文档库 最新最全的文档下载
当前位置:文档库 › 攻克圆锥曲线解答题的策略

攻克圆锥曲线解答题的策略

攻克圆锥曲线解答题的策略
攻克圆锥曲线解答题的策略

圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心 率的范围是() A.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞) 2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y 的取值范围是() 0 A.B. C.D. 3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.?B.?C. D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为() A.?B.2?C.?D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是() A.(2,+∞)?B.(1,2)C.(1,)?D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A.?B. C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、 右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是() A.?B.?C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率 的取值范围是() A.(,+∞)B.(1,)C.(2.+∞)?D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1?C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( ) A. B. C.?D. 二.填空题(共2小题) 11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=是双曲线的右焦点,则△PF2Q的周长是. 8,F 2 12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

圆锥曲线经典练习题及答案(供参考)

圆锥曲线经典练习题及解答 大足二中 欧国绪 一、选择题 1. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的4 1 ,则该椭圆的离心率为 (A )31 (B )21(C )32(D )4 3 2. 设F 为抛物线C :y 2=4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = (A ) 12 (B )1 (C )3 2 (D )2 3.双曲线C:22 221(0,0)x y a b a b -=>>的离心率为2C 的 焦距等于( ) A. 2 B. 4.已知椭圆C :22 221(0)x y a b a b +=>>的左右焦点为F 1,F 2,离心率为3,过F 2的直线l 交C 与A 、B 两点,若△AF 1B 的周长为C 的方程为( ) A. 22132x y += B. 22 13x y += C. 221128x y += D. 221124 x y += 5. 已知双曲线)0,0(122 22>>=-b a b y a x 的一条渐近线平行于直线,102:+=x y l 双曲 线的一个焦点在直线l 上,则双曲线的方程为( ) A.120522=- y x B.152022=-y x C.1100325322=-y x D.125 310032 2=-y x 6.已知F 为抛物线2 y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ?=(其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是( ) A 、2 B 、3 C D 7.抛物线2 4 1x y = 的准线方程是( ) (A) 1-=y (B) 2-=y (C) 1-=x (D) 2-=x

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

圆锥曲线练习题(附答案)

) 圆锥曲线 一、填空题 1、对于曲线C ∶1 42 2-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <2 5 其中所有正确命题的序号为_____________. ? 2、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满 足021=?PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为 3.若0>m ,点?? ? ??25,m P 在双曲线15422=-y x 上,则点P 到该双曲线左焦点的距离为 . 4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是 (4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7 ,cos 18 AB BC B ==- .若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = . 7.已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为 8.离心率3 5 = e ,一条准线为x =3的椭圆的标准方程是 .

9.抛物线)0(42<=a ax y 的焦点坐标是_____________; 10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . ^ 11、抛物线)0(12 <=m x m y 的焦点坐标是 . 12.已知F 1、F 2是椭圆2 2 22)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的一个端 点,则△F 1BF 2的面积的最大值是 13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点, 与x 轴正向的夹角为60°,则||为 . 14.在ABC △中,AB BC =,7 cos 18 B =-.若以A B ,为焦点的椭圆经过点 C ,则该椭圆的离心率e = . 二.解答题 15、已知动点P 与平面上两定点(A B 连线的斜率的积为定值1 2 -. . (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3 2 4时,求直线l 的方程.

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

圆锥曲线综合练习试题(有答案)

圆锥曲线综合练习 一、 选择题: 1.已知椭圆221102 x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 2.直线220x y -+=经过椭圆22 221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( ) A B .12 C .2 3 3.设双曲线22 219 x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1 4.若m 是2和8的等比中项,则圆锥曲线2 2 1y x m +=的离心率是( ) A B C D 5.已知双曲线22 221(00)x y a b a b -=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N , 两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( ) A B 6.已知点12F F ,是椭圆2 2 22x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +u u u r u u u u r 的最小值是( ) A .0 B .1 C .2 D .7.双曲线221259 x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( ) A .22或2 B .7 C .22 D .2 8.P 为双曲线22 1916 x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点, 则||||PM PN -的最大值为( ) A .6 B .7 C .8 D .9 9.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .16 10.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =u u u r u u u r ,则以B C ,为焦点,且过D E ,的双曲线离心率为( ) A B 1 C 1 D 1 11.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2b y x a =-的焦点坐标是( ) A .5(0)16- , B .2(0)5-, C .1(0)5-, D .1 (0)5 , 12.已知12A A ,分别为椭圆22 22:1(0)x y C a b a b +=>>的左右顶点,椭圆C 上异于12A A ,的点P

圆锥曲线历年高考题附答案解析

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆 x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43 B .75 C .85 D .3 4.(2006高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006卷)曲线221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006高考卷)若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设

高中数学《圆锥曲线》解答题解法全归纳

高中数学圆锥曲线解答题解法 题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点的问题 题型四:过已知曲线上定点的弦的问题 题型五:向量问题 题型六:面积问题 题型七:弦或弦长为定值、最值问题 问题八:直线问题 问题九:对称问题 问题十、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆) 题型一:数形结合确定直线和圆锥曲线的位置关系(简单题型未总结) 题型二:弦的垂直平分线问题 例题1、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得 ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1)y k x y x =+?? =?消y 整理,得2222 (21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2 2 4 2 (21)4410k k k ?=--=-+> 即2 1 04 k << ② 由韦达定理,得:212221,k x x k -+=-121x x =。则线段AB 的中点为22 211 (,)22k k k --。 线段的垂直平分线方程为:

221112()22k y x k k k --=--令y=0,得021122x k =-,则2 11(,0)22 E k - ABE ?Q 为正三角形,∴2 11 ( ,0)22 E k -到直线AB 的距离d 为32AB 。 2 2 1212()()AB x x y y =-+-Q 22 2141k k k -= +g 212k d k += 222 314112k k k k -+∴+=g 解得3913k =±满足②式此时0 53 x =。 【涉及到弦的垂直平分线问题】 这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。 例题分析1:已知抛物线y=-x 2 +3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 解:设直线AB 的方程为y x b =+,由22123 301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点11(,)22M b -- +,又由11 (,)22 M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出2 21114(2)32AB =+-?-=. 题型三:动弦过定点的问题 例题2、已知椭圆C :22 221(0)x y a b a b +=>>的离心率为32, 且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论 解:(I )由已知椭圆C 的离心率3c e a ==,2a =,则得3,1c b ==。从而椭圆的方程为 2 214 x y +=

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离 心率的范围是() A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是() A.B.C. D. 3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.B. C.D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此 双曲线的离心率的取值范围是() A.(2,+∞)B.(1,2) C.(1,)D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线 的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A.B.C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的 左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心 率的取值范围是() A.(,+∞) B.(1,)C.(2.+∞)D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 二.填空题(共2小题) 11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是. 12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

圆锥曲线试题及答案

椭圆 一、选择题 1.(2012·高考大纲全国卷)椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( ) A. x 216+y 2 12 =1 B. x 2 12 +y 28 =1 C.x 28+y 24=1 D.x 2 12+y 2 4=1 解析:选C.由题意知椭圆的焦点在x 轴上, 故可设椭圆方程为x 2a 2+y 2 b 2=1(a >b >0). 由题意知????? 2c =4,a 2 c =4,∴? ???? c =2, a 2 =8, ∴b 2 =a 2 -c 2 =4,故所求椭圆方程为x 28+y 2 4 =1. 2.(2011·高考浙江卷)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2 -y 24 =1有公共 的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点,若C 1恰好将线段AB 三等分,则( ) A .a 2=132 B .a 2 =13 C .b 2=12 D .b 2 =2 解析:选C.由题意知,a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4 =0,双曲 线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4 =0, ∴直线截椭圆的弦长d =5×2a 4-5a 25a 2 -5=2 3 a , 解得a 2=112, b 2 =12 . 3.椭圆x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点 P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) A .(0, 2 2 ] B .(0,1 2] C .[2-1,1) D .[1 2 ,1) 解析:选D.设P (x 0,y 0),则|PF |=a -ex 0.又点F 在AP 的垂直平分线上,∴a -ex 0= a 2 c -c ,因此x 0=a ac -a 2+c 2 c 2 . 又-a ≤x 0

高考数学之圆锥曲线常见习题及解析(经典版)

高考数学 圆锥曲线常见习题及解析 (经典版)

椭圆 一、选择题: 1. 已知椭圆方程22143x y +=,双曲线22 221(0,0)x y a b a b -=>>的焦点是椭圆的顶点, 顶点是椭圆的焦点,则双曲线的离心率为 A.2 B.3 C. 2 D. 3 2.双曲线22 221(0,0)x y a b a b -=>> 的左、右焦点分别为F 1,F 2,渐近线分别为12,l l ,点P 在第 一象限内且在1l 上,若2l ⊥PF 1,2l //PF 2,则双曲线的离心率是 ( ) A .5 B .2 C .3 D .2 【答案】B 【解析】双曲线的左焦点1(,0)F c -,右焦点2(,0)F c ,渐近线1:b l y x a = ,2:b l y x a =-,因为点P 在第一象限内且在1l 上,所以设000(,),0P x y x >,因为2l ⊥PF 1,2l //PF 2,所以12PF PF ⊥,即121 2 OP F F c ==, 即22200x y c +=,又00b y x a =,代入得222 00()b x x c a +=,解得00,x a y b ==,即(,)P a b 。所以 1PF b k a c = +,2l 的斜率为b a -,因为2l ⊥PF1,所以()1b b a c a ?-=-+,即2222()b a a c a ac c a =+=+=-,所以2220c ac a --=,所以220e e --=,解得2e =,所以双曲线 的离心率2e =,所以选B. 3.已知双曲线()0,012222>>=-b a b y a x 的一条渐近线的斜率为2,且右焦点与抛物线x y 342 =的焦 点重合,则该双曲线的离心率等于 A .2 B .3 C .2 D .2 3

高二圆锥曲线经典练习题含答案

一.求离心率问题 1.已知椭圆和直线,若过C的左焦点和下顶点的 直线与平行,则椭圆C的离心率为() A.B.C.D. 2.设椭圆E的两焦点分别为F1,F2,以F1为圆心,|F1F2|为半径的圆与E交于P,Q两点.若△PF1F2为直角三角形,则E的离心率为() A.﹣1B.C.D.+1 3.在直角坐标系xOy中,F是椭圆C:=1(a>b>0)的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE 交PQ于点M,若M是线段PF的中点,则椭圆C的离心率为() A.B.C.D. 4.过原点的一条直线与椭圆=1(a>b>0)交于A,B两点,以线段AB为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[)B.[]C.[)D.[] 5.设F为双曲线C:﹣=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径 的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为() A.B.C.2D. 6.已知双曲线的右焦点为F,直线l经过点F且与双曲线的一条渐近线垂直,直线l与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为() A.B.C.D.

7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0垂直,则该双曲 线的离心率为() A.2B.C.D.2 8.已知F1,F2是双曲线的左、右焦点,若点F1关于双曲线渐 近线的对称点P满足∠OPF2=∠POF2(O为坐标原点),则双曲线的离心率为()A.B.2C.D. 二、圆锥曲线小题综合 9.若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()A.2B.3C.4D.8 10.已知抛物线x2=16y的焦点为F,双曲线=1的左、右焦点分别为F1、F2,点 P是双曲线右支上一点,则|PF|+|PF1|的最小值为() A.5B.7C.9D.11 11.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为() A.B. C.D. 12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1相交于M,N两点,若△MNF为直角三角形,其中F为直角顶点,则p=() A.2B.C.3D.6 13.已知椭圆与双曲线

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

圆锥曲线基础测试题及答案

圆锥曲线基础测试 1. 已知椭圆116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 A .116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 5.抛物线x y 102 =的焦点到准线的距离是 ( ) A . 25 B .5 C .2 15 D .10 6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 7.若椭圆22 1x my +=的离心率为2 ,则它的长半轴长为_______________. 8.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。 9.若曲线22 141x y k k +=+-表示双曲线,则k 的取值范围是 。 10.抛物线x y 62=的准线方程为 . 11.椭圆552 2=+ky x 的一个焦点是)2,0(,那么=k 。 12.k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点? 13.在抛物线24y x =上求一点,使这点到直线45y x =-的距离最短。 14.双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点, 求渐近线与椭圆的方程。 15.若动点(,)P x y 在曲线22 21(0)4x y b b +=>上变化,则22x y +的最大值为多少?

相关文档
相关文档 最新文档