达到规定的压制速度。

(d)压制压力及保压

在压制行程中不同阶段的系统压力决定于负载,为了保证安全,应该限制液压系统的最高压力,本系统拟在变量泵的压油口与主油路间并联一只溢流阀作安全阀用。

有时压制工艺要求液压缸在压制行程结束后保压一定时间,保压方法有停泵保压与开泵保压两种,本系统根据压机的具体情况拟采用开泵保压;此法的能量消耗较前一种大。但系统较为简单。

(e)泄压换向方法

液压机在压制行程完毕或进入保压状态后,主液压缸上腔压力很高,此时由于主机弹性变形和油液受到压缩,储存了相当大的能量。工作行程结束后反向行程开始之前液压缸上腔如何泄压(控制泄压速度)是必须考虑的问题,实践已证明,若泄压过快,将引起剧烈的冲击、振动和

惊人的声音,甚至会因液压冲击而使元件损坏。此问题在大型液压机中愈加重要。

各种泄压方法的原理是在活塞回程之前,当液压缸下腔油压尚未升高时,先使上腔的高压油接通油箱,以一定速度使上腔高压逐步降低。本例采用带阻尼状的电液动换向阀,该阀中位机能是H型,控制换向速度,延长换向时间,就可以使上腔高压降低到一定值后才将下腔接通压力油(见图1.4)。此法最为简单,适合于小型压机。

(f)主缸与顶出缸的互锁控制回路

为保障顶出缸的安全,在主缸动作时,必须保证顶出缸的活塞下行到最下位置。本例采用两个换向阀适当串联的方法来实现两缸的互锁控制(见图1.4)。从图1.4中可见,只有在阀6处于右位工作时,即顶出缸活塞是下行状态时压力油才会通入换向阀4,主缸才能动作。当阀6处于左位工作,顶出缸为上行状态时,只有压力很低的回油通至阀4,主缸才不能动作。

液压系统电磁铁动作见表1.2,液压元件规格明细表见表1.3。

1.2 电磁铁动作循环表

表1.3 液压元件明细表

(2)拟定液压系统原理图

在以上分析的基础上,拟定了液压系统原理图如图1.4所示。

图1.4 液压机液压系统原理图

系统的工作过程如下:

液压泵起动后,电液换向阀4及6处于中位,泵输出油液经背压阀7再经阀6的中位低压卸荷,此时主缸处于最上端位置而顶出缸在最下端位置,电磁铁 2 YA得电,换向阀6在右位工作,此时5YA得电,换向阀4也在右位工作,液压泵输出的压力油进入主缸上腔,此时3YA也得电,控制油路经阀5通至液控单向阀3,使阀3打开,主缸下腔的油能经阀3很快排入油箱,主缸在自重作用下实现快速空程下行,由于活塞快速下行时液压泵进入主缸上腔的流量不足,上腔形成负压,充液筒中的油液经充液阀(液控单向阀)1吸入主缸。

当电气挡块碰到行程开关时3YA失电,控制油路断开,阀3关闭,

此时单向顺序阀(平衡阀)2使主缸下腔形成背压,与移动件的自重相平衡。自重快速下行结束。与此同时用行程挡块使泵的流量减小,主缸进入慢速下压行程,在此行程中可以用行程挡块控制泵的流量适应压制速度的要求。由压力表刻度指示达到压制行程的终点。

行程过程结束后,可由手动按钮控制使5YA失电,4YA得电,换向阀4换向,由于阀2带阻尼器,换向时间可以控制,而阀4的中位机能是H型,阀处于中位时使主缸上腔的高压油泄压,然后阀4再换为左位,此时压力油经阀2的单向阀进入主缸下腔,由于下腔进油路中的油液具有一定压力;故控制油路可以使阀1打开,主缸上腔的油液大部分回到充液筒,一部分经阀4排回油箱,此时主缸实现快速回程。充液筒油液充满后,溢出的油液可经油管引至油箱。

回程结束后,阀4换至中位,主缸静止不动。

1YA得电,2YA失电,阀6换至左位,压力油进入顶出缸下腔,顶出缸顶出制件,然后1YA失电,2 YA得电,阀6换至右位,顶出缸回程;回程结束后,2 YA失电,阀6换至中位,工作循环完成,系统回到原始状态。

5 选择液压元件

(1)液压系统计算与选择液压元件

(a)选择液压泵和确定电动机功率

①液压泵的最高工作压力就是液压缸慢速下压行程终了时的最大工作压力

p p =

F

ηcm A1=

1.8×106

0.91×0.0804= 24.6MPa

因为行程终了时流量q=0,管路和阀均不产生压力损失;而此时液压缸排油腔的背压已与运动部件的自重相平衡,所以背压的影响也可不计。

②液压泵的最大流量

Q p≥K(∑Q)max

泄漏系数K = 1.1~1.3,此处取K = 1.1.由工况图知快速下降行程中q 为最大(q = 289.41L/min),但此时已采用充液筒充液方法来补充流量,

所以不按此数值计算,而按回程时的流量计算。

q max = q3 = 59.9L/min

q p = 1.1q3 = 1.1×59.9 = 65.9L/min

③根据已算出的q P和p P,选轴向杜塞泵型号规格为63CCYY14-B,其额定压力为32MPa,满足25~60%压力储备的要求。排量为63mL/r,

额定转速为1500r/min,故额定流量为:q = q n = 63×1500

1000= 94.5 L/min,

额定流量比计算出的q P大,能满足流量要求,此泵的容积效率ηv = 0.92.

④电动机功率驱动泵的电动机的功率可以由工作循环中的最大功率来确定;由工况分析知,最大功率为5.76kW,取泵的总效率为η

= 0.85。

则P = P max

ηp=

5.76

0.85= 6.78kW

选用功率为7.5kW,额定转速为1440r/min的电动机。电动机型号为:Y132m-4(Y系列三相异步电动机)。

(2)选择液压控制阀

阀2、4、6、7通过的最大流量均等于q P,而阀1的允许通过流量为q。q = q1-q P=289.4-65.9=223.5L/min,阀3的允许通过流量为

q = q1A2

A1= 289.4

188.5

804= 67.9L/min

阀3是安全阀,其通过流量也等于q P。

以上各阀的工作压力均取p=32MPa。

阀5通过控制油液,流量很小,工作压力也很低,可用中低压阀。本系统所选用的液压元件见表1.4。

表1.4 液压机液压元件型号规格明细表

(3)选择辅助元件

(a)确定油箱容量

由资料,中高压系统(p>6.3MPa)油箱容量

V = (6~12)q P。

本例取V = 8×q P = 8×94.5 = 756 L(q P用泵的额定流量). 取油箱容量为800升。

充油筒容量V1 = (2-3)V g = 3×25 = 75(升)

式中V g——主液压缸的最大工作容积。

在本例中,V g = A1S max = 804×31 = 24924cm3≈ 25(升)(b)油管的计算和选择

如参考元件接口尺寸,可选油管内径d = 20mm。

计算法确定:液压泵至液压缸上腔和下腔的油管

d = 4Q

π6v取v = 4m/s,Q = 65.9L/mm

d = 4×65.9

π×6×4= 1.87cm,选d = 20mm.

与参考元件接口尺寸所选的规格相同。

充液筒至液压缸的油管应稍加大,可参考阀1的接口尺寸确定

选d = 32mm的油管,油管壁厚:δ≥

pd 2[σ]

选用钢管:[σ] = σb

n≈ 83.25MPa,取n = 4,σb = 333MPa(10

#钢)。

σ =

pd

2[σ]=

32×20

2×83.25= 3.84mm,取σ = 4mm

(4)选择液压油

本系统是高压系统,油液的泄漏是主要矛盾。为了减少泄漏应选择粘度较大的油,本系统选用68号抗磨液压油。

6 液压系统性能的验算

(1)油路压力的计算

本系统是容积调速,系统在各运动阶段的压力由负载决定。本系统在开始设计时已经说明,运动部件在导轨上的摩擦和自重的影响均忽略不计(对实际计算产生的影响很小),因此要考虑的仅仅是阀和管路的压力损失,而本系统对压力的要求主要是工作行程终了时能达到的最大压力值,由于此时速度已接近于零,阀门和管路的损失也接近千零,所以本例不详细计算压力损失值。

(2)确定安全阀、平衡阀和顺序阀的调整压力

安全阀调整压力p s = 1.1p泵= 1.1×25×106 = 27.5MPa

平衡阀调整压力p X = mg

A2=

3104

188.5×10-4= 1.59MPa

顺序阀7的调整压力:该阀的作用是使液压泵在卸荷时泵的出口油压不致降为零,出口油压应满足液控单向阀和电液换向阀所需控制油压的要求。由资料查的A1Y型液控单向阀的控制压力≥16×105Pa,另外电液换向阀34DY所需的控制油压不得低于10×105Pa,故取顺序阀的调整压力为(16~18)×105Pa

(3)验算电机功率

由工况图知主缸在快速起动阶段中S = 2.9mm处功率为最大,P max = 5.76kW

在P max时液压泵的流量较小,管路和阀的损失不大。在选择电机时也已考虑功率留有一定量的储备,所以电机功率不必再进行验算,此处对液压泵卸荷状态下的功率再作一下计算,此时卸荷压力p

等于阀7的

调整压力

p卸=18×105Pa

q泵取泵的额定流量q P = 94.5L/min。

p卸= p卸q P = (18×105×94.5)/60×10-3 = 2835W = 2.835kW 将液压机在工作循环中的功率进行比较后得知主缸快速回程起动阶段的功率为最大,所以用这个功率来计算电机功率是合理的。

(4)绘制正式液压系统图

绘制的正式液压系统图见图1.4。

哈工大(液压传动)~试题模板

09年春A 一、填空(10分) 1.液压传动是以为介质,以的形式来传递动力的。 2.液压系统的压力取决于,执行元件的运动速度取决于。 3.液压传动装置由、、 和四部分组成。 4.液压泵按结构可分为、和三种,液压阀按用途可分为、和三种。 5.双出杆活塞缸当缸筒固定缸杆其移动范围为 行程的倍。 6.液压调速阀是由阀和阀联而成。 7.常用的调速回路有、、和三种。 二、简要回答下列问题(20分) 1.解释沿程压力损失和局部压力损失,并写出其表达式。(4) 2.解释齿轮泵的困油现象。(4) 3.解释节流阀的最小稳定流量(4) 4.解释调速回路速度刚度的概念。(4) 5.简述溢流阀和减压阀有什么区别。(4) 三、绘制下列各图(20) 1.定量泵的压力—理论流量、实际流量、容积效率、等特性曲线。(4) 2.限压式变量叶片泵的压力流量特性曲线。(2) 3.节流阀和调速阀的流量压差特性曲线。(4) 4.溢流阀的流量压力特性曲线。(2) 5.变压节流调速机械特性曲线。(3) 6、画出下列液压元件职能符号,并注明相应油口。(5) (1)双向变量马达(2)二位二通机动换向阀(常闭)(3)液控顺序阀 四、系统分析(15) 图示的液压系统能实现快进——工进——快退——原位停止的循环动作。填写电磁铁动作表,并说出液压元件1、2、3、4、7、8的名称和用途。说明,(1)该系统是如何实现快进的;(2)该系统是如何实现速度换接的;(3)该系统是何种调速回路;(4)液压泵是如何卸荷的。 1YA 2YA 3YA 4YA

五、计算下列各题( 1.已知:油缸面积A 1=100cm 2 、A 2 泵的容积效率和机械效率ηv =ηm 壁孔,其流量系数C d =0.65ρ=900kg/m 3,力和油泵电机功率(8)。 2.油泵排量V p =50ml/r , 转速n p vP =0.94,泵工作压力p p =4.5MPa 率和机械效率 ηvm =ηmm =0.9 1Y 2YA 4YA

哈工大机械设计大作业V带传动设计完美版

哈工大机械设计大作业V带传动设计完美版

————————————————————————————————作者:————————————————————————————————日期: ?

Harbin Instituteof Technology 机械设计大作业说明书 大作业名称:机械设计大作业 设计题目:V带传动设计 班级: 设计者: 学号: 指导教师: 设计时间: 2014.10.25 哈尔滨工业大学

目录 一、大作业任务书 ........................................................................................................................... 1 二、电动机的选择 ........................................................................................................................... 1 三、确定设计功率d P ..................................................................................................................... 2 四、选择带的型号 ........................................................................................................................... 2 五、确定带轮的基准直径1d d 和2d d ............................................................................................. 2 六、验算带的速度 ........................................................................................................................... 2 七、确定中心距a 和V 带基准长度d L ......................................................................................... 2 八、计算小轮包角 ........................................................................................................................... 3 九、确定V 带根数Z ........................................................................................................................ 3 十、确定初拉力0F ......................................................................................................................... 3 十一、计算作用在轴上的压力 ....................................................................................................... 4 十二、小V 带轮设计 .. (4) 1、带轮材料选择 ............................................................................................................. 4 2、带轮结构形式 . (4) 十二、参考文献 ............................................................................................................................... 6 ?

机械原理作业凸轮机构绘制

机械原理大作业-凸轮机构 专业:材料成型机控制工程学号:0284 姓名:朱富慧组号:11材卓一第2组 1.题目 (1)凸轮回转方向:顺时针 (2)从动件偏置方向:左偏置 (3)偏心距:15mm (4)基圆半径:45mm (5)从动件运动规律:先以余弦运动规律上升,再以等加速等减速运动规律下降。推程运动角150°,远休止角30°,回程运动角120°,近休止角60°。 (6)从动件行程20mm。 要求:编制程序每隔5°计算凸轮轮廓坐标并绘制凸轮轮廓曲线。 2.数学公式 记基圆半径为r0,偏心距为e,凸轮转向系数为m(顺时针时m=1,逆时针时m=-1),从动件偏置方向系数为n(左偏置时n=1,右偏置时n=-1,无偏置时n=0),推程运动角、远休止角、回程运动角、近休止角依次为p1、p2、p3、p4,从动件行程为h从动件位移为s。 则从动件位移曲线方程为 0

其中, 3.程序框图 N ③ Y N Y N 执行函数zuobiao () 执行函数zuobiao () p+5=>p p>=p 1+p 2&&p

p p>=p 1&&p

s 0 0=>p p>=0&&p

哈工大(液压传动)09~12年试题综述

哈工大09~12年试题 09年春A 一、填空(10分) 1.液压传动是以为介质,以的形式来传递动力的。 2.液压系统的压力取决于,执行元件的运动速度取决于。 3.液压传动装置由、、 和四部分组成。 4.液压泵按结构可分为、和三种,液压阀按用途可分为、和三种。 5.双出杆活塞缸当缸筒固定缸杆其移动范围为 行程的倍。 6.液压调速阀是由阀和阀联而成。 7.常用的调速回路有、、和三种。 二、简要回答下列问题(20分) 1.解释沿程压力损失和局部压力损失,并写出其表达式。(4) 2.解释齿轮泵的困油现象。(4) 3.解释节流阀的最小稳定流量(4) 4.解释调速回路速度刚度的概念。(4) 5.简述溢流阀和减压阀有什么区别。(4) 三、绘制下列各图(20) 1.定量泵的压力—理论流量、实际流量、容积效率、等特性曲线。(4) 2.限压式变量叶片泵的压力流量特性曲线。(2) 3.节流阀和调速阀的流量压差特性曲线。(4) 4.溢流阀的流量压力特性曲线。(2) 5.变压节流调速机械特性曲线。(3) 6、画出下列液压元件职能符号,并注明相应油口。(5) (1)双向变量马达(2)二位二通机动换向阀(常闭)(3)液控顺序阀 四、系统分析(15) 图示的液压系统能实现快进——工进——快退——原位停止的循环动作。填写电磁铁动作表,并说出液压元件1、2、3、4、7、8的名称和用途。说明,(1)该系统是如何实现快进的;(2)该系统是如何实现速度换接的;(3)该系统是何种调速回路;(4)液压泵是如何卸荷的。

五、计算下列各题(15): 1.已知:油缸面积A 1=100cm 2 、A 2=50cm 2 ,溢流阀调定压力为4MPa ,泵流量q p =40 l/min , 泵的容积效率和机械效率ηv =ηm =0.95进油路节流阀压力损失 △p T =0.6MPa ,节流阀为薄 壁孔,其流量系数C d =0.65,过流面积0.2 cm 2 ,油的密度ρ=900kg/m 3,不计管路压力损失和泄漏。求:油缸的速度、推力和油泵电机功率(8)。 2.油泵排量V p =50ml/r , 转速n p =1000r/min ,容积效率ηvP =0.94,泵工作压力p p =4.5MPa ,马达排量V M =40ml/r ,容积效率和机械效率 ηvm =ηmm =0.9,不计管路压力损失和泄漏,求马达的输出转速n M 转矩T M 和功率P M (7)。 1YA 2YA 3YA 4YA 快进 工进 快退 原位停止 P p ,q p P 1,q 1A 1A 2P 2F V 前进 1 1Y A 2YA 3Y A 4YA 2 3 4 5 6 7 8 P p ,n p V p V M ,ηVM , ηmM , ηvp

哈工大机械设计大作业轴系

HarbinI n s t i tut e o fTech n o logy 机械设计大作业说明书大作业名称:轴系设计 设计题目: 5.1.5 班级:1208105 设计者: 学号: 指导教师: 张锋 设计时间:2014.12.03 哈尔滨工业大学

哈尔滨工业大学 机械设计作业任务书 题目___轴系部件设计____ 设计原始数据: 方案电动机 工作功 率P/k W 电动机满 载转速n m /(r/min) 工作机的 转速n w /(r/min) 第一级 传动比 i1 轴承座 中心高 度 H/mm 最短工 作年限 工作环 境 5.1.5 3 710 80 2 170 3年3 班 室内清 洁 目录 一、选择轴的材料 (1) 二、初算轴径 (1) 三、轴承部件结构设计 (1) 3.1轴向固定方式 (2) 3.2选择滚动轴承类型 (2) 3.3键连接设计 (2) 3.4阶梯轴各部分直径确定 (2) 3.5阶梯轴各部段长度及跨距的确定 (2) 四、轴的受力分析 (3) 4.1画轴的受力简图 (3) 4.2计算支反力 (3) 4.3画弯矩图 (3) 4.4画转矩图 (5) 五、校核轴的弯扭合成强度 (5)

六、轴的安全系数校核计算………………………………………………6 七、键的强度校核 (7) 八、校核轴承寿命 (8) 九、轴上其他零件设计 (9) 十、轴承座结构设计 (9) 十一、轴承端盖(透盖).........................................................9参考文献 (10)

一、选择轴的材料 该传动机所传递的功率属于中小型功率,因此轴所承受的扭矩不大。故选45号钢,并进行调质处理。 二、初算轴径 对于转轴,按扭转强度初算直径 3min m P d C n ≥ 式中: P ————轴传递的功率,KW ; m n ————轴的转速,r/mi n; C————由许用扭转剪应力确定的系数,查各种机械设计教材或机械设计手册。 根据参考文献1表9.4查得C=118~106,取C=118, 所以, mm n P C d 6.23355 85.211833==≥ 本方案中,轴颈上有一个键槽,应将轴径增大5%,即 ????d ≥23.6×(1+5%)=24.675mm 按照GB 2822-2005的a R 20系列圆整,取d=25mm。 根据GB/T1096—2003,键的公称尺寸78?=?h b ,轮毂上键槽的尺寸 b=8m m,mm t 2.0013.3+= 三、轴承部件结构设计 由于本设计中的轴需要安装带轮、齿轮、轴承等不同的零件,并且各处受力不同,因此,设计成阶梯轴形式,共分为七段。以下是轴段的草图: 3.1及轴向固定方式 因传递功率小,齿轮减速器效率高、发热小,估计轴不会长,故轴承部件的固定方式可采用两端固定方式。因此,所涉及的轴承部件的结构型式如图2所示。然后,可按轴上零件的安装顺序,从min d 处开始设计。 3.2选择滚动轴承类型 因轴承所受轴向力很小,选用深沟球轴承,因为齿轮的线速度,齿轮转动时飞溅的润滑油不足于润滑轴承,采用油脂对轴承润滑,由于该减速器的工作环境清 洁,脂润滑,密封处轴颈的线速度较低,故滚动轴承采用毡圈密封,由于是悬臂布置所以不用轴上安置挡油板。 3.3 键连接设计 轴段⑦ 轴段⑥ 轴段⑤ 轴段④ 轴段③ 轴段② 轴段① L1 L2 L3 图1

哈工大机械原理大作业凸轮 - 黄建青

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 院系:能源学院 班级: 1302402 设计者:黄建青 学号: 1130240222 指导教师:焦映厚陈照波 设计时间: 2015年06月23日

凸轮机构设计说明书 1. 设计题目 设计直动从动件盘形凸轮机构,机构运动简图如图1,机构的原始参数如表1所示。 图1 机构运动简图 表1 凸轮机构原始参数

计算流程框图: 2. 凸轮推杆升程,回程运动方程及推杆位移、速度、加速度线图 2.1 确定凸轮机构推杆升程、回程运动方程 设定角速度为ω=1 rad/s (1) 升程:0°<φ<50° 由公式可得 )]cos(1[20 ?π Φh s -=

)sin( 20 1 ?π ωπΦΦh v = )cos(20 2 2 12?π ωπΦΦh a = (2) 远休止:50°<φ<150° 由公式可得 s = 45 v = 0 a = 0 (3) 回程:150°<φ<240° 由公式得: ()()22 0000200000002200000 0,2(1)(1)1,12(1)(1),2(1)s s s s s s s s s Φhn s h ΦΦΦΦΦΦn Φn ΦΦn h n s h ΦΦΦΦΦΦn Φn n ΦΦΦn hn s ΦΦΦΦΦn Φn ??????'?=---+<≤++?'-? ???''-? =----++ <≤++???'-??? ?'---?'=-++<≤++'-?? 201 00000010002001 000 00n (),(1)(1)n ,(1)(1)n (1),(1)s s s s s s s s Φh v ΦΦΦΦΦΦn Φn ΦΦn h v ΦΦΦΦn Φn n ΦΦΦn h v ΦΦΦΦΦn ΦΦn ω??ω??ω??'=- --+<≤++?'-? ?''-? =- ++<≤++?'-? ?'---'?=--++<≤++''-??

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程0 0240 190≤ ≤?,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮s d ds -φ 线图 本题目采用Matlab 编程,写出凸轮每一段的运动方程,运用Matlab 模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回程的运动方程 输入凸轮基圆偏距等基本参数 输出ds,dv,da 图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

哈工大_液压传动大作业_组合机床动力滑台液压系统设计

哈尔滨工业大学 液压传动大作业 设计说明书 设计题目卧式组合机床液压动力滑台机电工程学院班 设计者 2010 年 9 月 10 日 流体控制及自动化系 哈尔滨工业大学 液压传动大作业任务书

学生姓名班号 设计题目钻镗两用卧式组合机床液压动力滑台 1.液压系统用途(包括工作环境和工作条件)及主要参数: 卧式组合机床液压动力滑台。切削阻力F=15kN,滑台自重G=22kN,平面导轨,静摩擦系数0.2,动摩擦系数0.1,快进/退速度5m/min,工进速度100mm/min,最大行程350mm,其中工进行程200mm,启动换向时间0.1s,液压缸机械效率0.9。 2.执行元件类型:液压油缸 3.液压系统名称: 钻镗两用卧式组合机床液压动力滑台。 设计内容 1. 拟订液压系统原理图; 2. 选择系统所选用的液压元件及辅件; 3. 验算液压系统性能; 4. 编写上述1、2、3的计算说明书。 设计指导教师签字 教研室主任签字 年月日签发

目录 1 序言······················································- 1 - 2 设计的技术要求和设计参数 ··············- 2 - 3 工况分析 ··············································- 2 -3.1 确定执行元件 ···································- 2 -3.2 分析系统工况 ···································- 2 -3.3 负载循环图和速度循环图的绘制 ···- 4 -3.4 确定系统主要参数 ···························- 5 - 3.4.1 初选液压缸工作压力·································································- 5 - 3.4.2 确定液压缸主要尺寸·································································- 5 - 3.4.3 计算最大流量需求·····································································- 7 -3.5 拟定液压系统原理图 ·······················- 8 - 3.5.1 速度控制回路的选择·································································- 8 - 3.5.2 换向和速度换接回路的选择 ·····················································- 9 - 3.5.3 油源的选择和能耗控制···························································- 10 - 3.5.4 压力控制回路的选择·······························································- 11 -3.6 液压元件的选择 ·····························- 12 - 3.6.1 确定液压泵和电机规格···························································- 13 - 3.6.2 阀类元件和辅助元件的选择 ···················································- 14 - 3.6.3 油管的选择···············································································- 16 - 3.6.4 油箱的设计···············································································- 18 -3.7 液压系统性能的验算 ·····················- 19 - 3.7.1 回路压力损失验算···································································- 19 - 3.7.2 油液温升验算···········································································- 20 -

哈工大机械原理大作业——凸轮——22号

机械原理大作业(二) 作业名称:机械原理 设计题目:凸轮机构 班级: 设计者: 学号: 指导教师: 设计时间: 哈尔滨工业大学机械设计

1. 设计题目 (1) 凸轮机构运动简图: 2.凸轮推杆升程,回程运动方程及推杆位移,速度,加速度线图 (1) 推杆升程,回程运动方程如下: A.推杆升程方程: 设为ω1rad/s )],2 3 cos(1[30)(Φ-=Φs ;3/20π≤Φ≤ )),23 sin(45)(Φ=Φv ;3/20π≤Φ≤ ),2 3 cos(2135)(Φ= Φa ;3/20π≤Φ≤ B.推杆回程方程: ],2310[ 60)(Φ-=Φπs ;3567ππ≤Φ≤ ,120)(π-=Φv ;3 5 67ππ≤Φ≤ ,0)(=Φa ;3 5 67ππ≤Φ≤ 2)推杆位移,速度,加速度线图如下: A.推杆位移线图

凸轮位移B.推杆速度线图 凸轮速度C.推杆加速度线图

凸轮速度 3.凸轮机构的错误!未找到引用源。-s线图,并依次确定凸轮的基圆半径和偏距. 1) 凸轮机构的错误!未找到引用源。-s线图:

(2)确定凸轮的基圆半径和偏距: 由图知:可取错误!未找到引用源。=400 mm,e=100mm 即:基圆半径错误!未找到引用源。=错误!未找到引用源。=412.31mm 偏距e=100mm 4.滚子半径的确定及凸轮理论轮廓和实际轮廓的绘制. 可取滚子半径r=60mm,则凸轮理论轮廓和实际轮廓如下: (1) 程序如下 fai01=2*pi/3; fai02=pi/2; fais1=pi/2; fais2=5*pi/9; h=60; fai1=0:0.001*pi:2*pi/3; fai2=2*pi/3:0.001*pi:7*pi/6; fai3=7*pi/6:0.001*pi:5*pi/3; fai4=5*pi/3:0.001*pi:2*pi; s1=h/2*(1-cos(pi*fai1/fai01)); s2=h+fai2*0; s3=h*(1-(fai3-(fai01+fais1))/fai02); s4=fai4*0; plot(fai1,s1,fai2,s2,fai3,s3,fai4,s4) v1=pi*h/(2*fai01)*sin(pi*fai1/fai01); v2=0*fai2; v3=-h/fai02; v4=0*fai4; plot(fai1,v1,fai2,v2,fai3,v3,fai4,v4) a1=2*pi*h/fai01.^2*cos(pi*fai1/fai01); a2=0*fai2;

哈工大机械设计大作业

哈尔滨工业大学 机械设计作业设计计算说明书 题目: 轴系部件设计 系别: 英才学院 班号: 1436005 姓名: 刘璐 日期: 2016.11.12

哈尔滨工业大学机械设计作业任务书 题目:轴系部件设计 设计原始数据: 图1 表 1 带式运输机中V带传动的已知数据 方案d P (KW) (/min) m n r(/min) w n r 1 i轴承座中 心高H(mm) 最短工作 年限L 工作 环境 5.1. 2 4 960 100 2 180 3年3班 室外 有尘 机器工作平稳、单向回转、成批生产

目录 一、带轮及齿轮数据 (1) 二、选择轴的材料 (1) 三、初算轴径d min (1) 四、结构设计 (2) 1. 确定轴承部件机体的结构形式及主要尺寸 (2) 2. 确定轴的轴向固定方式....................................... 错误!未定义书签。 3. 选择滚动轴承类型,并确定润滑、密封方式 .................. 错误!未定义书签。 4. 轴的结构设计................................................ 错误!未定义书签。 五、轴的受力分析 (4) 1. 画轴的受力简图 (4) 2. 计算支承反力 (4) 3. 画弯矩图 (5) 4. 画扭矩图 (5) 六、校核轴的强度 (5) 七、校核键连接的强度 (7) 八、校核轴承寿命 (8) 1. 计算轴承的轴向力 (8) 2. 计算当量动载荷 (8) 3. 校核轴承寿命 (8) 九、绘制轴系部件装配图(图纸) (9) 十、参考文献 (9)

液压传动大作业

液压传动大作业 一.概念。(每题6分) 1.液压传动:液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。液压传动和气 压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 。2. 粘度的定义:液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏性,粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度又分为动力黏度.运动黏度和条件粘度。 。3.气穴现象:气穴来自拉丁文“cavitus”,指空虚、空处的意思。气穴现象是由于机械力,如由穿用的旋转机械力产生的致使液体中的低压气泡突然形成并破裂的现象。。 4.阀的中位机能:换向阀的中位机能是指换向阀里的滑阀处在中间位置或原始位置时阀中各油口的连通形式,体现了换向阀的控制机能。采用不同形式的滑阀会直接影响执行元件的工作状况。因此,在进行工程机械液压系统设计时,必须根据该机械的工作特点选取合适的中位机能的换向阀。中位机能有O型、H型、X型、M型、Y型、P型、J型、C型、K型,等多种形式。。 5. 调速回路速度刚性:其物理意义是引起单位速度变化时负载力的变化量。它是速度-负载特性曲线上某点处斜率的倒数。在特性曲线上某处斜率越小(机械特性硬),速度刚性就越大,液压缸运动速度受负载波动的影响就越小,运动平稳性越好。反之会使运动平稳性变差。 二.简述。(每题8分) 1.双作用叶片泵工作原理:双作用叶片泵由定子,转子,叶片和配油盘等组成转子和定子中心重合,定子内表面近似为椭圆柱形,该椭圆形由两段长半径圆弧,两段短半径圆弧和四段过渡曲线组成。当转子转动时,叶片在离心力和(建压后)根部压力油的作用下,在转子槽内向外移动而压向定子内表面,由叶片、定子的内表面、转子的外表面和两侧配油盘间就形成若干个密封空间,当转子旋转时,处在小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,这种叶片外伸,密封空间的容积增大,要吸入油液;再从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子内壁逐渐压入槽内,密封空间容积变小,将油从压油口压出。因而,转子每转动一周,每个工作空间要完成两次吸油和压油,称之为双作用叶片泵。

哈工大机械原理大作业_凸轮机构设计(第3题)

机械原理大作业二 课程名称:机械原理 设计题目:凸轮设计 院系:机电学院 班级: 1208103 完成者: xxxxxxx 学号: 11208103xx 指导教师:林琳 设计时间: 2014.5.2

工业大学 凸轮设计 一、设计题目 如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤ ≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,6 50π =Φ带入正弦加速度运动规律的升程段方程式中得: ??? ?? ???? ??-=512sin 215650?ππ?S ;

?? ? ?????? ??-= 512cos 1601ππωv ; ?? ? ??= 512sin 1442 1?π ωa ; 2、凸轮推杆推程远休止角运动方程( π?π ≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(9 14π ?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,9 5'0π= Φ,6 s π = Φ带入余弦加速度运动规律的回程段方程式中得: ?? ? ???-+=)(59cos 125π?s ; ()π?ω--=59 sin 451v ; ()π?ω-=59 cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π 29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

哈工大,液压系统动态分析讲义第一章绪论

液压系统动态分析讲义 哈工大机电学院杨庆俊 第一章绪论 我们这门课程,叫液压系统动态分析。顾名思义,是研究液压系统的动态特性。 一、研究对象、内容和意义液压元件与系统都是我们的研究对象,具体可分为三类: (1)具有内反馈机制的液压元件,如溢流阀、恒压泵等。这类元件通过其内部的反馈调节机制,控制压力、流量或者是功率为恒定值。对于液压技术而言, 这类元件内容丰富,常代表了液压元件的尖端,就其局部而言,其复杂度往往 不低于一个常规的液压伺服系统。 (2)液压传动系统。这类系统工作在开环状态,系统在有限的几个状态之间切换以完成规定的功能。尽管系统工作在开环状态,其内多数情况下仍然会有具有反 馈机制的液压元件如溢流阀等。 (3)液压伺服控制系统。这类系统整体工作在闭环反馈方式。通常采用传感器测量某个被控制量,如压力、位移、加速度等等,通过控制阀的调节作用使被控制量 满足要求的变化规律。 这三类对象中,第三类“液压伺服控制系统” 已有专门课程介绍其分析和设计,因此本课程不再包括这部分内容。本课程所涉及的就是前两类对象。 动态分析,就是研究上述元件和系统的动态特性,即元件与系统工作状态转换过程的特性。因对象性质的不同,动态特性所关注的内容也有所区别。 对于第一类内反馈式元件,动态分析的主要内容如下: (1)稳定性。因其存在反馈作用,动态分析最关注的就是能否稳定工作。影响稳定性的因素有多方面。第一,该类元件在设计条件下,是否存在由于内部参数设计 不合理导致的不稳定;第二,在系统中使用时,与该元件上下游的连接条件发生 变化,是否会出现由此引起的稳定性问题;第三,即使硬件连接相同,元件的 工作参数如压力、流量等也会有一定的变化,是否会出现因此而引起的稳定性问 题。 (2)对干扰因素的抑制特性。总有一些量的变化会引起被控制量的变化,如溢流阀溢流流量的变化会引起设定压力的变化。当这些干扰发生变化时,被控量的响应 过程,如最大变化幅度、恢复稳定时间、振荡次数、最终稳定值等,是我们所关 心的。 (3)对指令的响应。当指令信号改变时,被控量跟随变化的特性,如跟随的快速性、超调量、振荡次数等。 对于第二类对象,因其工作在开环状态,故没有稳定性问题。系统内所含有的内反馈式元件特性归于第一类中研究。动态分析的主要内容如下: (1)启车、停车过程的快速性与平稳性。这两者是矛盾的,设计不当可能会使一种特性严重不足。快速性不足则影响效率,而平稳性不足则会影响寿命。对于频 繁启停的系统,这两个特性更是至关重要。 2)不同工作状态间切换的快速性、平稳性和精确性。如快进与工进的切换,行程

哈尔滨工业大学机械设计大作业——V带传动设计说明书

目录 一 任务书 (2) 二 选择电动机 (3) 三 确定设计功率d P (3) 四 选择带的型号 (3) 五 确定带轮的基准直12d d d d 和 (3) 六 验算带的速度 (4) 七 确定中心距a 和V 带基准长d L (4) 八 计算小轮包1 (4) 九 确定 V 带Z (4) 十 确定初拉0F (5) 十一 计算作用在轴上的压Q (6) 十二 带轮结构计 (6) 十三 参考文献 (7) 十四 附表 (7)

一哈尔滨工业大学 机械设计作业任务书题目:带式运输机 结构简图见下图: 原始数据如下: 机器工作平稳,单向回转,成批生产

二 选择电动机 由方案图表中的数据要求,查表-1 Y 系列三相异步电动机的型号及相关数据选择可选择Y100L1-4。 可查得轴径为28mm,长为50mm. 三 确定设计功率d P 设计功率是根据需要传递的名义功率、载荷性质、原动机类型和每天连续工作的时间长短等因素共同确定的,表达式如下: d A m P K P = 式中 m P ——需要传递的名义功率 A K ——工作情况系数,按表2工作情况系数A K 选取A K =1.4; 考虑到本装置的工作环境,A K 值应扩大1.1倍 所以 1.1 1.4 2.2 3.388d A m P K P KW ==??= 四 选择带的型号 查看教材图7.11可选取A 型带。 五 确定带轮的基准直径12d d d d 和 查表3. V 带带轮最小基准直径min d d 知A 型带min d d =75mm,又由教材表7.3选取 小带轮基准直径:1100d d mm =; 大带轮基准直径:211 2.3100230d d d i d mm ==?= 查教材表7.3选取大带轮基准直径2224d d mm =; 其传动比误差224 2.3100100% 2.6%5%2.3 i - ?=?=<,故可用。 六 验算带的速度 11 1001420 7.43/601000 601000 d d n v m s ππ??= = =?? 式中 1n --电动机转速; 1d d ——小带轮基准直径;

哈工大机械原理大作业凸轮

机械原理大作业二 课程名称: _______ 设计题目: 凸轮机构设计 院 系: ------------------------- 班 级: _________________________ 设计者: ________________________ 学 号: _________________________ 指导教师: ______________________ 哈尔滨工业大学 Harbin I nstituteof Techndogy

设计题目 如右图所示直动从动件盘形凸轮机构,选择一组凸轮机构的原始参数, 据此设计该凸轮机构。 凸轮机构原始参数 二.凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图 凸轮推杆升程运动方程:冷3唱—亦(中] 156 12 .. v 」1 - cos()] 兀1 5 374.4 2 12 ? a 1si n( ) 兀 1 5 % t 表示转角, s 表示位移 t=0:0.01:5*pi/6; %升程阶段 s= [(6*t)/(5*pi)- 1/(2*pi)*si n(12*t/5)]*130; hold on plot(t,s);

t= 5*pi/6:0.01:pi; %远休止阶段 s=130; hold on plot(t,s); t=pi:0.01:14*pi/9; %回程阶段 s=65*[1+cos(9*(t-pi)/5)]; hold on plot(t,s); t=14*pi/9:0.01:2*pi; %近休止阶段 s=0; hold on plot(t,s); grid on % t表示转角,令3 1=1 t=0:0.01:5*pi/6; %升程阶段v=156*1*[1-cos(12*t/5)]/pi hold on plot(t,v); t= 5*pi/6:0.01:pi; %远休止阶段

哈尔滨工业大学机械设计课程大作业螺旋起重机的设计千斤顶哈工大

工业大学 机械设计课程大作业 螺旋起重机的设计 (最终版) 设计人:段泽军 学号: 1120810810 院系:机电工程学院 专业:机械设计制造及其自动化 班级: 1208108

目录 机械设计大作业任务书 .................................. - 1 -一,螺杆、螺母材料的选择 .............................. - 2 -二,耐磨性设计........................................ - 2 -三,螺杆强度设计...................................... - 2 -四,螺母螺纹牙强度校核 ................................ - 2 -五,自锁条件校核...................................... - 3 -六,螺杆的稳定性校核 .................................. - 3 -七,螺母外径及凸缘设计 ................................ - 4 -八,手柄设计.......................................... - 4 -九,底座设计.......................................... - 6 -十,其他配件设计...................................... - 7 -十一,参考文献........................................ - 7 -

机械原理大作业凸轮剖析

机械原理大作业二 课程名称: 设计题目: 院系: 班级: 设计者: 学号: 指导教师:

一、设计题目 图1 凸轮机构设计 升程/mm 升程运 动角/。 升程运 动规律 升程许 用压力 角/。 回程运 动角/。 回程运 动规律 回城许 用压力 角/。 远休止 角/。 近休止 角/。 65 90 等加等 减速 35 50 改进正 弦 70 100 120 二、凸轮推杆运动规律分析 1、升程运动规律(等加等减速)推程: 2、远休止运动规律 远休止:

3、回程运动规律(改进正弦加速度) 回程: 4、近休止运动规律 近休止: 三、编程及代码 1、位移、速度、加速度 t=0:0.01:pi/4; s=2*65*((2*t/pi).^2); hold on plot(t,s); t=pi/4:0.01:pi/2; s=65-2*65*(((pi/2-t)/(pi/2)).^2); hold on plot(t,s); t=pi/2:0.01:pi*19/18; s=65*ones(size(t)); hold on plot(t,s); t=19*pi/18:0.01:196.25*pi/180; s=65-65*((pi*(t-19*pi/18)/(5*pi/18))-sin(4*(pi*(t-19*pi/18)/(5*pi/18) ))/4)/(4+pi); hold on plot(t,s); t=196.25*pi/180:0.01:233.75*pi/180; s=65-65*(2+(pi*(t-19*pi/18)/(5*pi/18))-9*sin(pi/3+4*(pi*(t-19*pi/18)/ (15*pi/18)))/4)/(4+pi); hold on plot(t,s); t=233.75*pi/180:0.01:24*pi/18; s=65-65*(4+(pi*(t-19*pi/18)/(5*pi/18))-sin(4*(pi*(t-19*pi/18)/(5*pi/1 8)))/4)/(4+pi); hold on plot(t,s)

相关文档
相关文档 最新文档