文档库 最新最全的文档下载
当前位置:文档库 › 实验六 完全互溶双液体系沸点

实验六 完全互溶双液体系沸点

实验六  完全互溶双液体系沸点
实验六  完全互溶双液体系沸点

实验六完全互溶双液体系沸点~组成图的绘制

一、实验目的

1.了解溶液的沸点与气液二相组成的关系;

2.绘制环己烷-异丙醇溶液的沸点~组成图;

3.进一步理解分馏原理;

4.掌握阿贝折光仪的正确使用方法。

二、基本原理

液体的沸点是液体的饱和蒸气压与外压相等时的温度。在一定的外压下,单一组分的液体有确定的沸点值,对于一个完全互溶的双液体系,沸点不仅与外压有关,还和液体的组成有关。在常温下,具有挥发性的A和B两种液体以任意比例相互溶解所组成的物系,在恒定压力下表示该溶液沸点与组成关系的相图称之为沸点~组成图,即T ~x图。完全互溶双液体系在恒压下的沸点~组成图大致可分为以下三类。

图6-1简单互溶双液体系的T~x图图6-2具有最高恒沸点的T~x图图6-3具有最低恒沸点的的T~x图

第Ⅰ类:溶液沸点介于两纯组分沸点之间,如苯与甲苯的混合体系,其沸点~组成图如图6-1所示。此类溶液在恒压下蒸馏时,其气相组成和液相组成并不相同,具有较低蒸气压的液体(B)在气相中的组成X B(g)总是小于在液相中的组成X B(l),因此可以通过反复蒸馏——精馏,使互溶的二组分完全分离。

第Ⅱ类:溶液具有最高恒沸点,如卤化氢和水、丙酮与氯仿等,其沸点~组成图如图6-2所示。

第Ⅲ类:溶液具有最低恒沸点,如苯与乙醇、乙醇与水、环己烷与异丙醇、环己烷与乙醇、乙醇与1,2-二氯乙烷等,其沸点~组成图如图6-3所示。

在第Ⅱ、Ⅲ类的T ~x图中,出现极值点(极大值或极小值),在极值点处加热蒸发时,只能使气相的总量增加,气液相组成及沸点均保持不变,此点的温度称为恒沸点。在恒沸点时,气相的组成与液相的组成相同,称为恒沸组成。而具有此组成的混合物称为恒沸混合物。对于Ⅱ、Ⅲ两类溶液,简单的反复蒸馏只能获得某一纯组分和恒沸混合物,而不能同时得到两种纯组分。恒沸点和恒沸混合物的组成与外压有关,改变外压可使恒沸点和恒沸混合物的组成发生变化。

本实验环己烷与异丙醇的混合物属于第Ⅲ类溶液,具有最低恒沸点。

为了绘制沸点~组成图,本实验将环己烷与异丙醇配成不同组成的溶液,利用回流冷凝及分析的方法,测定不同组成溶液的沸点及气、液二相的组成。由于环己烷和异丙醇的折光率相差比较明显,因此可通过溶液折光率的测定来确定气液二相的组成。为此,可先配制一系列不同组成的环己烷-异丙醇溶液,然后用阿贝折光仪(阿贝折光仪的使用见附录1)测定

其相应的折光率,由此可绘制出折光率~组成的标准工作曲线。通过标准工作曲线可以查出

该温度下气液二相平衡时折光率所对应的组成。而气、液两相达到平衡时的沸点温度可直接

获得。实验测定整个浓度范围内所选定的几个不同组成溶液的沸点和平衡时的气液相组成之

后,将气相组成点联接成气相线,液相组成点联接成液相线,定压下的T ~ x 图即可绘制

出来。

本实验所用的仪器为沸点仪,如图6-4所示。

图6-4 沸点仪

三、仪器和药品

2WA -J 阿贝折光仪、沸点测定仪(如图6-5)、WLS 数字恒流电源、精密数字温度计、

铜导线、电阻丝、长颈取样滴管、10 ml 吸量管、5 ml 吸量管、1 ml 吸量管、50 ml 锥形瓶;

异丙醇(AR)、环己烷(AR )。

图6—5 沸点测定仪

四、实验步骡

1.绘制标准工作曲线:

按下述配比在锥形瓶中配制8种不同体积百分数的环己烷-异丙醇溶液。每种溶液的总

体积为5 ml 。配好后摇匀,迅速用阿贝折光仪测定各溶液的折光率。然后,作折光率~组

成的标准曲线。测试中,注意试样要铺满镜面,旋钮要锁紧,动作要迅速。

环己烷 100% 85% 70% 55% 40% 25% 10% 0%

异丙醇 0% 15% 30% 45% 60% 75% 90% 100%

2.安装沸点仪:

将干燥的沸点仪按图6-4安装好,要检查带有温度计的胶塞是否塞紧,不能漏气。内

装电阻丝可供加热用并防止暴沸。

3.测定沸点和蒸出液、蒸馏液的折光率:

1——精密数字温度计

2——加液口(蒸馏液取液口)

3——蒸馏液(液相组成)

4——冷凝管

5——蒸发液(气相组成)

6——蒸发液取液口

7——电阻丝(连接WLS 数字恒流电源)

(1)取10 ml纯环己烷由加液口注入沸点仪的烧瓶内,盖好瓶盖,连接好线路,使电阻丝完全浸入液体中,调整温度计的位置,使温度计浸入溶液内,通好冷凝水,接通电源加热,调变压器输出电压约在100~130 V,使溶液沸腾。将冷凝管下部积液倾倒回蒸馏瓶。重复2~3次,待温度恒定后记下沸点并停止加热,用两支干净的滴管分别从冷凝管下部蒸发液和蒸馏液中迅速取几滴液体,立即测定其折光率,读数三次,记录其平均值。然后按下列次序和数量逐步加入异丙醇,同法加热溶液沸腾,记下沸点并测定蒸发液、蒸馏液的折光率。

次序 1 2 3 4 5 6

加异丙醇量(ml) 0.20 0.30 0.50 1.00 2.00 2.50

(2)将沸点仪中溶液倒入回收瓶中,用少许异丙醇洗数次,然后取10 ml异丙醇置于烧瓶中,按上述方法测定沸点和蒸发液、蒸馏液的拆光率,然后按下列次序和数量逐步加入环己烷,每次加完后测其沸点及蒸发液和蒸馏液的折光率。

次序 1 2 3 4

加环己烷量(ml) 1.00 2.00 3.00 4.00

测定结束后,将沸点仪中溶液倒入回收瓶中,沸点仪则不必用水清洗干燥。

五、数据处理

1.环己烷的密度为0.774,异丙醇的密度0.781,以折光率为纵坐标,环己烷重量百分比浓度为横坐标作标准工作曲线,并用内插法在工作曲线上找出各样品的组成。

2.将气-液两相平衡时的沸点、折光率、组成等数据列表。

3.作环己烷-异丙醇的沸点~组成图,绘制时曲线要圆滑与连续,不应出现折线。并求出最低恒沸点及相应恒沸混合物的组成。对实验结果进行必要的分析、讨论。

六、注意事项

1.加热时要防止暴沸,必要时要加入少量素磁片作为沸石,但不可在过热液中加沸石。 2.加热不能过快,否则液体过热或蒸出液组分不纯。

3.收集到的气相冷凝液要回倒入体系几次。

七、实验关键提示

溶液的沸点及相应的气液相折射率是本实验的两个直接测量值,所以影响这两个测量值的因素均是影响实验结果的主要因素。

影响沸点测定的主要因素是回流的质量。为了保证有一个很好的回流操作,要注意以下几点:(1)调压变压器控制的供热电压不易过高,以维持被测液体处于刚刚沸腾的状态为宜,要防止电压过高引起的暴沸。(2)回流时间不可过短。当沸腾温度趋于恒定后,还应维持2~3分钟的回流,使体系尽量达到平衡状态后,再记录沸点温度与取样测试折射率。

实验中有时可发现,虽长时间的回流,但温度总是上下波动而不能稳定。这多是由于沸点仪在吹制中贮存气相冷凝液的凹形贮槽的体积过大所至。出现此种情况时,可将沸点仪倾斜一下,使存留在凹形贮槽中的试样能减少一些。一般来说,这样处理即可使沸腾温度在较短时间内趋于恒定。

对于试样折射率的测定要做到:动作迅速,试样铺满镜面,锁紧旋钮,以保证测试的准确性。

八、讨论

根据相律绘制相图,通过对相图的分析加深对所研究体系的认识,这是热力学方法研究多相平衡体系的重要内容之一。早在1876年G1bbs相律出现以后,各类体系的相图就不断出现,经过近半个世纪的不断完善,从20世纪40年代起“完全互溶双液系相图”这一实验选题就被纳入物理化学实验教材中,作为一个经典实验一直被沿用至今天。它所以有这样强的生命力是因为通过这一实验的实际操作,不仅使同学们了解了回流分析法的实验原理,掌握了实验的要领和对阿贝折射仪的正确使用等这些显而易见的东西;而且通过对实验某些操

作环节的分析与研究,对异常现象的思考与排除等等加深了对实验设计思想的体会与对相图的深入认识。这里不妨举一、二例进行讨论。比如:操作步骤中要求用移液管取液配制所规定的试样,那么是不是象分析化学那样要求必须十分精确呢?实际上并不需要这样严格的准确。为什么呢?认真的思考与分析,就会清楚。用移液管按规定取液是实验设计者为使各实验点更均匀,相图绘制更准确,经过实践总结出来的。但又不必象分析化学中作定量分析那样严格量取,因为这里组成的确定最终是由折射率的大小来决定的,而不是由加入量来确定。了解了这些,实验时就会把精力用到真正需要投入的地方,而不会在取液时,投入这些不必要的认真。又如前边操作步骤曾谈到:先测气相折射率,然后再测液相折射率,若气相未测出来,液相试样则不必测量,可以重新加热试样,重新记录沸点,重新测定气、液相的折射率。有的同学不是这样,而是把试样全部倒掉重新来。认真的思考分析也会得出同学这样操作是完全没有必要的。重新加热,重新取样测试,只是使实验点与原来所设计的实验点有了微小的移动,这样的变化对相图的绘制是没有影响的。还有的同学提出既然气相试样是这样少,不易测量,这可以在仪器制作时,让凹形贮槽体积大一点,不就解决问题了吗?实际上这是不行的,为什么?我们把这个问题留给同学们自己去思考,并建议你们通过相图去分析一下,相信会有收获的!

异丙醇-环己烷双液系恒沸温度与恒沸组成的文献值为:恒沸温度:341.8±1 K,恒沸组成(含C6H12%):66±1%。你可将自己结果与文献值进行比较。并分析与文献值偏差的原因。

属于本实验的体系(具有最低恒沸点)还有很多。作为基础实验,选择体系时应考虑到:两组成的折射率尽量相差较大;折射率与组成有较好的线性关系;恒沸点明显,且沸程最好介于50~100 ℃之间:原料廉价易得及无毒等各个方面。

完全互溶双液系的T ~x图具有重要的实用价值,比如常以此来指导或控制某些体系的分馏、精馏的操作条件。这里请同学们思考一下,为什么采用简单的精馏无法由含水乙醇来制备无水乙醇?

九、思考题

1.平衡时,气液两相温度应不应该一样?实际是否一样?怎样防止有温度差异?

2.蒸馏器中收集气相冷凝液的袋状部分的大小,对测量有何影响?

3.在测定沸点时,溶液过热或出现分馏现象,将使绘出的相图图形发生什么变化?

十、实验数据记录表

1.环己烷-异丙醇已知组成溶液25 ℃时的折光率

2.溶液沸点、折光率及组成

[参考资料]

[1] 顾良证等.物理化学实验.南京:江苏科学技术出版社,1986

[2] 吴子生.物理化学实验指导书.长春:东北师大出版社,1995

[3] 东北师范大学等校.物理化学实验(第二版) .北京:高等教育出版社,1989

[4] 复旦大学等校.物理化学实验(第二版).北京:高等教育出版社,1990

[5] 北京大学化学系物理化学教研室.物理化学实验(修订本).北京:北京大学出版社,1985

附录:2WA -J 型阿贝折光仪

1.仪器用途

阿贝折射仪是能测定透明、半透明液体或固体的折射率n D 和平均色散n F -n C 的仪器(其

中以测透明液体为主),如仪器上接恒温器,则可测定温度为0 ℃~70 ℃内的折射率n D 。

它具有试液用量少,操作方便,读数精度高等优点,是化学实验中常用的一种光学仪器。

折射率和平均色散是物质的重要光学常数之一,能借以了解物质的光学性能、纯度、浓

度、结构及色散大小等。本仪器能测出蔗糖溶液内含糖量浓度的百分数(0~95%,相当于折

射率为 1.333~1.531)。故此仪器使用范围甚广,是石油工业、油脂工业、制药工业、制漆

工业、食品工业、日用化学工业、制糖工业和地质勘察等有关工厂、学校及有关科学研究单

位不可缺少的常用设备之一。

2.仪器规格

测量范围: n D 为1.300~1.700

测量准确度(n D ):±0.002

仪器质量: 2.6 kg

仪器体积: 100×200×240 mm 3

3.仪器工作原理简述

折射仪的基本工作原理是:当一束光在两种不同性质的介质的交界面上发生折射时,它

遵守折射定律:βαβαsin sin n n =,αn 、βn 为交界面两侧的两种介质的折射率(如图6-

5所示

)。

1

图6-5光的折射图6-6 光的行程

1-目镜视野2-液面3-辅助棱镜4-基本棱镜5-反射镜

α为入射角,β为拆射角。若光线从光密介质进入光疏介质,则入射角小于折射角,改变入射角可以使折射角达到90°,此时的入射角称为临界角,本仪器测定折射率是根据这个临界折射现象设计的。

图6-6是光的行程示意图。镜箱由两个折射率为1.75的玻璃直角棱镜构成,上部为基本棱镜,下部为辅助棱镜。从反射镜反射来的入射光进入棱镜3。此棱镜的AˊDˊ面为一毛玻璃。入射光在毛玻璃面上发生漫反射,并从各个方向通过置于缝隙的液层而达到棱镜4的AD面。根据折射定律,当光由光疏介质(待测液体)折射进入光密介质(棱镜4)时,折射角小于入射角;如果入射光正好沿着AD面射入,即入射角为90°,折射角为β0。β0为临界角。可见,对镜面上任一点来说,当光在0~90°范围内入射时,折射光都应落在临界角β0内成为亮区,其它为暗区,如果用一望远镜对出射光线视察,可以看到望远镜视场被分为明暗两部分,二者之间有明显分界线,构成明暗分界线。如图6-7所示,明暗分界处即为临界角的位置。

图6-7 读数视野明暗分界线

1 -十字线

2 -刻度尺

4.仪器结构

如图6-8(a)、图6-8(b)。

图6-8(a) 阿贝折光仪(正面) 图6-8(b) 阿贝折光仪(背面)

1——反射镜2——转铀3——遮光板4——温度计5——进光棱镜座

6——色散调节手轮7——色散值刻度圈8———目镜9——盖板

10——手轮11——折射棱镜座12——照明刻度盘聚光镜13——温度计座

14——底座15——折射率刻度调节手轮16——调节物镜的螺钉小孔

17——仪器外壳18——恒温器接头

5.使用与操作方法

(1)准备工作:

在开始测定前,必须先用标准试样校对读数。对折射棱镜的抛光面加1~2滴溴代萘,再贴上标准试样的抛光面,当读数视场指示于标准试样上之值时。观察望远镜内明暗分界线是否在十字线中间,若有偏差则用螺丝刀微量旋转图6-8(b)上小孔(16)内的螺钉,带动物镜偏摆,使分界线像位移至十字线中心。通过反复地观察与校正,使示值的起始误差降至最小(包括操作者的瞄准误差)。校正完毕后,在以后的测定过程中不允许随意再动此部位。

如果在日常的测量工作中,对所测的折射率示值有怀疑时,可按上述方法用标准试样进行检验,是否有起始误差,并进行校正。

每次测定工作之前及进行示值校准时必须将进光棱镜的毛面,折射棱镜的抛光面及标准试样的抛光面,用无水乙醇与乙醚(1:4)的混合液和脱脂棉花轻擦干净,以免留有其他物质,影响成像清晰度和测量精度。

(2)测定工作:

①测定透明、半透明液体:

将被测液体用干净滴管加在折射棱镜表面,并将进光棱镜盖上,用手轮(10)锁紧,要求液层均匀,充满视场,无气泡。打开遮光板(3),合上反射镜(1),调节目镜视度,使十字线成像清晰,此时旋转手轮(15)并在目镜视场中找到明暗分界线的位置,再旋转手轮(6)使分界线不带任何彩色,微调手轮(15),使分界线位于十字线的中心,再适当转动聚光镜(12),此时目镜视场下方显示的示值即为被测液体的折射率。

②测定透明固体:

被测物体上需有一个平整的抛光面。把进光棱镜打开,在折射棱镜的抛光面上加1—2滴溴代萘,并将被测物体的抛光面擦干净放上去,使其接触良好,此时便可在目镜视场中寻找分界线,瞄准和读数的操作方法如前所述。

③测定半透明固体:

被测半透明固体上也需有一个平整的抛光面。测量时将固体的抛光面用溴代萘粘在折射棱镜上,打开反射镜(1),并调整角度利用反射光束测量,具体操作方法同上。

④测量蔗糖溶液内糖量浓度:

操作与测量液体折射率相同,此时读数可直接从视场中示值上半部分读出,即为蔗糖溶液含糖量浓度的百分数。

⑤测定平均色散值:

基本操作方法与测量折射率相同,只是以两个不同方向转动色散调节手轮(6)时,使视场中明暗分界线无彩色为止,此时需记下每次在色散刻度圈(7)上指示的刻度值Z,取其平均值,再记下其折射率n D。根据折射率n D值,在阿贝折射仪色散表的同一横行中找出A和B 值。再根据Z值在表中查出相应的δ值。当Z>30时,δ值取负值。当Z<30时,δ值取正值,按照所求出的A、B、δ值代入色散公式n F-n C=A+B δ就可求出平均色散值。

⑥若需测量在不同温度时的折射率,将温度计旋入温度计座(13)中,接上恒温器的通水管,把恒温器的温度调节到所需测量温度,接通循环水,待温度稳定十分钟后,即可测量。

6.维护与保养

为了确保仪器的精度,防止损坏,请注意以下要点:

(1)仪器应置放于干燥、空气流通的室内,以免光学零件受潮后生霉。

(2)为了保护镜面,不能用滤纸或其它纸擦拭镜面,而只能用专用的擦镜纸。用滴管加样时,滴管口不能与镜面接触,若镜面上有固体残渣,用擦镜纸及时清除。试样的加入量应

以在棱镜间形成一层均匀的液层为准,一般只需2-3滴即可。

(3)不能测定强酸、强碱或其它腐蚀性液体的折射率。

(4)当测试腐蚀性液体时应及时做好清洗工作(包括光学零件、金属零件以及油漆表面),防止侵蚀损坏,仪器使用完毕后必须做好清洁工作,放入木箱内,木箱内应存有干燥剂(变色硅胶)以吸收潮气。

(4)被测试祥中不应有硬性杂质,当测试固体试祥时,应防止把折射棱镜表面拉毛或产生压痕。

(5)经常保持仪器清洁,严禁油手或汗手触及光学零件,若光学零件表面有灰尘可用高级鹿皮或长纤维的脱脂棉轻擦后用电吹风吹去。如光学零件表面沾上了油垢应及时用酒精乙醚混合液擦干净。

(6)仪器应避免强烈振动或撞击,以防止光学零件损伤而影响精度。

(7)阿贝折射仪长期使用后须校正标尺零点。

二组分溶液沸点-组成图

实验4.5 二组分溶液沸点-组成图的绘制 一、目的要求 1.掌握阿贝折光仪及超级恒温槽的使用方法 2.掌握沸点-组成图的绘制方法 3.掌握用折光率确定二元液体组成的方法 二、实验原理 二组分完全互溶液体系统蒸馏曲线可分为三类: (1)系统中两组分对拉乌尔定律的偏差都不大,在T-x图上溶液的沸点总是介于A、B两纯液体的沸点之间,(如图) (2)两组分对拉乌尔定律都产生较大的负偏差,在p-x图上出现最小值时,在T-x图上将出现最高点,(如图) (3)两组分对拉乌尔定律都产生较大的正偏差,在p-x图上出现最大值时,在T-x图上将出现最低点,(如图) 最高点和最低点分别称为最高恒沸点和最低恒沸点,对应的组成称为恒沸组成,其相应的混合物称为恒沸混合物。

系统中两组分对拉乌尔定律的偏差都不大两组分对拉乌尔定律都产生较大的负偏差 两组分对拉乌尔定律都产生较大的正偏差

本实验是在某恒定压力下则定乙醇—正己烷二组分系统的沸点与组成平衡数据,并绘制该液体混合物的蒸馏曲线,其类型是系统中两组分对拉乌尔定律的偏差都较大的类型。 三、仪器试剂 超级恒温槽、阿贝折光仪、蒸馏瓶、恒流源、精密数字温度计、量筒、移液管、滴管、 环己烷、无水乙醇、丙酮、重蒸馏水、80%、60%、40%、20%环己烷—-乙醇标准混合液; 各种组成的环己烷—乙醇混合液。 四、实验步骤 1.测定沸点与组成的关系:使用折光率仪测量上述混合溶液相应的折光率。以折射率对浓度作图,即可绘制工作曲线。 2. 一定组成环己烷——乙醇混合液沸点及气液两相折射率的测定。按图装好装置后,加入药品,环己烷/乙醇: 26.21ml/0.45ml、25.44ml/1.23ml、23.41ml/3.25ml、 19.46ml/7.21ml、17.15ml/9.52、11.61ml/15.85ml、 6.4ml/20.23ml、1.41ml/25.26ml,加热回流。 3.待温度读数稳定后,将蒸馏瓶稍稍倾斜,使小槽中的冷凝回流蒸气瓶,发福倾倒三次,待小槽收集满后,记下沸点温度,

高中化学 物质熔沸点的比较素材 新人教版选修3

【比较物质的熔点、沸点的规律】 1.根据物质在相同条件下的状态不同 一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 同周期中的几个区域的熔点规律 ①高熔点单质 C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。 4. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如 键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。 熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,CaO>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔 沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se >H2S,C2H5OH>CH3—O—CH3)。对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如:CO>N2,CH3OH>CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。

常压蒸馏及沸点测定实验()

新乡医学院医用化学实验课教案首页授课教师姓名及职称: 新乡医学院化学教研室年月日 实验常压蒸馏及沸点测定

一、实验目的 1.了解沸点测定的原理及意义; 2.掌握常压蒸馏操作技术及沸点测定方法。 二、实验原理 沸点测定实际上是一个蒸馏操作。蒸馏是一个将物质蒸发、冷凝其蒸气,并将冷凝液收集在另一种容器中的操作过程。当混合物中各组分的沸点不同时,可用蒸馏的方法将它们分开,所以蒸馏是分离有机化合物的常用手段。蒸馏的方法主要有以下四种:常压蒸馏、减压蒸馏、分馏和水蒸气蒸馏。下面我们就简单介绍一下,实验室中最常用的常压蒸馏。 基本原理 液体的分子由于热运动有从液体表面逸出的倾向,这种倾向随着温度的升高而增大,进而在液面上部形成蒸气。如果把液体置于密闭的真空体系中,液体分子继续不断地逸出而在液面上部形成蒸气,最后使得分子由液体逸出的速度与分子由蒸气中回到液体中的速度相等,亦即使其蒸气保持一定的压力。此时液面上的蒸气达到饱和,称为饱和蒸气,它对液面所施加的压力称为饱和蒸气压,简称蒸气压。同一温度下,不同的液体具有不同的蒸气压,这是由液体的本性决定的,而且在温度和外压一定时都是常数。 将液体加热,它的饱和蒸气压就随着温度升高而增大。当液体的蒸气压增大到与外界施于液面上的总压力(通常为大气压力)相等时,就有大量气泡从液体内部逸出,即液体沸腾。这时的温度称为液体的沸点。显然沸点与外压大小有关。通常所说的沸点是指在101.3 kPa压力下液体的沸腾温度。例如水的沸点为100℃,就是指在101.3 kPa压力下,水在100℃时沸腾。在其它压力下的沸点应注明压力。例如在70 kPa时水在90℃沸腾,这时水的沸点可以表示为90℃/70

二组分溶液沸点—组成图的绘制

学号:21 成绩: 基础物理化学实验报告 实验名称:二组分溶液沸点—组成图 的绘制 应用化学二班级3 组号 实验人姓名:xx 同组人姓名:xx 指导老师:周崇松 实验日期:2013.9 湘南学院化学与生命科学系

一.实验目的 1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。 2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。 3.掌握阿贝折射仪的使用方法。 二.实验原理 在一定的外压下,纯液体的沸点是恒定的,但对于完全互溶双液系,沸点 不仅与外压有关,而且还与其组成有关,并且在沸点时,平衡的气-液两相组成往往不同。根据相律:F=C-P+2,一个气液共存的二组分体系,其自由度为2,只需再任意确定一个变量,其自由度就减为1,整个体系的存在状态就可以用二维图来描述。本实验中采用在一定压力下,作出体系的温度T 和组分x 的关系图,即T-x 图。 完全互溶体系的T-x 图可分为三类:①液体与Raoult 定律的偏差不大,在T-x 图上,溶液的沸点介于两种纯液体的沸点之间(图1.a ),如苯-甲苯系统;②由于两组分的相互作用,溶液与Raoult 定律有较大的负偏差,在T-x 图上存在最高沸点(图1.c ),如卤化氢-水系统;③ 溶液与Raoult 定律有较大的正偏差,在T-x 图上存在最低沸点(图1.b ),如乙醇-水系统。②和③类溶液,在最高或最低沸点时的气-液两相组成相同,这些点称为恒沸点,此浓度的溶液称为恒沸点混合物,相应的温度称为恒沸温度,相应的组成称为恒沸组成。 本实验所要测绘的环己烷-乙醇体系即属于第二类溶液。对于一个组成恒定的封闭系统,当系统达到气液平衡温度时,气液两相的组成和温度恒定不变,以此便能得到该温度下的平衡气-液两相组成的一对坐标。依次改变系统的组成就能得到一系列的平衡气-液两相组成坐标点,用光滑曲线连接即成相图。 实验所用的沸点仪结构如图2,冷凝管底部的小球用以收集冷凝下来的 气相样品。电热丝直接浸入溶液中加热可避免暴沸现象,温度计外的小玻璃罩有利于降低周围环境可能造成的温度计读数波动。平衡时气-液两相组成的分析用的是折射率法,因为溶液的折射率与其组成有关。若在一定温度下,测得一系列已知浓度溶液的折射率,作出该温度下溶液的折射率-组成工作曲线,就可通过测量同温度下的未知浓度溶液的折射率得到此溶液的浓度。因折射率是温度的函数,测定时必须严格控制阿贝折光仪的测量温度。 t/℃ t/℃ t/℃ A A A B B B x B (a) x B (b) 气 气 气 液 液 液 x B (c)

高中化学常见物质性质总结

高中化学常见物质的物理性质归纳 1.颜色的规律 (1)常见物质颜色 以红色为基色的物质 红色:难溶于水的Cu,Cu2O,Fe2O3,HgO等 碱液中的酚酞酸液中甲基橙石蕊及pH试纸遇到较强酸时及品红溶液 橙红色:浓溴水甲基橙溶液氧化汞等 棕红色:Fe(OH)3固体 Fe(OH)3水溶胶体等 <2>以黄色为基色的物质 黄色:难溶于水的金碘化银磷酸银硫磺黄铁矿黄铜矿(CuFeS2)等 溶于水的FeCl3 甲基橙在碱液中钠离子焰色及TNT等 浅黄色:溴化银碳酦银硫沉淀硫在CS2中的溶液,还有黄磷 Na2O2 氟气 棕黄色:铜在氯气中燃烧生成CuCl2的烟 <3>以棕或褐色为基色的物质 碘水浅棕色碘酒棕褐色铁在氯气中燃烧生成FeCl3的烟等 <4>以蓝色为基色的物质 蓝色:新制Cu(OH)2固体胆矾硝酸铜溶液淀粉与碘变蓝石蕊试液碱变蓝 pH试纸与弱碱变蓝等 浅蓝色:臭氧液氧等 蓝色火焰:硫化氢一氧化碳的火焰甲烷,氢气火焰(蓝色易受干扰) <5>以绿色为基色的物质 浅绿色:Cu2(OH)2CO3,FeCl2,FeSO4*7H2O 绿色:浓CuCl2溶液 pH试纸在约pH=8时的颜色 深黑绿色:K2MnO4 黄绿色:Cl2及其CCl4的萃取液 <6>以紫色为基色的物质 KMnO4为深紫色其溶液为红紫色碘在CCl4萃取液碘蒸气中性pH试纸的颜色 K+离子的焰色(钴玻璃)等 <7>以黑色为基色的物质

黑色:碳粉活性碳木碳烟怠氧化铜四氧化三铁硫化亚铜(Cu2S) 硫化铅硫化汞硫化银硫化亚铁氧化银(Ag2O) 浅黑色:铁粉 棕黑色:二氧化锰 <8>白色物质 无色晶体的粉末或烟尘; 与水强烈反应的P2O5; 难溶于水和稀酸的:AgCl,BaSO3,PbSO4; 难溶于水的但易溶于稀酸:BaSO3,Ba3(PO4)2,BaCO3,CaCO3,Ca3(PO4)2,CaHPO4,Al(OH)3,Al2O3,ZnO,Zn(OH)2,ZnS,Fe(OH)2,Ag2SO3,CaSO3等; 微溶于水的:CaSO4,Ca(OH)2,PbCl2,MgCO3,Ag2SO4; 与水反应的氧化物:完全反应的:BaO,CaO,Na2O; 不完全反应的:MgO <9>灰色物质 石墨灰色鳞片状砷硒(有时灰红色)锗等 2.离子在水溶液或水合晶体的颜色 水合离子带色的: Fe2+:浅绿色; Cu2+:蓝色; Fe3+:浅紫色呈黄色因有[FeCl4(H2O)2] 2-; MnO4-:紫色 :血红色; :苯酚与FeCl3的反应形成的紫色 主族元素在水溶液中的离子(包括含氧酸根)无色 运用上述规律便于记忆溶液或结晶水合物的颜色 (3)主族金属单质颜色的特殊性 A的金属大多数是银白色 铯:带微黄色钡:带微黄色 铅:带蓝白色铋:带微红色

物理化学实验报告 - 二元体系沸点-组成图测绘

C7二元体系沸点-组成图测绘 ——实验日期:2014年4月日姓名:马玉仁学号:1120122488 班级:10011202 一、实验目的 (一)在大气压下,测定环己烷-乙醇体系气、液平衡相图(沸点-组成图)。(二)掌握阿贝折光仪的测量原理和使用方法。 二、原理及实验公式 一个完全互溶的二元体系,两个纯液体组分,在所有组成范围内完全互溶。在定压下,完全互溶的二元体系的沸点—组成图可分为三类,如图C7.1所示。 a.溶液的沸点介于两纯组分沸点之间,如苯一甲苯体系; b.溶液有最低恒沸点,如环己烷-乙醇体系; c.溶液有最高恒沸点,如丙酮—氯仿体系。 b、c两类溶液在最高或最低恒沸点时气、液两相组成相同,加热蒸发只能使气相总量增加,气、液相组成及溶液沸点保持不变,此温度称恒沸点,相应组成称恒沸组成。 图C7.1 二元体系T-x图 下面以a为例,简单说明绘制沸点-组成图的原理。加热总组成为x1的溶液,体系的温度上升,达液相线上1点时溶液开始沸腾,组成为x2的气相开始生成,但气相量很少(趋于0),x1、x2二点代表达到平衡时液、气两相组成。继续加热,气相量逐渐增多,沸点继续上升,气、液二相组成分别在气相线和液相线上变化,当达某温度(如2点),并维持温度不变时,则x3、x4为该温度下液、气两相组成,气相、液相的量之比按杠杆规则确定。从相律f = c - p +2可知,当外压恒定时,在气、液两相共存区域自由度等于1,当温度一定时,则气、液两相的组成也就确定,总组成一定,由杠杆规则可知两相的量之比也已确定。因此,在一定的实验装置中,全回流的加热溶液,在总组成、总量不变时,当气相的量与液相的量之比也不变时(达气-液平衡),则体系的温度也就恒定。分别取出气、液两相的样品,分析其组成,得到该温度下,气、液两相平衡时各相的组成。改变溶

高中化学各物质熔沸点判断

高中化学各物质熔沸点 判断 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

高中化学熔沸点的比较 根据物质在相同条件下的状态不同 1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。 但碳族元素特殊,即C ,Si ,Ge ,Sn 越向下,熔点越低,与金属族相似; 还有ⅢA 族的镓熔点比铟、铊低;ⅣA 族的锡熔点比铅低。 3. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ① 原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如 键长: 金刚石(C —C )>碳化硅(Si —C )>晶体硅 (Si —Si )。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF >KCl >KBr >KI ,ca*>KCl 。 ③ 分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点 反常地高,如:H 2O >H 2Te >H 2Se >H 2S )。

对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH>CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。 ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。(沸点按邻、间、对位降低) ④金属晶体:金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大,如钨、铂等(但也有低的如汞、铯等)。在金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 5. 某些物质熔沸点高、低的规律性 ①同周期主族(短周期)金属熔点。如 Li

二元体系沸点-组成图测绘.

二元体系沸点-组成图测绘 1 实验目的及要求 1)在大气压下,测定环己烷-乙醇体系气、液平衡相图(沸点-组成图)。 2)掌握阿贝折光仪的测量原理和使用方法。 2 原理 一个完全互溶的二元体系,两个纯液体组分,在所有组成范围内完全互溶。在定压下,完全互溶的二元体系的沸点—组成图可分为三类,如图C7.1所示。 a.溶液的沸点介于两纯组分沸点之间,如苯一甲苯体系; b.溶液有最低恒沸点,如环己烷-乙醇体系; c.溶液有最高恒沸点,如丙酮—氯仿体系。 b、c两类溶液在最高或最低恒沸点时气、液两相组成相同,加热蒸发只能使气相总量增加,气、液 图C7.1 二元体系T-x图 下面以a为例,简单说明绘制沸点-组成图的原理。加热总组成为x1的溶液,体系的温度上升,达液相线上1点时溶液开始沸腾,组成为x2的气相开始生成,但气相量很少(趋于0),x1、x2二点代表达到平衡时液、气两相组成。继续加热,气相量逐渐增多,沸点继续上升,气、液二相组成分别在气相线和液相线上变化,当达某温度(如2点),并维持温度不变时,则x3、x4为该温度下液、气两相组成,气相、液相的量之比按杠杆规则确定。从相律f = c - p +2可知,当外压恒定时,在气、液两相共存区域自由度等于1,当温度一定时,则气、液两相的组成也就确定,总组成一定,由杠杆规则可知两相的量之比也已确定。因此,在一定的实验装置中,全回流的加热溶液,在总组成、总量不变时,当气相的量与液相的量之比也不变时(达气-液平衡),则体系的温度也就恒定。分别取出气、液两相的样品,分析其组成,得到该温度下,气、液两相平衡时各相的组成。改变溶液总组成,得到另一温度下,气、液两相平衡时各相的组成。测得溶液若干总组成下的气液平衡温度及气、液相组成,分别将气相点用线连接即为气相线,将液相点用线连接即为液相线,得到沸点-组成图。 气相、液相的成份分析采用折光率法:先绘出折光率~组成(n~x)的等温线,方法是在定温下测定已知各种组成(x)的折光率(n),绘出n~x等温线。对于未知组成的样品,取出各相样品后,迅速测出该温度下的折光率(n),便可以从n~x线查出其相应组成。 3 仪器与试剂 恒温槽 恒沸点仪 折光仪 镜头纸 加热电源 电热丝 导线(带夹子) 橡皮塞 温度计(0.1,50~100℃)放大镜 量筒(30ml)洗耳球 吸管 环己烷(A.R.)无水乙醇(A.R.)

高中化学选修3:物质结构与性质-知识点总结

选修三物质结构与性质总结 一.原子结构与性质. 1、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度 越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子 层.原子由里向 外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用 s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f 轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述 .在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具 有较低的能量和较大的稳定性.如24Cr[Ar]3d54s1、29Cu[Ar]3d104s1. (3).掌握能级交错1-36号元素的核外电子排布式. ns<(n-2)f<(n-1)d

高中化学物质熔沸点

2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA 族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 同周期中的几个区域的熔点规律 ①高熔点单质 C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-℃,26×105Pa)、沸点(℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-℃),近常温呈液态的镓(℃)铯(℃),体温即能使其熔化。 4. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,ca*>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3)。对于分子晶体而言又与极性大小有关,其判断思路大体是:ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH>CH3—CH3。ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如: C17H35COOH(硬脂酸)>C17H33COOH(油酸);ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。(沸点按邻、间、对位降低) ④金属晶体:金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大,如钨、铂等(但也有低的如汞、铯等)。在金属晶体中金属原子的价电子数越多,原子

二组分溶液沸点一组成图的绘制

二组分溶液沸点一组成图的绘制 一内容提要 本实验采用回流冷凝法测定不同浓度的环己烷-乙醇溶液的沸点和气液两相的平衡浓度,绘制沸点—组成图,并从图上确定体系的最低恒沸物及其相应的组成。 二目的要求 1.掌握沸点一组成图的绘制方法。 2.掌握阿贝折光仪及超级恒温槽的使用方法。 三实验关键 1.在测定工作曲线步骤中,配制液体时要求使用移液管准确移液,从而保证绘制工作曲线的准确性。每种浓度样品其沸腾状态应尽量一致,即以气泡“连续”、“均匀”冒出为好,不要过于激烈也不要过于缓慢。 2.由于液体的折射率受温度影响很大,折射仪采和用温槽恒温,恒温水在回路中要保持循环畅通。用阿贝折光仪测液体折射率时,用滴管滴数滴液体于棱镜上,待整个镜面浸润后再进行观察。 3.蒸馏瓶中电热丝一定要被溶液浸没后方能通电加热,否则电热丝易烧断或燃烧着火。四预备知识 1.杠杆原则.当组成以物质的量分数(x)表示时,两相的物质的量反比于系统点的两个相点线段的长度。 2.在恒定压力下,实验测定一系列不同组成液体的沸腾温度及平衡时气液两相的组成,即可绘出该压力下的温度-组成图。最大正偏差系统的温度-组成图上出现最低点,在此点气相线和液相线相切,由于对应于此点组成的液相在指定压力下沸腾时产生气相与液相组成相同,故沸腾时温度恒定,且这一温度又是液态混合物的最低温度,故称之为最低恒沸点,与此类似,最大负偏差系统的温度—组成图上出现最高点,即为最高恒沸点。恒沸混合的组成取决于压力,压力一定,恒沸混合物的组成一定;压力改变,恒沸混合物的组成改变,甚至恒沸点可以消失,这证明恒沸混合物不是一种化合物。 五实验原理 在恒压下完全互溶的二组分溶液体系的沸点一组成图可分三类: 1.理想的二组分溶液,其沸点介于两组分沸点之间,如苯-甲醇体系。 2.对拉乌尔定律发生负偏差的溶液,其溶液有最高恒沸点,如丙酮—氯仿、硝酸—水体系。 3.对拉乌尔定律发生正偏差的溶液,其溶液有最低恒沸点,如苯—乙醇、乙醇—水体系。 了解二组分溶液的沸点—组成图,对两组分的分离——精馏有指导意义。 本实验采用回流冷凝法测定不同浓度的环已烷——乙醇溶液的沸点和气、液两相的组成,从而绘制T-x图。 它们表明了沸点和气、液两相组成的关系,当体系总组成x的溶液开始沸腾时,气相组成为y,继续蒸馏,则气相量增加,液相量相应减少(体系总量不变),溶液温度上升,由于回流的作用,控制了两相的量为一定,其沸点也为一定,此时气相组成为y′,与其平衡的液相组成为x′,系统的平衡沸点为t 沸,此时气液两相的量服从杠杆原理。 压力一定时,对两相共存区进行相律分析:组分K=2,相数 =2,所以自由度F=K+1-=2+1-2=1,就是说,若系统温度一定,气、液两相成分就已确定,当总量一定时由杠杆原理可知,两相的量也一定:反过来,在一定实验装置中,利用回流的方法,控制气液两相的相对量一定,使系统的温度一定,则气、液组成一定。 用精密温度计可以测出平衡温度(即沸点),取出该温度下的气液两相样品,用折射率测定可以求出其组成。因为折射率与组成有一一对应的函数关系。这可以通过测定一系列已知组成的样品的折射率,绘出工作曲线即折射率-组成图表示出来。这样,只要测定出未知样品的折射率就可以从图上找到未知样品的组成。 折射率是用阿贝折光仪测得,仪器的原理、构造及使用方法见附录“阿贝折光仪”。 本实验的工作就是测出溶液的沸点和气液相的折射率。

高中化学之物质的熔沸点知识点

高中化学之物质的熔沸点知识点 1、理解物质的物理性质 应用物质的熔沸点可以判断物质在常温(25℃时)下的状态,判断气体被液化的难易及液态物质的挥发性大小等。 物质的沸点相对较高者,则该物质较易被液化。如SO2(沸点-10℃)、NH3(-33.35℃)、Cl2(-34.5℃)被液化由易到难的顺 序是SO2、、NH3、Cl2。物质的沸点越低,则越容易挥发(气化), 如液溴(58.78℃)、苯(80.1℃)易挥发、浓硫酸(338℃)难挥发等。 2、推测物质的晶体类型 分子晶体是由较小的分子间作用力而形成,故熔点沸点较低;离子晶体是由离子间较强的离子键而形成,故熔点沸点一般较高;原子晶体是由原子间较强的共价键而形成,故溶点沸点较高。如白磷的熔点44.1℃、沸点280℃可推测验是分子晶体;NaCl的 溶点是801℃、沸点是1413℃可推测是离子晶体;晶体硅的熔点是1410℃、沸点是2355℃可推测是原子晶体等。 3、根据物质的沸点不同对混合物进行分离 如工业上所用的氮气,通常是利用氮气的沸点(-195.8℃)比氧气的沸点(-183℃)低而控制温度对液态空气加以分离制得;石油工业利用石油中各组分的沸点不同,利用控制加热的温度来分离各组分;酿酒工业利用酒精的沸点(78℃)比水的沸点(100℃)低而采用蒸馏的方法分离酒精和水等。

4.应用物质的沸点不同,通过控制反应温度来控制化学反应的 方向 ①高沸点的酸制备低沸点的酸。如用高沸点的H2SO4制备低 沸点的HCl,HF,HNO3等;用高沸点的H3PO4制备低沸点的HBr、HI等。 ②控制反应温度使一些特殊反应得以发生。如:Na+ KCl===NaCl+K,已知Na的沸点(882.9℃)高于K的沸点(774℃),故可以通过控制温度K呈气态,Na呈液态,应用化学平衡移动 原理,反应中不断将K的蒸气移离反应体系,则平衡向右移动,反应得以发生。 ③选择合适的物质做传热介质来控制加热的温度。如果需要100℃以下的温度,可选择水浴加热;如果需要100℃-200℃的温度,可选择油浴加热。 5.解释某些化学现象 ①如为什么有些液体混合时只能将其中一种液体滴入另一 种液体中,而不能反向滴加?这是因为有些液体混合时,会放出大量的热,为防止少量低沸点液体因沸腾而飞溅,应将高沸点的液体滴入低沸点的液体中并不断搅拌。如浓硫酸的稀释,应将浓硫酸慢慢加入水中,并不断搅拌;制乙烯时,应将浓硫酸慢慢滴入乙醇中,并不断搅拌;制硝基苯时,应将浓硫酸慢慢滴入浓硝酸中,并不断搅拌。 ②又如工业上利用电解法冶炼Mg时,为什么不选择MgO为 原料而是选择MgCl2为原料?这是因为MgO的熔点太高(2800℃),

蒸馏和沸点的测定(精)

蒸馏和沸点的测定 一、实验目的 1.了解测定沸点的意义和蒸馏的意义,掌握常量法(即蒸馏法)及微量法测定沸点的原理和方法。 2.掌握圆底烧瓶、直型冷凝管、蒸馏头、真空接受器、锥形瓶等的正确使用方法,初步掌握蒸馏装置的装配和拆卸技能。 3.掌握正确进行蒸馏操作和微量法测定沸点的要领和方法。 4.掌握水浴加热操作技术。 二、 实验原理 液体的分子由于分子运动有从表面逸出的倾向,这种倾向随着温度的升高而增大。如果把液体置于密闭的真空体系中,液体分子继续不断地逸出而在液面上部形成蒸气,最后使得分子由液体逸出的速度与分子由蒸气中回到液体中的速度相等,亦即使其蒸气保持一定的压力。此时液面上的蒸气达到饱和,称为饱和蒸气。它对液面所施加的压力称为饱和蒸气压。 实验证明,液体的蒸气压只与温度有关,即液体在一定温度下具有一定的蒸气压。这是指液体与它的蒸气平衡时的压力,与体系中存在的液体和蒸气的绝对量无关。 当液体的蒸气压增大到与外界施于液面的总压力(通常是大气压力)相等时,就有大量气泡从液体内部逸出,即液体沸腾。这时的温度称为液体的沸点,通常所说的沸点是在0.1Mpa (即760mmHg )压力下液体的沸腾温度。例如水的沸点为100℃,即指大气压为760mmHg 时,水在100℃时沸腾。在其它压力下的沸点应注明,如水的沸点可表示为95℃/85.3kPa 。 在常压下蒸馏时,由于大气压往往不是恰好为0.1Mpa ,但由于偏差一般都900800 700600500400300 200100温度/蒸气压/mmHg*O C 温度与蒸气压关系图 * 1mmHg=133Pa

很小,因此可以忽略不计。 纯粹的液体有机化合物在一定的压力下具有一定的沸点,但是具有固定沸点的液体不一定都是纯粹的化合物,因为某些有机化合物常和其它组分形成二元或三元共沸混合物,它们也有一定的沸点。 当液态物质受热时蒸气压增大,待蒸气压大到与大气压或所给压力相等时液体沸腾,即达到沸点。所谓蒸馏就是将液态物质加热到沸腾变为蒸气,又将蒸气冷却为液体这两个过程的联合操作。 分馏:如果将两种挥发性液体混合物进行蒸馏,在沸腾温度下,其气相与液相达成平衡,出来的蒸气中含有较多量易挥发物质的组分,将此蒸气冷凝成液体,其组成与气相组成等同(即含有较多的易挥发组分),而残留物中却含有较多量的高沸点组分(难挥发组分),这就是进行了一次简单的蒸馏。 如果将蒸气凝成的液体重新蒸馏,即又进行一次气液平衡,再度产生的蒸气中,所含的易挥发物质组分又有增高,同样,将此蒸气再经冷凝而得到的液体中,易挥发物质的组成当然更高,这样我们可以利用一连串的有系统的重复蒸馏,最后能得到接近纯组分的两种液体。 应用这样反复多次的简单蒸馏,虽然可以得到接近纯组分的两种液体,但是这样做既浪费时间,且在重复多次蒸馏操作中的损失又很大,设备复杂,所以,通常是利用分馏柱进行多次气化和冷凝,这就是分馏。 在分馏柱内,当上升的蒸气与下降的冷凝液互凝相接触时,上升的蒸气部分冷凝放出热量使下降的冷凝液部分气化,两者之间发生了热量交换,其结果,上升蒸气中易挥发组分增加,而下降的冷凝液中高沸点组分(难挥发组分)增加,如果继续多次,就等于进行了多次的气液平衡,即达到了多次蒸馏的效果。这样靠近分馏柱顶部易挥发物质的组分比率高,而在烧瓶里高沸点组分(难挥发组分)的比率高。这样只要分馏柱足够高,就可将这种组分完全彻底分开。工业上的精馏塔就相当于分馏柱。 三、课堂内容 通过提问检查学生预习情况,提问内容如下: 1.测沸点有何意义? 2.什么是沸点?纯液态有机化合物的沸程是多少? 3.什么是蒸馏?蒸馏的意义? 4.什么是爆沸?如何防止爆沸? 5.沸石为什么能防止爆沸? 6.蒸馏的用途? 7.何时用常量法测沸点何时用微量法测沸点? 8.测折光率的意义? 9.测折光率的原理? 10.有机实验室常用的热源?加热的方式有几种? 11.热浴的方式有几种? 12.安装、拆卸仪器装置的顺序是什么?

双液系沸点组成图的绘制

实验报告纸 x乙醇0 0.1 0.2 0.3 0.4 0.5 折射率n 1.4232 1.4147 1.4085 1.402 1.3952 1.3882 x乙醇0.5 0.6 0.7 0.8 0.9 1 折射率n 1.3882 1.3850 1.3791 1.3700 1.3624 1.3585 表4-1 实验数据记录表 室温:23.8℃气压:汞柱759.4mm=103278.4Pa 在20ml乙醇中加入环己烷 气相液相沸点(℃) 折射率n x乙醇折射率n x乙醇T沸点ΔT T正常 0.5 1.3606 0.9558 1.3600 0.9640 76.89 -0.1482 76.74 1 1.3750 0.7308 1.3619 0.9358 74.89 -0.1444 74.75 2 1.3860 0.5574 1.3660 0.8779 71.16 -0.1372 71.02 3 1.3927 0.4538 1.3711 0.7919 68.05 -0.1312 67.92 4 1.3940 0.4347 1.3770 0.6964 66.29 -0.1278 66.16 5 1.3940 0.4317 1.3830 0.6009 65.33 -0.1259 65.20 注:乙醇的沸点77.83℃ 表4-2 实验数据记录表 室温:23.8℃气压:汞柱759.4mm=103278.4Pa 在20ml环己烷中加入乙醇 气相液相沸点(℃) 折射率n x乙醇折射率n x乙醇T沸点ΔT T正常 0.5 1.4092 0.1956 1.4209 0.0125 71.61 -0.1380 71.47 1 1.4038 0.2801 1.4174 0.0673 65.83 -0.1269 65.70 2 1.4020 0.308 3 1.4099 0.1847 64.67 -0.1246 64.55 3 1.4011 0.322 4 1.4036 0.2833 64.59 -0.124 5 64.47 4 1.3996 0.3459 1.3956 0.408 5 64.65 -0.124 6 64.53 5 1.3982 0.3678 1.3888 0.5149 64.88 -0.1251 64.75 注:环己烷的沸点80.25℃ΔT=T沸(101325-P)/(101325*10);T正常=T沸+ΔT

二元体系沸点-组成图

二元体系沸点--组成图测绘 1 实验目的及要求 (1)在大气压下,测定环己烷-乙醇体系气、液平衡相图(沸点-组成图)。 (2)掌握阿贝折光仪的测量原理和使用方法。 2 原理 一个完全互溶的二元体系,两个纯液体组分,在所有组成范围内完全互溶。在定压下,完全互溶的二元体系的沸点组成图可以分为三类 (a)溶液的沸点介于两纯组分之间; (b)溶液由最低恒沸点; (c)溶液由最高恒沸点。

(b)(c)两类溶液在最高候着最低恒沸点时气、液两相组成相同,加热蒸发只能使气相总量增加,气、液相组成及溶液沸点保持不变,此温度称为恒沸点,相应组成称为恒沸组成。 绘制沸点组成图的原理:加热总组成为x1的溶液,体系的温度上升,达到液相线上的1点时溶液开始沸腾,组成为x2的气相开始生成,但是气相量很少,x1x2二点代表达到平衡时液、气两相组成。继续加热,气相量逐渐增加,沸点继续上升,气、液二相组成分别在气相线与液相线上变化,当达到某温度时并维持温度不变时,则x3x4为该温度下液、气两相组成,气相、液相的量按照杠杆原理确定。从相律f=c-p+2得:当外压恒定时,在气、液两相共存区域自由度为1;当温度一定是,则,气、液两相的组成也就确定,总组成一定,由杠杆规则可知两相的量之比也确定。因此,在一定的实验装置中,全回流的加热溶液,在总组成、总量不变时,当气相量与液相量之比也不变时,则体系的温度也就恒定。分别取出气、液两相的样品,分析其组成,得到该温度下气、液两相平衡时各相的组成。改变溶液总组成,得到另一温度下,气、液两相平衡时各相的组成。测得溶液若干总组成下的气液平衡温度及气、液相组成,分别将气相点用

高中化学各物质熔沸点判断

高中化学熔沸点的比较 根据物质在相同条件下的状态不同 1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。 但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似; 还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3.从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,ca*>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S)。 对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如: C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH 4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。

最新实验一 有机实验入门及蒸馏和沸点的测定

实验一有机实验入门及蒸馏和沸点的测定 一. 实验目的: 1.熟悉有机化学实验室的注意事项和安全知识以及有机化学实验的基本要求; 2. 掌握实验报告及实验记录的规范书写; 3.了解测定沸点的意义。 4. 掌握常量法(蒸馏法)测定沸点的原理和方法。 第一部分实验入门 一.有机化学实验室的注意事项(强调纪律) 1、不能迟到、随便请假。请病假要有医院、班主任批条。 2、进入实验室要穿实验服,不得穿拖鞋,不得将食品和饮料带入实验室; 3、实验时要求思想集中、认真仔细,按照操作规程和老师所讲要求进行实验。合理安排好自己的时间,在规定课时内结束实验。 4、实验时要保持室内安静,相互交流要小声,不得随意喧闹、走动,不能擅自离开实验室。 5、实验时不能乱丢杂物、废纸。保持实验室的整洁。每次由班长安排几名学生做值日,负责桌面、地面、水槽的清洁工作,并负责检查水、电、门窗是否关好。 6、爱护公物,配备的仪器要自己管好(两人一套),仪器损坏要报告老师,做登记后补上(按价赔偿)。 7、公用仪器、药品用完后要立即归还原处。不得随意乱丢,损坏按价赔偿。 8、在实验前不要洗仪器。实验完后务必洗净仪器并倒置,保证下周做实验时仪器干净、干燥。清洗好仪器后交给老师清点、签名。 二、实验室的安全事故的预防与处理(强调安全) 有机化学实验的安全操作、以及事故的预防与处理尤为重要,一定要在预先有相当的重视与认识。下列事项应予以切实执行。 1、实验开始前,应先将实验室通风扇打开。 2、实验操作时,应检查仪器是否完整无损、实验装置(如回流、蒸馏装置)是否装置正确、稳妥、各仪器接口间有否漏气。需要水冷凝的装置,点火前应将冷凝水接通,否则有机溶剂泄露或大量蒸汽不及冷凝而逸出,易造成火灾。在作常压操作时,整套装置要保证与大气相通,否则装置密闭易致爆炸。

相关文档