文档库 最新最全的文档下载
当前位置:文档库 › 信号源的种类

信号源的种类

信号源的种类
信号源的种类

对于移动通信网络,室内分布系统是非常重要的组成部分。运营商大量使用室内分布系统来解决高端客户聚集的密集城区覆盖问题,其性能的好坏将直接关系到运营商的客户体验及其收益。所以,未来TD-SCDMA要单独组网,必须提供能够满足运营商要求的室内覆盖解决方案,同时,TD-SCDMA的室内覆盖方案要考虑如何充分利用楼宇内现有的2G和其他3G制式的室内分布系统,帮助采用TD-SCDMA制式的运营商快速、经济地完成楼宇内的覆盖,及时抢占高端客户资源,提升运营商的品牌形象。

为了使TD-SCDMA系统室内分布在与其他系统CDMA、GSM、PHS室内分布竞争中不再处于不利地位,TD-SCDMA在室内覆盖时,一贯采取脱离智能天线而单独使用各路SWIPA(Switchand Power Amplifer)单元及常规的室内天线,仅仅通过楼层来实现用户间的定位和隔离,依赖联合检测算法及性能来满足干扰抑制及覆盖、容量问题。这样,TD- SCDMA室内分布便可与现有室内分布系统共用,信号源也具备不同的设备类型,如宏基站、微蜂窝、直放站和射频拉远等。但由于原CDMA、GSM工作在 825MHz~960MHz,而TD-SCDMA工作在2GHz,线缆等损耗明显不同,每栋楼宇会有不同的整改方案。

为了系统性地说明TD-SCDMA室内分布系统的设计及相关准则,下文拟从TD-SCDMA室内话务量的估算、信号源的选取、室内外信号泄漏分析,以及

TD-SCDMA与其他系统共用室内分布系统等几方面来阐述。

TD-SCDMA室内话务量的估算

如同室外网络一样,室内环境下也需要考虑用户的数量和支持的业务,由于运营商熟悉当地详细情况,用户数量和支持的业务一般由运营商提供。但如果运营商不能提供用户的数量和支持的业务时,可以根据以下经验、方法来估算

TD-SCDMA室内用户的规模。

在各类大型建筑中,楼宇的主要功能决定了楼宇内所分布的人群种类,各类不同的目标人群手机拥有率和使用率也不尽相同。室内分布系统的主要建设对象是室内信号覆盖差、话务量大、对通信质量要求高的大型建筑。工程建设对象主要分为以下几类:政府办公大楼(对通信质量要求高);大型企事业单位大楼(对通信质量要求高);商场、超市(话务量大);宾馆、酒店(室内信号覆盖差);高档写字楼和公寓(室内信号覆盖差,话务量大);会展中心(话务量大)。

在对室内用户进行分析时,因为用户行为的差异性,必须对楼宇内不同的功能区域作出不同的估算,然后相加,得出整栋楼宇的用户规模。但需要注意的是,用户规模与运营商的市场占有率相关。

对于不同的室内场所,如写字楼、超市、宾馆等,可以根据各自的建筑面积,按照建筑面积与人员的比例关系来估算室内用户总数,即室内用户总数=建筑面积×楼宇的实用面积比例×占有比例×手机拥有率。TD-SCDMA室内分布系统信号源的选取

信号源的种类

室内分布系统由信号源和室内覆盖系统组成。按照目前TD-SCDMA设备研发进度,截至目前,TD-SCDMA室内分布系统的信号源有宏基站、微蜂窝、射频拉远和直放站等几种。

1)宏蜂窝

基于宏基站的稳定性和覆盖能力,宏基站一般用来搭建网络的框架。在有宏基站的大楼需要进行室内分布的情况下,如果宏基站的容量足够,可以考虑利用宏基站的一个扇区来进行室内分布。

2)微蜂窝

微蜂窝主要特征为:传输功率低,目前可提供10mW~100mW;也可以高达1W、2W;一般安装在建筑物上,无线传播受环境影响大;体积小、安装方便灵活。微蜂窝可以作为宏蜂窝的补充和延伸。微蜂窝的应用主要有两方面:提高覆盖率,应用于一些宏蜂窝很难覆盖到的盲点地区,如地铁、地下室;提高容量,主要应用在高话务量地区,如繁华的商业街、购物中心、体育场等。微蜂窝在作为提高网络容量的应用时一般与宏蜂窝构成多层网。宏蜂窝进行大面积的覆盖,作为多层网的底层;微蜂窝则小面积连续覆盖叠加在宏蜂窝上,构成多层网的上层。微蜂窝和宏蜂窝在系统配置上是不同的小区。微蜂窝在初期一般是零散地分步在热点地区,话务量比较集中,覆盖面积较小,对容量的提高有限。

3)射频拉远

射频拉远是把基站的射频单元和基带单元分离,一个基带单元可以通过光纤连接多个射频单元,射频单元根据需要可以放置在各种地方,实现灵活的覆盖方式。这样,射频拉远就可以把基站进行单元分离,将射频单元拉远到有利地形,解决特殊地区的覆盖。射频拉远单元采用多通道覆盖方式较好地规避了单通道内部信号之间的干扰问题,提高室内覆盖和室外信号效果。整个NodeB系统可以分成远端射频模块和本地基站。

4)直放站

直放站(Repeater)以其灵活简易的特点成为解决简单问题的重要方式,主要应用在对容量要求不是很高的场所,如一些中小商场、餐厅等。直放站主要应用场合有以下几种:扩大服务范围,消除覆盖盲区;在郊区增强场强,扩大郊区覆盖;沿高速公路架设,增强覆盖效率;解决室内盲区覆盖;实现疏忙。

安装直放站时,天馈线系统的选择非常重要。应该注意的问题有以下几点:天线的增益,应根据具体的信号情况以及覆盖的需要,选择合适的增益;天线的

方向性,由于直放站属于同频中继系统,所以不能采用全向天线,否则可能引起系统自激。施主天线的主瓣宽度应该尽可能窄,以减少躁声的引入;施主基站的选择,应该选择信号质量好的基站作为馈入源,并且保证基站容量有足够的富余,否则将引入拥塞;需要注意控制引入直放站带来的导频污染。

根据站点的用户数和业务需求计算室内覆盖站点的容量需求,结合信号源的容量指标,考虑周围基站的容量忙闲情况,采用相应的信号源,达到信号源的合理利用。

室内外信号泄漏分析

在进行无线网络建设时,信号泄漏控制是是需要认真考虑的。由于TD-SCDMA 是自干扰系统,严重的信号泄漏会对网络质量造成很恶劣的影响。在存在室内分布系统的建筑物中,主要考虑室外信号对室内的泄漏问题和室内信号对室外的泄漏问题。

室外信号对室内的泄漏分析

室外信号向室内泄漏的情况,可以有两种不同的解决方案:

1)利用室外宏基站解决

对于应用场所的室内纵深比较小、楼宇高度不高于周围楼群的平均高度的情况,可以考虑让室外基站直接达到室内信号覆盖。由于室外宏基站信号具有的信号强的特点,经过建筑物的穿透损耗后还能够达到对室内的覆盖,依靠室外基站的穿透力,解决了大量的建筑物内部信号覆盖。

这种覆盖方法也最经济,也是在网络建设时,选择室外宏基站时需要特别注意的。

2)建设室内分布系统解决

对于应用场所室内纵深比较大,楼宇高度比周围楼群的平均高度高5层左右,或者像地下室之类的室外信号很难达到的地方,分析如下:在有墙壁阻挡的区域,室外信号对室内信号的影响较小;而在只有玻璃阻挡的情况下,室外信号将对室外窗户附近的信号产生较大影响,导致窗户附近成为切换区域,可能导致经常发生切换。此时可以:(a)进行室外基站优化,保证室内窗户附近使用的是室内信号;(b)在窗户附近区域增加天线,提高室内信号强度,重新使用成为主导频信号。

但需要注意的是,室外信号在室内形成的乒乓切换区如窗户附近的区域,由于室内分布站址周围存在多个室外基站,这种室内乒乓切换区域是会存在的,需要在站点勘察时认真考虑,如果有必要可以适当进行室外基站的优化,减少室内乒乓切换的强烈影响。

室内信号对室外的泄漏分析

对于室内信号向室外泄漏的情况,根据不同的场景采用不同的控制方法。在同一个高层中不同高度的信号泄漏造成的影响将有所区别:

在中高楼层,室内信号主要从窗户口向外泄漏,由于高层窗外主要是空中,虽然存在切换区,一般来说没有用户,所以影响较小。

在这里需要注意的是:室内分布天线通过走廊或者玻璃,信号能够直接泄漏到室外,而正好室外相应的区域是产生话务的地方,就会产生高层室内信号对于室外的干扰。在这种情况下,需要针对室内的天线进行优化,利用楼层的天然阻挡,确保高层室内信号不对室外造成干扰。

而对于低楼层,发生信号泄漏的主要是从大厅、地下室等处经窗户和出口处泄漏到室外,而这种泄漏会增加不必要的室内外切换,使网络服务质量下降。相对于高层而言,中低层的信号泄漏造成的影响较大。

对于中低楼层的信号泄漏,主要通过调整信号发射功率、优化切换参数等手段进行优化和控制。但要从根本上进行控制则必须在进行室内分布系统设计规划时就进行考虑,一方面要确定该建筑的实际建筑穿透损耗,另一方面对切换区进行合理规划设计,对室内天线位置和发射功率进行合理规划。如果必要,可以采用信号收发系统模拟测试,从而更准确地设计室内天线,控制室内信号泄漏。

一个总的原则是:室内在室外形成的乒乓切换区域。这个区域主要发生在大楼的室外区域,进行室内信号规划时就要考虑到室内信号对室外的影响,在室内信号性能测试时,需要针对大楼周围的室外区域进行信号路测,确保室内对室外信号的泄漏影响是在控制范围之内的。

TD-SCDMA与其他系统共用室内分布系统

可行性分析

在TD-SCDMA室内分布的实际设计中,为了最大限度地降低投入成本,希望能够利用现有的室内分布来实现室内覆盖。设计中完全共用无源的同轴分布系统中的电缆、耦合器、功分器以及室内天线。但是系统是不相关的,共用室内分布系统会带来相互之间的干扰,系统对射频测试性能指标要求不一致,所以无法共用有源干线放大器部分。

我们知道,如果TD-SCDMA在室内覆盖时,必须使用智能天线而无法使用常规的室内天线,那么所有的TD-SCDMA室内分布系统都需要重新建设,其建设成本和维护成本将远高于其他制式。为此,TD-SCDMA采取了脱离智能天线而单独

使用各路SWIPA(Switch and Power Amplifer)单元及常规的室内天线,仅仅通过楼层来实现用户间的定位和隔离,依赖联合检测算法及性能来满足干扰抑制及覆盖、容量问题。这也是为了能够与现有的室内分布系统共存。最新的实际测试表明,这种共存是可行的。

注意事项

共用室内分布系统需要注意一些问题:要求原有的室内天馈系统是宽频带的,能够适用共用系统的工作频段,否则需要更换达到共用;要保证原有系统具备良好的扩展性,便于共用后能够达到与原系统同等的覆盖效果。

从干扰角度来分析,TD-SCDMA与现有其他室内分布系统共存时,还会碰到一些问题。如TD-SCDMA目前使用的频点是 2010~2025Mhz,距离CDMA2000和GSM1800的频点的距离都比较远,关系不大。而TD-SCDMA的NodeB的杂散设计都考虑了和其他系统共用时的要求。直放站和干放的杂散的测试结果也能够达到和其他系统共址时的要求,目前共用室内分布系统存在的最大问题是TDD的1880~1920Mhz与PHS的1893.5~1919.6MHz频率相重,在这种情况下,两者只能够取其一。

实际上,当TD-SCDMA与其他室内分布系统共存时,在TD-SCDMA的信号合路输入室内分布系统的时候,一般还会加上一个滤波器,这个滤波器将进一步降低其杂散。

TD-SCDMA室内分布技术目前更多地只是停留在理论层面,目前最新的进展体现在几大运营商的试验网中。由于TD-SCDMA在室内采取吸顶天线,不具备赋形及定位功能,所以这方面的内容不再表述。本文只是通过详细介绍TD-SCDMA 室内话务量的估算、室内分布系统信号源的选取、室内外信号泄漏分析,以及TD-SCDMA与其他系统共用室内分布等几方面的内容,对TD-SCDMA室内分布的应

用给出了部分指导意见。剩下的问题是,需要与运营商沟通,确定不同地段、不同区域、不同楼宇用户的分布情况,进而有针对性地布线实施。

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型 LED 显示器 可调 DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit); >10Vp-p (加 50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加 50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共 7 档) 频率控制Separate coarse and fine tuning 失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz; < 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz; 95%100kHz~2MHz

对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约 0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (±10%) 交流 100V/120V/220V/230V ±10%, 50/60Hz 电源线× 1, 操作手册× 1, 测试线 GTL-101 × 1 230(宽) × 95(高) × 280(长) mm,约 2.1 公斤 信号发生器是为进行电子测量提供满足一定技术要求电信号的仪器设备。这种仪器是多用途测量仪器,它除了能够输出正弦波、矩形波尖脉冲、TTL电平、单次脉冲等五种波形,还可以作频率计使用,测量外输入信号的频率 1.信号发生器面板: (1)电源开关; (2)信号输出端子; (3)输出信号波形选择;

有线电视的信源系统

有线电视的信源系统 嵊泗广播电视台夏旭芬 摘要:本文结合嵊泗广播电视台实际情况,就有线电视信号源进行浅述,供同行在工作中进行参见、交流,如有不足之处请给予批评指正。 1.序言 广播电视作为现代社会的两大主流媒体已经完全融入了人们日常的工作和生活当中,通过电视机、广播等接收设备所传送出来的视频、音频信号带给大家的不仅是有用的信息,更是一种舒畅的精神享受。对于我们广电技术人员来说,无论是有线广播电视还是无线广播电视,最终的工作目的都是为了将高质量的广播声音和电视画面奉献给人们。 近年来随着科学技术的迅猛发展,有线电视已从模拟向数字化方向发展。因此拥有好的节目信源是传送出优良有线电视信号必不可少的关键一环。目前嵊泗广播电视台有线电视节目使用的信号源途径主要有:卫星信号、开路信号以及与省、市联网光纤信号。 2.卫星节目系统 我台目前所使用的是卫星信号,它的流程如下图所示: 图2.1 卫星信号流程图

2. 1 卫星信号的优点 (1)广播电视卫星是远离地球表面几万多公里,有的称它为“太空中继器”。它使用定向天线将电磁波聚集成窄束,然后均匀地辐射到地面覆盖区。由于卫星信号在传送过程中入射角度大,受山峰和高大建筑物的阻挡少,能大大减少阴影和多径反射的影响。卫星传送环节少,受外界影响相对较小并且卫星广播具有很强的纠错编码技术,使其有极强的纠错能力。因此,信号的接收质量高。 (2)接收简便。卫星广播采用大功率波管转发器,因此在地面接收站只需安装小口径卫星天线(需含高频头)、一台数字卫星广播接收机和音频处理器就可以收到几十套乃至几百套节目信号源。 (3)受到国际公约的保护、保密性强。卫星电视可采用有条件接收技术,能确保系统外的用户接收不到系统内的节目。另外,国际电联规定,卫星信号的覆盖范围不受国际其他广播电视卫星和通信卫星溢出电波的干扰。 2. 2 天线的安装调试和维护 2.2.1选择合适的安装地点 目前卫星天线采用金属材料,以我台为例分别有二台大口径卫星天线和一台小口径卫星天线,这些卫星天线通常份量很重而且体积庞大,因此安装这类天线应选择有牢固基础的地面。天线的架设位置应考虑风负荷,风负荷过大会导致天线抖动、变形而影响信号的接收效果,特别是海岛、山区等受自然风影响较大的地区更应将其首先考虑。天线的正前方应有尽可能宽的视角,避开山林、高大建筑物等阻挡物,减少对信号接收的影响。同时还要考虑周围电磁场对天线的干扰,可以专用测试仪器如频谱分析仪或场强仪对架设点进行实地测试。在多雷雨的地区还要考虑各种防雷措施,天线的传输距离不能过长,如果传输距离过长容易导

PWM信号源的制作

PWM信号源的制作 引言:脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,该技术广泛应用在测量、通信、功率控制与变换等许多领域中。作为一个具体的例子,我们来考察一种用PWM控制直流电机。要使电机的速度可调和方向可变,只需通过软件加大或减小PWM的占空比就可以改变。PWM技术在调压调速技术中的应用己基本普遍,调压调速技术的核心是脉冲宽度调制(PWM)控制技术。 (一)PWM直流调速的特点 PWM直流调速系统是强弱电均有、控制与信号处理结合、机电一体的综合性技术。既要处理巨大电能的转换,又要处理信息的收集、变换、传输和控制。因此结构上分为功率和控制两大部分。前者要解决与高压大电流有关的技术问题和新型电力电子器件的应用技术问题,后者要解决基于控制技术和计算机技术的硬、软件开发问题。 (二)直流电动机的PWM调压调速原理 绝大多数直流电动机采用开关驱动方式。开关驱动方式是使半导体器件工作在开关状态,通过脉宽调制PWM来控制电动机电枢电压,实现调速。 图1-1是利用开关管对直流电动机进行PWM调速控制的原理图和输入输出电压波形。在图1-1(b)中,当开关管MOSFET的栅极输入高电平时,开关管导通,直流电动机电枢绕组两端有电压US。t1秒后,栅极输入变为低电平,开关管截止,电动机电枢两端电压为0。T2秒后,栅极输入重新变为高电平,开头管的动作重复前面的过程。这样,对应着输入的电平高低,直流电动机电枢绕组两端的电压波形如图1-1(b)所示。电动机的电枢绕组两端的电压平均值U0为:U0=(t1US+0)/(t1+t2)= t1 US/T=a US(式1-1) 式中a—占空比,a= t1/T 。 图1-1 占空比a表示了在一个周期T里,开关管导通的时间与周期的比值,a的变化范围为0≤a≤1。由式(1-1)可知,当电源电压US不变的情况下,电枢的端电压的平均值U0取习决于占空比a的大小,改变a的值就可以改变端电压的平均值,从而达到调速的目的,这就是PWM调速的原理。 在PWM调速时,占空比a是一个重要参数。以下3种方式都可以改变占空比的值。

信号源的种类

对于移动通信网络,室内分布系统是非常重要的组成部分。运营商大量使用室内分布系统来解决高端客户聚集的密集城区覆盖问题,其性能的好坏将直接关系到运营商的客户体验及其收益。所以,未来TD-SCDMA要单独组网,必须提供能够满足运营商要求的室内覆盖解决方案,同时,TD-SCDMA的室内覆盖方案要考虑如何充分利用楼宇内现有的2G和其他3G制式的室内分布系统,帮助采用TD-SCDMA制式的运营商快速、经济地完成楼宇内的覆盖,及时抢占高端客户资源,提升运营商的品牌形象。 为了使TD-SCDMA系统室内分布在与其他系统CDMA、GSM、PHS室内分布竞争中不再处于不利地位,TD-SCDMA在室内覆盖时,一贯采取脱离智能天线而单独使用各路SWIPA(Switchand Power Amplifer)单元及常规的室内天线,仅仅通过楼层来实现用户间的定位和隔离,依赖联合检测算法及性能来满足干扰抑制及覆盖、容量问题。这样,TD- SCDMA室内分布便可与现有室内分布系统共用,信号源也具备不同的设备类型,如宏基站、微蜂窝、直放站和射频拉远等。但由于原CDMA、GSM工作在 825MHz~960MHz,而TD-SCDMA工作在2GHz,线缆等损耗明显不同,每栋楼宇会有不同的整改方案。 为了系统性地说明TD-SCDMA室内分布系统的设计及相关准则,下文拟从TD-SCDMA室内话务量的估算、信号源的选取、室内外信号泄漏分析,以及 TD-SCDMA与其他系统共用室内分布系统等几方面来阐述。 TD-SCDMA室内话务量的估算 如同室外网络一样,室内环境下也需要考虑用户的数量和支持的业务,由于运营商熟悉当地详细情况,用户数量和支持的业务一般由运营商提供。但如果运营商不能提供用户的数量和支持的业务时,可以根据以下经验、方法来估算 TD-SCDMA室内用户的规模。

时钟信号源

时钟信号源 时钟器件 今天的时钟器件多种多样。下面阐述其中的几种。 晶体 晶体是一种基本的压电石英晶体。它本身是不能产生时钟信号的。它必须和时钟振荡器连接在一起才能得到时钟波形。晶体有两种:串联谐振晶体(可视做高品质因数的串联LC电路)和并联谐振晶体(可视做高品质因数的并联LC电路)。谐振晶体在谐振频率点的阻抗最小,而并联谐振晶体在谐振频率点的阻抗最大。 晶体振荡器 晶体振荡器是一种用晶体做反馈元件的振荡器。而其他类型的振荡器采用有源、无源元件作为反馈元件,但晶体振荡器的输出频率最为精确和稳定。晶体振荡器是多数高速数字系统时钟源的首选。 补偿振荡器 随着温度和电压的变化,晶体振荡器的输出频率也会发生变化。在需要高稳定度时钟的应用中,人们通常使用补偿振荡器。补偿振荡器试图调整电压和温度引起的频率变化。温度补偿振荡器包含了用于补偿温度变化的电路,从而防止频率的变化。恒温控制振荡器将将晶体放置在一个温控恒温箱中,这样保持晶体工作在一个精确的温度下。双恒温箱振荡器含两个恒温箱,晶体在内层恒温箱中,而控制电路和内层恒温箱又包含在外层恒温箱中。双恒温箱振荡器比恒温控制振荡器的温度稳定性更好。显然,随着温度稳定性的提高,振荡器的成本也提高了。 压控振荡器 压控振荡器的输出受输入电压引脚的控制。在整个频率范围,控制电压和输出频率的关系是非线性的,但是在部分频率范围内是线性的。 频率合成器 通过使用一个或多个锁相环,频率合成器从一个或多个参考时钟源产生一个或多个不同的输出频率。参考频率通常是由连接到合成上的晶体产生的。设计频率合成器的目的是用以替代系统中的多个振荡器,从而减少电路板空间、降低系统成本。 锁相环有两个输入,一个参考输入和一个反馈输入。锁相环用两种方法校正频率。频率校正先对参考输入和反馈输入间的大频差进行校正。频率校正相当于“粗调”;当压控振荡器的频率低于参考频率的一半或高于参考频率的两倍时,要进行相位校正。当压控振荡器的频率在参考频率的一半和两倍之间时,要进行相位校正;相位校正是“微调”。 相位/频率检测器检测参考输入和反馈输入之间的频率差和相位差,并依据反馈频率超前还是滞后于参考频率分别产生于补偿的“Up”信号和“Down”。然后,这些控制信号通过一个电荷泵和一个环路滤波器产生控制压控振荡器的控制电压。振荡器的频率取决于控制电压信号。压控振荡器的稳态频率为Fvco=Fref.P/Q。锁相环的输出频率可以表示为Fout=(Fref.P)/(Q.N)。 频率合成器的采样率决定了为进行相位和频率校正而对输入信号采样的频率。其表达式为Fref/Q. 基于锁相环的频率合成器的采集/锁定时间是频率合成器在加电后(或在可编程输出频率发生改变之后)达到目标频率所用时间。 基于锁相环的频率合成器的死区是指无法被锁相环校正的参考输入和反馈输入之间的最大相位差。 产生多个不相关频率的频率合成器需要使用多个锁相环。随着系统复杂性的提高和系统中多个时钟的使用,频率合成器应用的越来越普遍。“时钟信号产生器”和“频率合成器”这两

程控信令信号源

专业课程设计报告题目:程控交换信令音信号源的设计 姓名: 专业:通信工程 班级学号: 同组人: 指导教师: 20 14 年6月25日

专业课程设计任务书2013-2014学年第2 学期第16 周-19 周

摘要 在许多领域中,程控交换信令音信号源都得到了普遍应用,比如在控制交换机动作,在通信中保护用户信息有效可靠传输等等。可见程控交换信令音信号源的设计在现代社会中显得尤为重要。 该设计采用单片机通过定时器中断产生频率为450Hz的方波信号,方波信号通过一个带通滤波器和一个低通滤波器得到一个同频率的正弦波信号,再经过模拟开关电路(单片机产生控制信号)得到一个信令音信号源。 最终单片机通过定时器中断产生频率为450Hz的方波信号,方波信号通过带通滤波器的低通滤波器转换成同频率正弦波信号,再经过模拟开关电路得到程控交换信令音信号源。 关键字:程控交换、信令音、带通滤波器、低通滤波器

目录 前言 (1) 第一章系统组成及工作原理 (2) 1.1 系统组成 (2) 1.2 工作原理 (2) 2.1 电路方案设计 (3) 2.2 方案选择 (4) 第三章单元电路设计、参数计算和器件选择 (5) 3.1 方波产生器 (5) 3.2 带通滤波器 (6) 3.3 模拟开关电路 (7) 3.4 控制信号产生电路 (8) 3.5 音频输出电路 (8) 第四章软件设计 (10) 4.1 程序流程图 (10) 4.2 程序代码 (11) 第五章仿真和调试 (14) 5.1 Proteus仿真电路的组成 (14) 5.2 调试 (15) 第六章结论 (16) 参考文献 (17)

测试声场频率的标准信号源

粉红噪声:测试声场频率的标准信号源(转载)1 粉红噪声:测试声场频率的标准信号源(转载) 谢勇是中国著名音响师,也是录音师协会会员。他认为在现代的音响技术条件下,对声场频率特性的测试,不宜采用那些费时费工也不可能准确的测量方法,应该采用专业的仪器利用粉红噪声而不是正弦波来进行调试。很有独到见解。 关于粉红噪声 什么是粉红噪声?它到底有何用?与正弦波纯音信号到底有何区别? 粉红噪声。既然是噪声就绝对不是单纯的纯音,它是一种频率覆盖范围很宽的声音。低频能下降到接近0Hz(不包括0Hz)高频端能上到二十几千赫,而且它在等比例带宽内的能量是相等的(误差只不过0.1dB左右)。比如用1/3oct带通滤波器去计算分析,我们会发现,它的每个频带的电平值都是相等的(2/3oct、1/6oct、1/12oct也是一样),这就是为什么在测试声场频率特性中要用粉红噪声作为标准信号源的原因。试想一下,把每个频带能量都相等的标准信号源扩到待测声场中。再用话筒把声场中的声音记录卜来和原来的标准信号一比较,不就知道声场的频率特性了吗?接着在串着的均衡器小把声场的缺阳调下即可。工程中RTA 实时频谱分析仪的工作原理就是如此。 另外。日常工程测试小提到的改变频率125Hz、250Hz、500Hz……等,都是指以上向这些频率为中心频率的频带,而绝不是拉括某个频点。频带是由无数个频点组成的。达一点如果弄错,其结果可想而知。人家知道500Hz的纯音听起来就像是拿起电话还未拨号之前的那个声音。而以500Hz为小心的粉红噪声听起来就像是刮风声。从FFT傅立叶分析仪上看,它们各自的频谱特性纯音信号电平值很稳定,图形就像是一个峰尖;而粉红噪声的谱线是像波浪一样不断跳动的,电平值也是在一定范围内不停变化着的(正是因为它在不停的变化,所以专业RAT测试中为了得到准确具体的数据、必须采用平均响应显示或慢响应显示,如下图所示。另外在工程测试中,如果没有RTA自动频谱分析仪,我们要想得到每一个频段的电平数据,还必须要加入带通滤波器。滤波器的很多数据都是可调的,比如带宽、增益、衰减范围、F FT宙函数类型、窗函数尺寸等等。如果我们的均衡器是31段的话,那么就可选用1/3倍频程滤波器。 关于Cool Edit Pro 软件——Cool Edit Pro。 它具备脉冲信号、粉红噪声信号、白噪声信号、纯音信号发生功能。另外具备很专业的各种类型滤波器,这一点很宝贵,前面提到滤波器的各种参数它都具备,当然可调参数比这还要更多。 正常运行此软件只需一台32M内存的奔腾100即可,但要准确稳定高效地进行测量则必须使用P II 266,64M内存(赛扬CPU也可以)。因为我们在测试中要同时运行两个Cool Edit P ro程序界面,第一个用于生成并播放粉红噪声信号,第二个用于拾取声场中的粉红噪声。所以系统内存越大越稳定。同时,高质量的声卡也是必备的,因为好的声卡的A/D、D/A转换比特率是很高的,失真度也极低。笔者的配置是CPU:P III 800EB,内存128M;声卡:创新SB Live!数码版。 我们如何进行系统的连接呢? 我们把高品质无方向性的电容话筒(根据前辈的指点,该话筒应该是压力型的)放入待测声场中一个适当的待测点上。离地面1.5米左右。另一端插入调音台、打开幻象电源。此话筒通路的均衡器旁路,同时把这一路的辅助输出(最好是前置PRE)发送到声传的线路输入。把电脑声卡的线路输出接入调音台的线路输入。旁路调音台此路的均衡。接下来打开所行设备,31段均衡器、反馈抑制器和激励器旁路、其他设备处于正常匹配工作状态。 打开Cool Edit Pro,点击图标弹出文件格式对话框。选44.1kHz,16bit,声道模式(由于生

信号发生器的基本参数和使用方法

信号发生器本人介绍一下信号发生器的使用和操作步骤1、信号发生器参数性能频率范围:0.2Hz ~2MHz 粗调、微调旋钮正弦波, 三角波, 方波, TTL 脉波0.5" 大型LED 显示器可调DC offset 电位输出过载保护信号发生器/ 信号源的技术指标: 主要输出 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (opencircuit);>10Vp-p (加50Ω 负载) 阻抗 50Ω+10% 衰减器 -20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕 4 位LED 显示幕 频率范围 0.2Hz to2MHz(共7 档) 频率控制Separate coarse and fine tuning 正弦波

失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz;< 1dB 100kHz~ 2MHz 三角波 线性98% 0.2Hz ~100kHz;95%100kHz~ 2MHz 对称性<2% 0.2Hz ~100kHz 上升/ 下降时间<120nS CMOS输出 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/ 下降时间<120nS TTL 输出 位准>3Vpp 上升/ 下降时间<30nS VCF 输入电压约0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (± 10%) 使用电源 交流100V/120V/220V/230V ±10%, 50/60Hz 附件 电源线× 1, 操作手册× 1, 测试线GTL-101 × 1

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

关于有线电视系统信号源的选择

关于有线电视系统信号源的选择 随着数字电视的推进,为了节约成本,方便管理,全国各地的宾馆酒店以及学校工厂纷纷对原有的有线电视系统进行施工,将数字方式更改为模拟方式。简单说,就是把一户一机改为一个频道一个机顶盒。 但对于该有线电视前端系统的信号源,则有着不同的选择。 作为宾馆酒店来说,信号源可以分为几种:卫星信号、数字电视信号或者混合信号。 其中卫星信号指的是采用卫星接收系统接收亚洲三号105.5、中星6B115.5、鑫诺三号125和中星9号92.2等四颗卫星传送的国内免费节目。从卫星信号来说,由于92.2中星9号卫星采用的是ku波ABS-S 波束,由于其雨衰问题及可能存在的升级问题,所以一般不建议作为有线电视前端的主节目源,对于各地电视台来说,也只是作为备用节目源。而鑫诺三号的节目源较少,亚洲三号不允许大规模传送,故多采用 中星6B为主节目源进行转播。 数字电视信号指的就是机顶盒。将机顶盒作为节目源,一个频道使用一台机顶盒,将机顶盒解压后 的音视频信号传输到原有的有线电视系统当中。 混合信号一般是以卫星信号为主,机顶盒信号为辅的一种手段。由于卫星信号没有免费的央视3568等节目,所以在一些前端中,会使用少量的机顶盒辅助传输一些加密节目。 其实说到这里,大家也基本看明白了。主要的信号来源其实就是卫星信号和机顶盒信号两种。当然还有一些,比如开路信号、原系统中的模拟信号等等。但由于不常用,故在此暂不讨论。 说到这两种信号,其实各有好处。 卫星信号的最大的特点就是免费。但不可避免的是,由于宾馆酒店出于成本上的考虑,一般不会增加备用信号。而卫星信号的不稳定性则可能带来意外的转播事故。比如09年4月份的中星6B事件和09年8月的鑫诺三号事件。并且,由于我国直播星出于起步状态,对于加解密系统的测试工作也在同步进行。这也势必增加了独立收视群体的不稳定因素。而有线电视数字机顶盒则可以较好的避免以上潜在问题。由于地方电视台采取的是多种信号并发,并具备一套以上的备用信号,所以该类信号相对较稳定。即使某颗卫星出问题,可以很快使用其他的备用信号,恢复正常。当然不可避免的是每个机顶盒不菲的收视费用。 但作为经营性的酒店宾馆来说,有线电视作为一项不很重要,但又不可或缺的服务,稳定是最重要的。降低该类设备的故障率,减免维修工时,是最为理想的。所以,综合各种因素来考虑的话,还是使用 机顶盒比较合适一些。

信号发生器使用说明

信号发生器使用说明: 1. 窄带脉冲信号的产生: 开机—双击桌面上的ArbExpress Application 图标。 进入界面后,点击上方Equation Editor 按钮(图1),可以得到图2所示界面。 这里需要设置的参数有:在左上方的Equation 这一栏,输入波形的表达式,以及波形绘制时间范围;在右下方的Settings 中,设置需要绘制的点数Number of Points 以及采样率Sampling Rate 。 以中心频率为10KHz ,5周期的窄带脉冲信号为例,如图3、4中设置,我们输入range(0,0.0005s),表达式Sin(2*pi*10000*t)*(1-Cos(2*pi*10000*t/5)),采样率设为16MS/s ,取10000个点。 在设置完成后,点击Compile 按钮,可以看到波形的预览图,再点击OK ,进入到ArbExpress 窗口界面,如图5。 图1 图2 图3 图4

对波形进行保存,命名波形并保存类型为(*.wfm )文件。至此,一个窄带脉冲信号就产生了。关闭ArbExpress 界面。 2. 信号的输出 双击桌面上的AWG 图标,进入界面后,单击左上方的File —Import from File ,选择AWG400/500/600/700(*.WFM)类型文件,选择刚才保存的文件并打开,就可以将波形输送到通道1,如图6所示。 下面我们对波形进行一些设置,如图6中下方所示,在Amplitude 选项卡中可以对波形的幅值进行调节;在Time 选项卡中可以通过改变Sampling Rate 的值来改变输出波形的中心频率;在Run Mode 选项卡中,我们选择Triggered 即触发模式。 最后,我们按下前面板上的Run 以及Ch1按钮(图7)就可以从通道1发射波形了。由于我们选择的是触发模式,因此还需要手动按下前面板上的 Force 图5 图6

125KHz标准正弦波信号发生器

电子电路实验 综合设计总结报告选题6:125kHz标准正弦波发生器 班级:10-0433 学号:2010043306 姓名:汪尽涵 日期:2013/4/13

选题背景 在标准的RFID(无线射频识别卡)中,按频率可分为几个等级,其中125KHz 是一个比较常用的频率,由于其制作方便、通信可靠,因此得到了广泛的应用,其中最重要的一部分就是产生一个125K Hz的正弦波信号加载到调制线圈中,但是常规的方法产生正弦波造价较高.本次实验所采用的方案是:用石英晶体、CD4060 等实现将 2MHz分频为125KHz;使用施密特触发器CD4049整形;利用R、C以及L设计振荡频率为125KHz的RLC串联谐振电路;OTL缓冲器提高电路的带载能力;利用比较器(74LS85)改变矩形波信号占空比来实现正弦波幅度可控。用该方案来产生正弦波具有精度高,成本低,实现方便等特点。 设计选题及设计任务要求 设计选题: 1. 标准125KHZ正弦波发生器的设计实现 任务要求: 1.实现一个精确的125KHZ正弦波发生器; 2.幅值大于1V可调,稳定度<0.5*10^-2,准确度<0.5*10^-6 设计目的: 1. 掌握OTL电路的工作原理和工程设计使用方法。 2. 掌握分频器的设计构建方法。 3. 掌握正弦波发生器的原理及实现方法。 4. 掌握电子电路系统设计的基本方法,培养提高综合多学科相关知 识进行初步工程设计与实际调装系统电路的能力。 正文 1.方案的设计 方案一

方案二 方案三

电路图如下 可以等效为 b-e型并联晶体振荡器的典型电路如图所示,该电路是一个双回路振荡器,它的固有谐振频率略高于振荡器的工作频率,负载回路选用的是并联谐振回路,可以抑制其他谐波,有利于改善输出波形,并且电路的输出信号较大,,因为在b-e型电路中,石英晶体则接在输入阻抗低的b-e之间,降低了石英晶体的标准性。其等效电路如图所示。 和一般LC振荡器相比,石英晶体振荡器在外界因素变化而影响到晶体的回路固有频率时,它还具有使频率保持不变的电抗补偿能力,原因是石英晶体谐振器的等效电感Le与普通电感不同,当频率由Wq变化到Wo时,等效电感值将由零变到无穷大,这段曲线十分陡峭,而振荡器又刚好被限定在工作在这段线性范围内,也就是说,石英晶体在这个频率范围内具有极陡峭的相频特性曲线,因而它具有很高的电感补偿能力。对于振荡器,当电路接为并联型振荡器,晶体起到 等效电感作用,输出频率应为2MHZ,则由f0=1/2πLC知负载电容CL,即C2, C3,C4串联后的总电容,则分别取C2、C3、C4。为了提高振荡器的工作性能和稳定度,在电路中还应有高频扼流圈,一般取扼流圈L1=10uH。

函数信号发生器F120使用说明

F05/F10/F20/F40/F80 /F120 数字合成函数/任意波信号发生器/计数器 使 用 说 明 书 南京盛普仪器科技有限公司NANJING SAMPLE INSTRUMENT TECHNOLOGY CO.,LTD.

目录 第一章概述 (1) 第二章主要特征 (1) 第三章技术参数 (2) 一、函数信号发生器 (2) 二、计数器 (4) 三、其它 (5) 第四章面板说明 (6) 一、显示说明 (6) 二、前面板说明 (7) 三、后面板说明 (11) 第五章使用说明 (12) 一、测量、试验的准备工作 (12) 二、函数信号输出使用说明 (12) 三、计数使用说明 (31) 第六章遥控操作使用说明 (32) 第七章注意事项与检修 (47) 第八章仪器整套设备及附件 (49)

本仪器是一台精密的测试仪器,具有输出函数信号、调频、调幅、FSK 、PSK 、猝发、频率扫描等信号的功能。此外,本仪器还具有测频和计数的功能。本仪器是电子工程师、电子实验室、生产线及教学、科研的理想测试设备。 1、采用直接数字合成技术(DDS )。 2、主波形输出频率为100μHz ~ 120MHz (F120)。 3、小信号输出幅度可达0.1mV 。 4、脉冲波占空比分辨率高达千分之一。 5、数字调频分辨率高、准确。 概述 1 2 主要 特征

6、猝发模式具有相位连续调节功能。 7、频率扫描输出可任意设置起点、终点频率。 8、相位调节分辨率达0.1度。 9、调幅调制度1% ~ 120% 可任意设置。 10、输出波形达30余种。 11、具有频率测量和计数的功能。 12、机箱造型美观大方,按键操作舒适灵活。 一、函数发生器 1、波形特性 主波形:正弦波,方波, TTL 波(频率大于40MHz 仅有正弦波) 波形幅度分辨率:12 bits 采样速率:200Msa/s (F120 为300 Msa/s) 正弦波谐波失真:-50dBc (频率≤ 5MHz ) -45dBc (频率≤ 10MHz ) -40dBc (频率≤ 20MHz ) -35dBc (频率> 20MHz ) 正弦波失真度: ≤0.1%(f :20Hz ~ 100kHz ) 方波升降时间: ≤25ns (F05型、F10型) ≤15ns (F20型、F40型、F80型、F120型) 3 技术指标

频谱分析仪和信号源使用说明

一、注意事项: 1、测试信号时一般需要在频谱仪上接一个转换头,注意将转换头的螺纹和频谱仪的螺纹对齐再用力拧,否则容易将螺纹损坏。(安装和拆卸转换头时需要注意) 2、测试大于30dBm的大功率信号时,最好先加上衰减器在进行测试,以免功率过大将频谱仪烧坏。 二、常用功能介绍: 频谱仪左边是显示屏,右边是操作按键。左下角是开关。右边的操作按键分为5个部分:FUNCTION、MARKER、SYSTEM、CONTROL、DATA ENTRY。当选择某个按键时,在显示屏的右侧会出现相应的菜单选项,通过按旁边的键可以选择对应的操作。下面分别介绍各部分常用的操作选项。 1、FUNCTION Frequency->Center:设置中心频率; Frequency->Start:设置起始频率; Frequency->Stop:设置终止频率; Frequency->CF Step:设置频率步进值; Span->WidthSpan: Span->FullSpan:设置全屏显示的频率跨度; AmpL->Ref.Lever:设置参考频率; Measure->Adjacent CH Power:相邻信道功率(可通过旋钮测试主瓣和旁瓣信号的带宽和带内功率); Measure->Channel Power:信道功率; Measure->Occupied BandWith:占用带宽; Measure->Harmonic Distortion:谐波失真; 2、MARKER PEAK:该键最常用,用来标记输入信号峰值功率; 3、SYSTEM 该部分用来进行系统设置,如将测试图像保存为图片格式,从软盘读取文件等。由于软盘不常用,所以一般用相机直接拍摄当前的图像。 Preset:将系统恢复到默认状态; 4、CONTROL Trace->Clr&Wrt:清除当前显示; Trace->Max Hold:保留最大值; Trace->Min Hold:保留最小值; CPL->All Auto:所有的设为自动; CPL->RBW:设置分辨率带宽(该值越小,分辨率越高,相应扫描速率越慢); CPL->VBW:设置显示带宽; CPL->Swp Time:扫频时间; (一般RBW和VBW设置为自动;Swp Time保持默认值) 5、DA TA ENTRY 该部分用来输入数值。右边的旋钮可以用来微调数值以及改变MARKER标记的频率值。

标准直流信号发生器

单片机系统课程设计报告 (标准直流信号发生器) 完成日期:2011年10月14日 目录 一、设计任务及分析 (1) 1、基本要求 (2) 2、任务分析 (2) 3、方案选择 (2) 4、硬件方案 (3)

(1)D/A转换器 (3) (2)显示部分 (3) (3)键盘部分 (3) 5、软件设计 (4) (1)合理分配内存 (4) (2)键盘管理部分 (4) (3)显示管理部分 (4) 二、单片机部分 (5) 三、D/A转换芯片DAC0832 (9) 1、主要特性 (9) 2.内部结构 (10) 3.外部特性(引脚功能) (10) 四、运算放大器部分 (12) 五、显示部分电路 (13) 六、按键部分 (14) 七、软件部分调试部分 (15) (1)电流调节部分程序 (15) (2)整体程序 (17) 八、PCB制电路板 (23) 九、原件清单 (24) 十、课程设计体会 (25) 一、设计任务及分析 在电子电路中,需要用到各种信号源,把一个电压或电流信号加到被测系统,应用测量方法确定其各项电的性能参数。直流电流源就是其中的一种。传统的电流源虽然可以做到高精度、宽电流范围输出,但由于采用模拟电子线路,使得结构复杂,调整困难,指示亦不

直观。随着单片机技术的发展,智能电流输出模块以其功能强、灵活性好等特点得到了广泛的应用。数字式的标准电流信号发生器,可以实现非线性控制,并且在自动调整、精确控制等方面有广阔应用前景。 1、基本要求 (1)输出1路标准可调的4~20mA电流信号 (2)电池供电/220V供电 (3) 4位数码显示 (4)粗调加减键,每次加减1mA;细调加减键、每次加减0.1mA (5)输出信号精度0.5% 2、任务分析 信号发生器实际是将数字量变换成模拟量的过程,标准电流信号发生器需要D/A转换的精度要高,同时希望得到的是电流量,而不是电压量。如果是电压量,此时需要V/I的转换。由于调节分为粗调和细调,所以应注意对应于不同的按键,应该选择不同的数字量。D/A 转换和V/I转换的实现可以通过运算放大器等模拟数字电路搭建,也可以通过专用芯片来实现。 3、方案选择 本方案采用单片机作为主芯片,对系统进行控制。采用89C51是因为它内含数据存储器和程序存储器,不需要外扩,线路比较简单。采用其他单片机有可能会增加布线难度,而且增加成本。价格低廉,

集成电路老炼试验信号源系统_王茉

2016 NO.10 (下) New Technology & New Products of China 中国新技术新产品高 新 技 术 中国新技术新产品 - 12 -为达到可靠性等级的要求,半导体器件应该按照不同质量等级的要求,在规定的时间和温度下进行规定条件的老炼筛选,试验时所有电路需要施加合适的激励信号以尽可能地模拟实际应用。每一款器件的老炼试验方案都是针对器件工作原理而特定的。为了满足各种类型器件的老炼信号需求,我们根据老炼试验的通用特点,开发设计了一款通用信号源系统为老炼器件提供输入激励。搭建以存储器为核心的硬件结构,并通过软件开发实现老炼程序的自动转换,将老炼程序通过信号源系统的数据采集单元及数据驱动放大单元进行处理,从而实现改变存储器中的老炼程序数据,产生相应的激励信号。 本片将就整个信号源系统的工作原理及软件设计做具体的描述。 一、信号源的基本工作原理 根据需要选择一定频率的晶振产生时钟信号,经一级反向器整形放大后分别为计数单元和锁存单元提供时钟;利用4片74HC161级联产生的16位计数功能为存储单元的EPROM提供16位地址信号,采集到存储单元的数据经EPROM数据线输出给锁存单元优化,信号再经驱动单元驱动放大后经输出接口连接到老化板作输入激励。信号源基本结构如图1所示。 二、硬件结构分析 1.电路核心部分——EPROM 27C512整个结构主要利用EPROM的几种工作方式之一的“读”状态,通过地址线逐个地址单元访问存储器,由数据线DQ 0~DQ 7输出所需的信号。本文选用存储容量较大的64K*8位可用紫外线擦除可编程只读存储器27C512为例进行说明。 每一个地址单元对应一个字节的数据单元,也就是每8位二进制数分配一个唯一的地址,16根地址线提供0000~FFFF 共64K地址选择,对应每个地址DQ 7~DQ 0分别有一个状态输出,随着地址的不断 变化,在数据输出端就有对应内部存储单元一致的信号输出,随着地址数据的循环,输出信号呈现周期性有规律的变化,从而持续的为工作器件提供输入激励信号。 针对EPROM八位数据输出的特点,在处理原始激励向量文件时需要将信号分为8路为一个单元进行处理。目前应用的通用信号源设计了10个单元,即可同时实现80路信号输出。 2.地址信号的产生——计数器74HC161EPROM地址的提供主要利用了同步4位二进制计数器74HC161的计数状态工作方式。晶振产生的时钟信号提供CP脉冲的上升沿触发,利用4位同步计数器74HC161的四片级联构成16位计数器,提供0000~FFFF的64K地址数据。 4片计数器通过将前级的进位端连接到下一级使能端从而实现级联,即当第一片计数器计满“1111”时其进位端TC 输出为“1”,TC输出送至第二片的控制端CEP端,从而使第二片处于计数状态,开始计数。同理第二片进位触发第三片、第三片触发第四片逐片串行计数, 形成的16位二进制循环计数器为EPROM 提供16位地址信号。 3.输出信号的处理——74HC374和74HC244 74HC374是由8位上升沿D型触发器组成的数码寄存器。利用同步时钟(上升沿触发)实现并入-并出同步送数的功能。对8位二进制数据进行锁存后,并行输出给正向三态输出八驱动器74HC244,经驱动放大的信号就可直接送给器件作为输入信号。为保证正常工作,74HC374和74HC244的控制端均保持使能状态。经驱动放大的信号输出能力大大加强,可以同时为多个器件提供输入激励。 此外,对于有I/O端口的器件,由控制双向端口的信号来控制74HC244的控制端使其选通或禁止,以实现有或无输出信号提供的目的,其他信号处理过程同理,从而实现双向端的工作。 三、软件的实现 从硬件上可以进行数据的一系列处理,但EPROM中的数据程序是个关键 集成电路老炼试验信号源系统 王 茉 (北京时代民芯科技有限公司,北京 100076) 摘 要:本文介绍了根据军用集成电路老炼筛选的实际需求,自主开发设计老炼试验用信号源系统的硬件结构及其软件的设计。 关键词:信号源;激励信号;存储器中图分类号:TN105 文献标识码:A 图1 系统基本结构图 DOI:10.13612/https://www.wendangku.net/doc/6018144721.html,tp.2016.20.009

信号源的基本介绍

信号源的基本介绍 信号源发展到今天,它的涵盖范围已非常广。我们可以按照频率范围对 它进行分类:超低频(0.1m~1kHz)、音频(20Hz~20kHz)、视频(20kHz~10MHz)、射频及高频(200k~3000MHz)、微波(≥3000MHz)、光波信号源等;按工作原理 可以分为:LC 源、锁相源、合成源等。 经常会看到信号源型号前面有几个字母,你知道他们代表什么意思吗?这些 字母是有说头的,我来解释解释。 音频信号源(AG)、函数信号源(FG)、功率函数发生器(PFG)、脉冲信号源(PG)、任意函数发生器(AFG)、任意波形发生器(AWG)、标准高频信号源(SG)、射频 信号源(RG)、电视信号发生器(TVSG)、噪声信号源(Noise)、调制信号发生器(MSG)、数字信号源(DG)。 一般来说,任意波形发生器(AFG)可提供12 种标准函数波形、脉冲波形、 调制波形、扫频和突发信号等,同时可快速编辑任意波形,在中档信号源中极 具代表性,是一种革命性的数字产品。它的基本技术指标与其他的信号源指标 相同,但也有特殊的要求。下面就任意波形发生器(AFG)相关性能指标进行说 明。 带宽(Fw):带宽是所有测量交流仪器必须考虑的技术指标,指仪器输出或能 测量的信号幅度衰减-3dB 处的最高频率。 输出幅度(Vpp):信号源输出信号的电压范围,一般表示为峰- 峰值。 输出通道(CH):信号源对外界输出的通道数量。 垂直分辨率(DAC):垂直分辨率与仪器数模转换的二进制字长度(单位:位) 有关,位越多,分辨率越高。数模转换的垂直分辨率决定复现波形的幅度精度 和失真。分辨率不足的数模转换会导致量化误差,导致波形生成不理想。

TV信号源方案

一、系统的设计原则及依据 1、模拟电视系统符合部颁标准SJ/T 10370.1-92 电视频道信号发生器通用技术条件;IEC107-1:1995公告,并能产生符合新颁布的彩电新标准GB/T17309.1-1998<电视广播接收机测量方法>要求的测试信号。彩色制式为PAL、SECAM、NTSC制;射频制式为B/G、D/K、 I、M、D、L制。 2、国家广播电视行业标准:GY/T106-1999《有线电视广播系统技术 规范》GB6501-1999《30MHz-1GHz声音和电视信号电缆分配系统》。 3、国家数字信号检测的相关规范; 4、SJ/T11348-2006数字电视平板显示器测量方法、SJ/T11343-2006数字电视平板夜晶显示器测量方法; 5、有线数字电视接收器测量方法; 6、彩电新标准:GB/T17309、1-1998电视广播接收机测量方法、GB/T10239-2004彩色电视广播接收机通用技术条件; 7、符合综合布线系统及弱电施工技术要求规范; 8、系统应具有良好的总体可扩展性,可根据用户的要求增设其他调制体制的电视信号发射功能。 二、系统的功能: 1、模拟电视集中信号系统产生符合国际广播电视发射标准的多制式彩色电视信号。 2、数字电视集中信号系统具备两项基本功能:即产生用于DVB-T/C、ATSC 接收设备性能测试的信号群和用于功能测试的信号群。 3、系统信号可实现数字网络化:可以实现信号的网络管理与控制; 4、系统的可升级与扩充性:可以根据用户要求选插测试图形卡、综合测试卡、清晰度卡、自然景色图形测试卡;信号点可任意扩充; 5、系统的实时监控功能:对视频信号和系统的射频图象进行监控;

相关文档
相关文档 最新文档