文档库 最新最全的文档下载
当前位置:文档库 › 第五章 线性系统的频域分析法 - 信息与控制研究所首页

第五章 线性系统的频域分析法 - 信息与控制研究所首页

第五章 线性系统的频域分析法 - 信息与控制研究所首页
第五章 线性系统的频域分析法 - 信息与控制研究所首页

第5章频域分析法习题解答

第5章频域分析法 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 思考与习题祥解 题判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

控制系统的频域分析实验报告

实验名称: 控制系统的频域分析 实验类型:________________同组学生姓名:__________ 一、实验目的和要求 用计算机辅助分析的方法,掌握频率分析法的三种方法,即Bode 图、Nyquist 曲线、Nichols 图。 二、实验内容和原理 (一)实验原理 1.Bode(波特)图 设已知系统的传递函数模型: 1 1211121)(+-+-+???+++???++=n n n m m m a s a s a b s b s b s H 则系统的频率响应可直接求出: 1 1211121)()()()()(+-+-+???+++???++=n n n m m m a j a j a b j b j b j H ωωωωω MATLAB 中,可利用bode 和dbode 绘制连续和离散系统的Bode 图。 2.Nyquist(奈奎斯特)曲线 Nyquist 曲线是根据开环频率特性在复平面上绘制幅相轨迹,根据开环的Nyquist 线,可判断闭环系统的稳定性。 反馈控制系统稳定的充要条件是,Nyquist 曲线按逆时针包围临界点(-1,j0)p 圈,为开环传递函数位于右半s 一平面的极点数。在MATLAB 中,可利用函数nyquist 和dnyquist 绘出连续和离散系统的乃氏曲线。 3.Nicho1s(尼柯尔斯)图 根据闭环频率特性的幅值和相位可作出Nichols 图,从而可直接得到闭环系统的频率特性。在 MATLAB 中,可利用函数nichols 和dnichols 绘出连续和离散系统的Nichols 图。 (二)实验内容 1.一系统开环传递函数为 ) 2)(5)(1(50)(-++=s s s s H 绘制系统的bode 图,判断闭环系统的稳定性,并画出闭环系统的单位冲击响应。 2.一多环系统 ) 10625.0)(125.0)(185.0(7.16)(+++=s s s s s G 其结构如图所示 试绘制Nyquist 频率曲线和Nichols 图,并判断稳定性。 (三)实验要求

第五章 频域分析法

第五章 频域分析法 时域分析法具有直观、准确的优点。如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。而且,按照给定的时域指标设计高阶系统也不是一件容易的事。 本章介绍的频域分析法,可以弥补时域分析法的不足。因为频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故其与时域分析法相比有较多的优点。首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。 5.1 频率特性 对于线性定常系统,若输入端作用一个正弦信号 t U t u ωsin )(= (5—1) 则系统的稳态输出y(t)也为正弦信号,且频率与输人信号的频率相同,即 ) t Y t y ?ω+=sin()( (5—2) u(t)和y(t)虽然频率相同,但幅值和相位不同,并且随着输入信号的角频率ω的改变,两者之间的振幅与相位关系也随之改变。这种基于频率ω的系统输入和输出之间的关系称之为系统的频率特性。 不失一般性,设线性定常系统的传递函数G(s)可以写成如下形式 ) () () () () ())(() ()()()(1 21s A s B p s s B p s p s p s s B s U s Y s G n j j n = +=+++== ∏=Λ (5—3) 式中B(s)——传递函数G(s)的m 阶分子多项式,s 为复变量; A(s)——传递函数G(s)的n 阶分母多项式 (n ≥m); n p p p ---,,,21Λ—传递函数G(s)的极点,这些极点可能是实数,也可能是复数,对稳定的系统采说,它们都应该有负的实部。 由式(5—1),正弦输入信号u(t)的拉氏变换为(查拉氏变换表) ) )(()(22ωωω ωωj s j s U s U s U -+=+= (5—4)

第五章 线性系统的频域分析法习题

501 第五章 线性系统的频域分析法 5-1 设闭环系统稳定,闭环传递函数为)(s Φ,试根据频率特性的定义证明:系统输入信号为余弦函数)cos()(φω+=t A t r 时,系统的稳态输出为 )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。 证明:根据三角定理,输入信号可表示为 )90sin()( ++=φωt A t r , 根据频率特性的定义,有 ]90)(sin[|)(|)( +Φ∠++Φ=ωφωωj t j A t c ss , 根据三角定理,得证: )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。 5-2 若系统的单位阶跃响应 t t e e t c 948.08.11)(--+-=, 试确定系统的频率特性。 解:s s s s C 1 361336)(2++= ,36 1336)(2++=s s s G ,)9)(4(36)(ωωωj j j G ++=; 2 /122/12) 81()16(36 |)(|ωωω++=j G ,9arctan 4arctan )(ωωω--=∠j G 。 或:)(2.7)()(94t t e e t c t g ---== ;36 1336 )]([)(2 ++==s s t g L s G ; 5-3 设系统如下图所示,试确定输入信号 )452cos()30sin()( --+=t t t r 作用下,系统的稳态误差)(t e ss 。 解:2 1)(++=Φs s s e ; )452sin()30sin()( +-+=t t t r 6325.0|)(|=Φj e , 4.186.2645)(=-=Φ∠j ; 7906.0|)2(|=Φj e , 4.18454.63)2(=-=Φ∠j ; 答案:)4.632sin(7906.0)4.48sin(6325.0)( +-+=t t t e ss 。 5-4 典型二阶系统的开环传递函数 ) 2()(2 n n s s s G ωζω+= , 当取t t r sin 2)(=时,系统的稳态输出为 )45sin(2)( -=t t c ss , 试确定系统参数n ω和ζ。 解:2 222)(n n n s s s ωζωω++=Φ; 1] 4)1[(2 2222=+-n n n ωζωω, 451 2arctan 2 -=--n n ωζω; 122 -=n n ωζω, 答案:414.12==n ω,3536.04/2==ζ。

自动控制原理实验六 线性系统的频域分析

实验六 线性系统的频域分析 一. 实验目的 (1)熟练掌握使用MA TLAB 命令绘制控制系统Nyquist 图的方法; (2)能够分析控制系统Nyquist 图的基本规律; (3)加深理解控制系统乃奎斯特稳定性判据的实际应用; (4)学会利用奈氏图设计控制系统; (5)熟练掌握运用MA TLAB 命令绘制控制系统伯德图的方法; (6)了解系统伯德图的一般规律及其频域指标的获取方法; (7)熟练掌握运用伯德图分析控制系统稳定性的方法; (8)设计超前校正环节并绘制Bode 图; (9)设计滞后校正环节并绘制Bode 图。 二. 实验原理及内容 1、频率特性函数)(ωj G 。 频率特性函数为: n n n n m m m m a j a j a j a b j b j b j b jw G ++???++++???++= ---)()()()()()()(1101110ωωωωωω 由下面的MATLAB 语句可直接求出G(jw)。 i=sqrt(-1) % 求取-1的平方根 GW=polyval(num ,i*w)./polyval(den ,i*w) 2、用MATLAB 作奈魁斯特图。 控制系统工具箱中提供了一个MATLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为: nyquist(num,den) ; 作Nyquist 图, nyquist(num,den,w); 作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据) 反馈控制系统稳定的充分必要条件是当ω从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数R 等于开环传递函数的正实部极点数。 4、用MATLAB 作伯德图 控制系统工具箱里提供的bode()函数可以直接求取、绘制给定线性系统的伯德图。 命令的调用格式为: [mag,phase,w]=bode(num,den) [mag,phase,w]=bode(num,den,w) 由于伯德图是半对数坐标图且幅频图和相频图要同时在一个绘图窗口中绘制,因此,要用到半对数坐标绘图函数和子图命令。 (1) 对数坐标绘图函数 利用工作空间中的向量x ,y 绘图,要调用plot 函数,若要绘制对数或半对数坐标图,只需要用相应函数名取代plot 即可,其余参数应用与plot 完全一致。 (2) 子图命令

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

第5章频域分析法习题解答

第5章频域分析法 5.1 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 5.2 思考与习题祥解 题5.1 判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

系统频域分析课程设计报告

系统频域分析课程设计 报告 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

《综合仿真》课程设计报告 姓名 学号 同组成员 指导教师 时间 11周至14周

系统的频域分析 【目的】 (1) 加深对系统频域分析基本原理和方法的理解。 (2) 加深对信号幅度调制与解调基本原理和方法的理解。 (3) 锻炼学生综合利用所学理论和技术,分析与解决工程实际 问题的能力。 【研讨内容】 题目1.幅度调制和连续信号的Fourier 变换 本题研究莫尔斯码的幅度调制与解调。本题中信号的形式为 )π2sin()()π2sin()()π2cos()()(132211t f t m t f t m t f t m t x ++= 其中信号x (t )由文件定义,可用命令Load ctftmod 将文件定义的变量装入系统内存。运行命令Load ctftmod 后,装入系统的变量有 af bf dash dot f1 f2 t x 其中 bf af : 定义了一个连续系统H (s )的分子多项式和分母多项式。可利用freqs(bf,af,w)求出该系统的频率响应,也可用sys=tf(bf,af)得到系统的模型,从而用lsim 求出信号通过该系统的响应。 dash dot : 给出了莫尔斯码中的基本信号dash 和dot 的波形 f1 f2: 载波频率 t: 信号x (t )的抽样点 x: 信号x (t )的在抽样点上的值 信号x (t )含有一段简单的消息。Agend 007的最后一句话是

The future of technology lies in ··· 还未说出最后一个字,Agend 007就昏倒了。你(Agend 008)目前的任务就是要破解Agend 007的最后一个字。该字的信息包含在信号x (t )中。信号x (t )具有式(1)的形式。式中的调制频率分别由变量f1和f2给出,信号m 1(t ),m 2(t )和m 3(t )对应于字母表中的单个字母,这个字母表已用国际莫尔斯码进行编码,如下表所示: (1)字母B 可用莫尔斯码表示为b=[dash dot dot dot],画出字母B 莫尔 斯码波形; (2) 用freqs(bf,af,w)画出系统的幅度响应; (3) 利用lsim 求出信号dash 通过由sys=tf(bf,af)定义的系统响应,解释你所获得的结果; (4)用解析法推导出下列信号的Fourier 变换 )π2cos()π2cos()(21t f t f t m )π2sin()π2cos()(21t f t f t m

实验三线性系统的频域分析

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班

: 学号: 实验三 线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、基础知识及MATLAB 函数 频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。 1.频率曲线主要包括三种:Nyquist 图、Bode 图和Nichols 图。 1)Nyquist 图的绘制与分析 MATLAB 中绘制系统Nyquist 图的函数调用格式为: nyquist(num,den) 频率响应w 的围由软件自动设定 nyquist(num,den,w) 频率响应w 的围由人工设定 [Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量, 不作图 例4-1:已知系统的开环传递函数为2 526 2)(2 3++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) 极点的显示结果及绘制的Nyquist 图如图4-1所示。由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。 p = -0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668 若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为: num=[2 6]; den=[1 2 5 2]; w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距 离的点 nyquist(num,den,w) 2)Bode 图的绘制与分析 系统的Bode 图又称为系统频率特性的对数坐标图。Bode 图有两图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。 MATLAB 中绘制系统Bode 图的函数调用格式为: bode(num,den) 频率响应w 的围由软件自动设定 bode(num,den,w) 频率响应w 的围由人工设定 图4-1 开环极点的显示结果及Nyquist 图

线性系统的频域分析报告

1 γ = 50 20- =s K0

原系统的伯德图: num/den = 1.2347 s + 1 ------------- 0.20154 s + 1 校正之后的系统开环传递函数为: num/den = 6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 s alpha =6.1261; P h a s e (d e g ) Bode Diagram Gm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec) -200204060 80M a g n i t u d e (d B )

[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('D£?y??oóμ??μí3?a?·′?μYoˉêy?a:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('·ù?μ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('?à??(0)'); xlabel('?μ?ê(rad/sec)'); title(['D£?y?°£o·ù?μ?£á?=',num2str(20*log10(gm1)),'db','?à???£á?=',num2str(pm1),'0'; 'D£?yoó£o·ù?μ?£á?=',num2str(20*log10(gm)),'db','?à???£á?=',num2s tr(pm),'0']); 10-110 10 1 10 2 -60 -40-20020 40幅值(d b ) --Go,-Gc,GoGc 10 -110 10 1 10 2 -300 -200-1000 100相位(0) 频率(rad/sec) 矫正后系统的伯德图

自动控制原理线性系统的频域分析实验报告

实验四 专业 自动化 班号 03班 指导教师 陈艳飞 姓名 胡波 实验名称 线性系统的频域分析 实验日期 第 次实验 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2+-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

实验三 线性系统的频域分析

北京联合大学 实验报告 课程名称:实验三线性系统的频域分析 学院:自动化专业:电气工程与自动化 班级:学号: 姓名:成绩: 2014年11月12日

实验三 线性控制系统的频域分析 3. 1 频率特性测试 一.实验目的 1.了解线性系统频率特性的基本概念。 2.了解和掌握对数幅频曲线和相频曲线(波德图)的构造及绘制方法。 二.实验内容及步骤 被测系统是一阶惯性的模拟电路图见图3-1,观测被测系统的幅频特性和相频特性,填入实验报告,並在对数座标纸上画出幅频特性和相频特性曲线。 本实验将正弦波发生器(B5)单元的正弦波加于被测系统的输入端,用虚拟示波器观测被测系统的幅频特性和相频特性,了解各种正弦波输入频率的被测系统的幅频特性和相频特性。 图3-1 被测系统的模拟电路图 实验步骤: (1)将函数发生器(B5)单元的正弦波输出作为系统输入。 ① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘正弦波’(正弦波指示灯亮)。 ② 量程选择开关S2置下档,调节“设定电位器2”,使之正弦波频率为8Hz (D1单元右显示)。 ③ 调节B5单元的“正弦波调幅”电位器,使之正弦波振幅值输出为2V 左右(D1单元左显示)。 (2)构造模拟电路:按图3-1安置短路套及测孔联线,表如下。 (a )安置短路套 (b )测孔联线 (3)运行、观察、记录:

①运行LABACT程序,在界面的自动控制菜单下的线性控制系统的频率响应 分析实验项目,选择 时域分析,就会弹出虚拟示波器的界面,点击开始,用示波器观察波形,应避免系统进入非线性状态。 ②点击停止键后,可拖动时间量程(在运行过程中,时间量程无法改变),以满 足观察要求。 示波器的截图详见虚拟示波器的使用。 三.实验报告要求: 按下表改变实验被测系统正弦波输入频率:(输入振幅为2V)。 观测幅频特性和相频特性,填入实验报告。並画出幅频特性、相频特性曲线。 频率=1.6Hz 频率=3.2Hz

线性系统的频域分析

线性系统的频域分析 1.实验目的 1. 掌握用MATLAB语句绘制各种各样频域曲线。 2. 掌握控制系统的频域分析方法。 二.练习: 1.典型二阶系统 绘制出,,0.3,0.5,0.8,2的bode图,记录并分析对系统bode图的影响。 解:MATLAB编程如下: >> num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; >> den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; >> w=logspace(-2,3,100); >> bode(num,den1,w) >> grid >> hold Current plot held >> bode(num,den2,w) >> bode(num,den3,w) >> bode(num,den4,w) >> bode(num,den5,w)

(2)系统的开环传递函数为 绘制系统的Nyquist曲线Bode图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解:(1)MATLAB如下 >> num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); >> w=logspace(-1,1,100); >> nyquist(num1,den1,w)

(2)MATLAB编程如下: >> num2=[8,8];den2=conv([1,0],conv([1,0],conv([1,15],[1,6,10]))); >> w=logspace(-1,1,100); >> nyquist(num2,den2)

最新用MATLAB实现线性系统的频域分析

实验二用MATLAB实现线性系统的频域分析 [实验目的] 1.掌握MATLAB平台下绘制典型环节及系统开环传递函数的Bode图和Nyquist图(极坐标图)绘制方法; 2.掌握利用Bode图和Nyquist图对系统性能进行分析的理论和方法。 [实验指导] 一、绘制Bode图和Nyquist图 1.Bode图绘制 采用bode()函数,调用格式: ①bode(sys);bode(num,den); 系统自动地选择一个合适的频率范围。 ②bode(sys,w); 其中w(即ω)是需要人工给出频率范围,一般由语句w=logspace(a,b,n)给出。logspace(a,b,n):表示在10a到10b之间的 n个点,得到对数等分的w值。 ③bode(sys,{wmin,wmax}); 其中{wmin,wmax}是在命令中直接给定的频率w的区间。 以上这两种格式可直接画出规范化的图形。 ④[mag,phase,ω]=bode(sys)或[m,p]=bode(sys) 这种格式只计算Bode图的幅值向量和相位向量,不画出图形。 m为频率特性G(jω )的幅值向量; p为频率特性G(jω )的幅角向量,单位为角度(°)。 w为频率向量,单位为[弧度]/秒。 在此基础上再画图,可用: subplot(211);semilogx(w,20*log10(m) %对数幅频曲线 subplot(212);semilogx(w,p) %对数相频曲线 ⑤bode(sys1,sys2,…,sysN) ; ⑥bode((sys1,sys2,…,sysN,w); 这两种格式可在一个图形窗口同时绘多个系统的bode图。 2. Nyquist曲线的绘制

系统的频域分析

第六章系统的频域分析 1、内容提要 在连续时间系统频域分析中,首先介绍了连续系统的频率响应的概念,系统零状态响应的频域求解方法。然后介绍了两类典型系统——无失真传输系统和理想滤波器。 2、学习目标 通过本章的学习,应达到以下要求: (1)掌握连续系统特性的频域表示。 (2)掌握连续系统响应的频域分析,重点掌握正弦稳态响应的特点。 (3)掌握无失真系统与理想低通滤波器的特性。 (4)熟练掌握和灵活应用抽样定理。 (5)能够利用MATLAB进行连续系统的频域分析。 3、重点难点 1、无失真传输系统的概念,求解无失真传输系统的频域响应。。 2、理想滤波器以及低通、高通、带通和带阻滤波器的概念,冲激信 号和阶跃信号通过理想滤波器的频域响应。 3、抽样定理及其应用。 4、应用 非周期信号频域分析的MATLAB实现

5、教案内容 1. 连续时间系统的频响特性 从上面的分析可见,虚指数信号()jwt e t -∞<<∞作用与LTI 系统时,系统的零状态响应仍为同频率的虚指数信号,虚指数信号幅度和相位由系统的频率响应()()()()j H j H j e h t ?ωωω=()H j ω确定,所以()H j ω反映了连续LTI 系统对不同频率信号的响应特性。 在一般情况下,系统的频率响应()H j ω是复值函数,可用幅度和相位表示为 ()H j ω称为系统的幅度响应,()?ω称为系统的相位响应,当()h t 是实函数时,()H j ω是ω的偶函数,()?ω是ω的奇函数。 2. 连续时间系统响应的频域分析 由虚指数信号()jwt e t -∞<<∞作用于LTI 系统响应的特点,可以推出正弦信号作用在系统的稳态响应和任意信号作用在系统上的响应。 正弦信号作用在系统上的稳态响应为

实验四线性系统的频域分析 -

武汉工程大学实验报告 专业 电气自动化03班 班号 1104150318 组别 指导教师 陈艳菲 姓名 彭雪君 同组者 个人 实验名称 实验四 线性系统的频域分析 实验日期 2014-04-16 第 4 次实验 一、 实验目的 1. 掌握用MATLAB 语句绘制各种频域曲线。 2. 掌握控制系统的控制方法。 二、 实验内容 1. 典型二阶系统 2222)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 2.系统的开环传递函数为 )5)(15(10)(2+-= s s s s G )106)(15()1(8)(22++++=s s s s s s G )11.0)(105.0)(102.0()13/(4)(++++=s s s s s s G 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 3.已知系统的开环传递函数为) 11.0(1)(2++=s s s s G 。求系统的开环截止频率、穿越频率、幅值裕度和相位裕度。应用频率稳定判据判定系统的稳定性。

三、实验结果分析 1.6=n ω,ζ分别取1.0=ζ,0.3,0.5,0.8,2时,系统的bode 图绘制: 源程序代码及图形: >> num=[0 0 36]; >> den1=[1 1.2 36];>> den2=[1 3.6 36]; >> den3=[1 6 36];>> den4=[1 9.6 36]; >> den5=[1 24 36]; >> bode(num,den1) >> grid >> text(4.2,-15,'Zeta=0.1'); >> hold >> bode(num,den2) >> text(3,-22,'0.3');>> bode(num,den3) >> text(2,-32,'0.5');>> bode(num,den4) >> text(3,-45,'0.8');>> bode(num,den5) >> text(1.8,-50,'2'); 结果分析:从图中可看出ζ越小,中频段振荡越剧烈。该二阶系统是典型的振荡环节,谐 振频率)220(21222≤<*-*=ζζωωn r ,谐振峰值)220(121222≤<-**=ζζζr M ,当2 202<<ζ时,r ω,r M 均为ζ的减函数,ζ越小,r M ,r ω越大,振荡幅度越大,超调量越大,过程越不平 稳且系统响应速度越慢,当 12 22 <<ζ时。)(ωA 单调减小,此时无谐振峰值和谐振频率,过程较平稳。

自动控制原理-第5章新系统频域分析

第5章 控制系统的频域分析 时域分析法具有直观、准确的优点,主要用于分析线性系统的过渡过程。如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。而且,按照给定的时域指标设计高阶系统也不容易实现。 本章介绍的频域分析法,可以弥补时域分析法的不足。频域法是通过分析不同谐波的输入时系统的稳态响应,故又称为频率响应法。利用此方法,将传递函数从复域引到具有明确物理概念的频域来分析系统的特性。 频率分析的优点较多。首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。因而可以根据频率特性曲线的形状去确定系统的结构和参数,使之满足时域指标的要求,并且可以同时确定系统工作的频率范围。此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。这对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,采用频率特性可以较方便地解决此类问题。因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。 控制系统的时域分析法和频域分析法,作为经典控制理论的两个重要组成部分,既相互渗透,又相互补充,在控制理论中占有重要地位。频率特性具有较强的直观性和明确的物理意义,可用实验的方法测量系统的频率响应,因此,频率特性分析的方法在控制工程中广泛应用。 频率特性的定义是以输入信号为谐波信号给出的。当输入信号为周期信号时,可将其分解为叠加的频谱离散的谐波信号;当输入信号为非周期信号时,可将非周期信号看成周期为无穷大的周期信号,因此,非周期信号分解为叠加的频谱连续的谐波信号。这样一来,就可用关于系统对不同频率的谐波信号的响应特性研究,取代关于系统对任何信号的响应特性的研究。 5.1频率特性概述 5.1.1频率特性的基本概念 1频率响应:线性定常控制系统或元件对正弦输入信号(或谐波信号)的稳态正弦输出响应称为频率响应。 为了说明频率响应,先看一个RC 电路,如图5-1(R-C 电路)所示。设电路的输入、输出电压分别为()r u t 和()c u t ,电路的传递函数为 ()1 ()()1 c r U s G s U s Ts = =+ 式中,RC T =为电路的时间常数。 若给电路输人一个振幅为X 、频率为ω的正弦信号 C ) t (u r ) t (u c 图5-1 R-C 电路

自动控制原理实验报告线性系统的频域分析讲述

武汉工程大学实验报告 专业 自动化 班号 组别 指导教师 姓名 同组者 实验名称 线性系统的频域分析 实验日期 2016/4/4 第 5 次实验 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w)

bode(num,den3,w) bode(num,den4,w) bode(num,den5,w) -100-80-60-40-200 20M a g n i t u d e (d B )10 10 10 10 10 10 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2+-= s s s s G ) 106)(15() 1(8)(2 2++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100);

南航金城信号与线性系统课后答案 第五章 连续系统的复频域分析习题解答

第五章 连续系统的复频域分析习题解答 5-1. 画出下列各序列的图形: 。 )2()( )6( );()()( )5( );()()( )4(; 0 ,)2(30 ,2)( )3( );1()12()( )2( );2()( )1(16315324321k f k f k f k f k f k f k f k f k k k k f k k f k k k f k k -==+=???<+=++=+=- εε 5-2 写出图示各序列的表达式。 解: ) 6()3(2)()( )d ( )1() 1()( )c ()]6()3([2)( )b ( )]5()1()[1()( )a (41 321---+-=--=---=----=-k k k k f k k f k k k f k k k k f k εεεεεεεε 5-3. 判断以下序列(A 、B 为正数)是否为周期序列,若是周期序列,试求其周 期。)(sin )( )3( )( ) 2( )8 73cos()( )1(08)(k k A k f e k f k B k f k j εωπππ==-=- 解:; 14 , , 3 14)732( )1(=∴=T 且它为周期序列为有理数ππ (a) (b)

. , )( )3(; , 16)812( )2(它为非周期序列为单边函数它为非周期序列为无理数∴∴=k f ππ 5-4. 解:)]1()1()([1)(1100 ---+=k y b k f a k f a b k y 即:)1()()1()(1010-+=-+k f a k f a k y b k y b ,为一阶的。 5-5. 列写图示系统的差分方程, 指出其阶次。 解:)1()()2()1( )(1021-+=----k f a k f a k y b k y b k y ,二阶的。 5-6. 如果在第k 个月初向银行存款x (k )元,月息为 ,每月利息不取出,试用 差分方程写出第k 个月初的本利和y (k ),设x (k ) 10元, 0.0018,y (0) 20元,求y (k ),若k 12,则y (12)为多少。 解:)()1()1()( )1()1()()(k x k y k y k y k x k y =-+-?-++=αα 元63.1415.5555)0018.1(5 .5575)12(5.5555)0018.1(5.5575)(5.55755.5555205.5555)0018.1()(5.5555)(5 .55510 100018.110 , 10)( ),0018.1()(0018.1 00018.1 10)1(0018.1)(121 11 00010=-=?-=?=?-=?-=?-=?-=?=?-===?=-?=-- y k y C C C k y k y A A A A k y C k y k y k y k k d d k λλ 5-7. 设x (0),f (k )和y (k )分别表示离散时间系统的初始状态、输入序列入和输 出序列,试判断以下各系统是否为线性时不变系统。 ) (8)0(6)( )4( )(8)0(6)( )3()()( )2( )672sin()()( )1(2 k f x k y k f k x k y i f k y k k f k y k i +=+==+=∑-∞ =ππ 解:(1)满足齐次性和可加性,为线性系统,但显然不是时不变系统; (2)累加和满足齐次性、可加性和时不变性,为线性时不变性系统; (3)不满足齐次性、可加性和时不变性,不是线性时不变性系统; (4)虽满足时不变性,但不满足齐次性、可加性,不是线性时不变性系统; )

相关文档