文档库 最新最全的文档下载
当前位置:文档库 › 实验三 集总参数滤波器

实验三 集总参数滤波器

实验三 集总参数滤波器
实验三 集总参数滤波器

实验三集总参数滤波器

一、实验目的

通过此次实验,我们需要熟悉集总参数滤波器软件仿真过程,且通过亲自实验可以熟悉MWO2007的各种基本操作。本次实验我们需要用到MWO2007的优化和Tune等工具,需要熟练掌握MWO提供的这些工具的使用方法和技巧。

二、实验要求:

设计一个七级集总参数低通滤波器,要求截止频率为200MHz,通带内增益大于-5dB,阻带内300MHz以上增益小于-35dB。通带内反射系数要求小于-20dB。

三、实验步骤及实验作业:

设计一个七级集总参数低通滤波器,要求截止频率为300MHz,通带内增益大于-5dB,阻带内400MHz以上增益小于-40dB。通带内反射系数要求小于-20dB。

实验注意事项:

1、新建一个项目之后,首先要设置此Project的各种属性,如仿真频率范围及各种参数使用的默认单位,元件数值的单位只能在此中进行修改,不可以在原理图中改动,因而需要首先确定你使用频率范围和数值单位。

2、变量的初值优化的结果会有很大的影响,不同的初值会得到不同的优化结果,一般在第一次优化的时候,初值并不是最佳的,可以先进行优化,大致确定变量值的范围,然后改变变量的初值,再进行优化。

3、在进行优化之前,不要忘记设置变量的属性,使变量可以参与优化和Tune调整。

4、如果在优化的过程中,与要求相隔太大,可以考虑选择不同初值再优化,或者选择不同的优化算法进行再优化。

滤波器主要参数

滤波器的主要参数(Definitions): 中心频率(CenterFrequency): 滤波器通带的频率f0,一般取f0=(f1+f2)/2,f 1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 截止频率(Cutoff Frequency): 指低通滤波器的通带右边频点及高通滤波器的通带左边频点。 通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为: 低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 通带带宽(BWxdB): 指需要通过的频谱宽度,BWxdB=(f2-f1)。f 1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X= 3、1、 0.5即BW3d B、BW1d B、BW 0.5dB表征滤波器通带带宽参数。分数带宽(fractionalbandwidth) =BW3dB/f0×100[%],也常用来表征滤波器通带带宽。 插入损耗(InsertionLoss):

由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 纹波(Ripple): 指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 带内波动(PassbandRiplpe): 通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 带内xx(VSWR): 衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR<1。对于一个实际的滤波器而言,满足VSWR<1 BWdBdiv>在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波节处的电压幅值Vmin 之比。 回波损耗(Return Loss): 端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。 回波损耗,又称为反射损耗。是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。 从数学角度看,回波损耗为-10 lg [(反射功率)/(入射功率)]。 回波损耗愈大愈好,以减少反射光对光源和系统的影响。 阻带抑制度: 衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

用微波仿真软件设计一个集总(或分布)参数 滤波器

绪论 微波(Microwave)是电磁波谱中介于超短波与红外线之间的波段,它属于无线电波中波长最短(即频率最高)的波段,其频率范围从300MHz(波长1m)至3000GHz(波长0.1mm)。通常又将微波段划分为分米波、厘米波、毫米波和亚毫米波四个分波阶段,在通信和雷达工程上还使用拉丁字母来表示微波更细的分波段。表1给出了常用微波分波段的划分。 表1 常用微波分波段的划分 波段符号频率/GHz 波段符号频率/GHz UHF 0.3--1.12 Ka 26.5--40.0 L 1.12--1.7 Q 33.0--50.0 LS 1.7--2.6 U 40.0--60.0 S 2.6--3.95 M 50.0--75.0 C 3.95--5.85 E 60.0--90.0 XC 5.85--8.2 F 90.0--140.0 X 8.2--12.4 G 140.0--220.0 Ku 12.4--18.0 R 220.0--325.0 K 18.0--26.5 对于低于微波频率的无线电波,其波长远大于电系统的实际尺寸,可用集总参数电路的理论进行分析,即为电路分析法;频率高于微波波段的光波、X射线、γ射线等,其波长远小于电系统的实际尺寸,甚至与分子、原子的尺寸相比拟,因此可用光学理论进行分析,即为光学分析法;而微波则由于其波长与电系统的实际尺寸相当,不能用普通电子学中电路的方法研究或用光学的方法直接去研究,而必须用场的观点去研究,即由麦克斯韦尔方程组出发,结合边界条件来研究系统内部的结构,这就是场分析法。 正因为微波波长的特殊性,所以它具有以下特点。 (1)似光性 微波具有类似光一样的特性,主要表现在反射性、直接传播性及集束性等几方面,即:由于微波的波长与地球上的一般物体(如飞机、轮船、汽车等)的尺寸相比要小得多,或在同一量级,因此当微波照射到这些物体上时会产生强烈的反射,基于此特性人们发明了雷达系统;微波如同光一样在空间直线传播,如同光可聚焦成光束一样,微波也可通过天线装置形成定向辐射,从而可以定向传输或接收由空间传来的微弱信号以实现微波通信或探测。 (2)穿透性 微波照射到介质时具有穿透性,主要表现在云、雾、雪等对微波传播的影响较小,这为全天候微波通信和遥感打下了基础,同时微波能穿透生物体的特点也为微波生物医学打下了基础;另一方面,微波具有穿越电离层的透射性,实验证明:微波波段的几个分波段,如1--10GHz、20--30GHz及91GHz附近受电离层的影响较小,可以较为容易的由地面向外层空间传播,从而成为人类探索外层空间的“无线电窗口”,它为空间通信、卫星通信、卫星遥感和射电天文学的研究提供了难得的无线电通道。 (3)宽频带特性 我们知道,任何通信系统为了传递一定的信息必须占有一定的频带,为传输某信息所需的频

阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。 带通滤波器(BPF) (a)电路图(b)幅频特性 图1 压控电压源二阶带通滤波器 工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图1(a)所示。 电路性能参数 通带增益 中心频率 通带宽度 选择性 此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。 例.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 通带中心频率处的电压放大倍数: 带宽: 设计步骤: 1)选用图2电路。 2)该电路的传输函数: 品质因数: 通带的中心角频率: 通带中心角频率处的电压放大倍数: 取,则:

(整理)实验二1实验二模拟滤波器频率特性测试.

实验二模拟滤波器频率特性测试 一、实验目的 1、掌握低通无源滤波器的设计; 2、学会将无源低通滤波器向带通、高通滤波器的转换; 3、了解常用有源低通滤波器、高通滤器、带通滤波器、带阻滤波器的结构与特性; 二、预备知识 1、学习“模拟滤波器的逼近”; 2、系统函数的展开方法; 3、低通滤波器的结构与转换方法; 预习报告中回答以下问题: 1、实际中常用的滤波器电路类型有哪些,有何特点? 2、有源滤波器、无源滤波器的概念,优缺点和各自的应用场合? 3、绘出低通、带通、带阻、高通四种滤波器的理想频响曲线及实际频响曲线,两者 有何根本区别,产生原因? 三、实验原理 模拟滤波器根据其通带的特征可分为: (1)低通滤波器:允许低频信号通过,将高频信号衰减; (2)高通滤波器:允许高频信号通过,将低频信号衰减; (3)带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减; (4)带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减; 各种滤波器的频响特性图: 图2一1低通滤波器图2一2高通滤波器

图2一3带通滤波器 图2一4带阻滤波器 在这四类滤波器中,又以低通滤波器最为典型,其它几种类型的滤波器均可从它转化而来。 1、系统的频率响应特性是指系统在正弦信号激励下系统的稳态响应随激励信号频率变化的情况。用矢量形式表示: ()()()j H j H j e φωωω= 其中:|H(j ω)|为幅频特性,表示输出信号与输入信号的幅度比随输入信号频率的变化关系;φ(ω)为相频特性,表示输出信号与输入信号的相位差随输入信号频率的变化关系。 2、H(j ω)可根据系统函数H(s)求得:H(j ω)= H(s)︱s=j ω因此,对于给定的电路可根椐S 域模型先求出系统函数H(s),再求H(j ω),然后讨论系统的频响特性。 3、频响特性的测量可分别测量幅频特性和相频特性,幅频特性的测试采用改变激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差 ()2T τ φωπ = 当响应超前激励时为 ()φω正,当响应落后激励时()φω为负。 四、实验原理图 图2一5实验电路 图中:R=38k Ω,C=3900pF ,红色框内为实验板上的电路。 B 函数发 CH1 示 波 器 R R R/2 C C 2C INPUT A IN1 IN2 OUT1 OUT2 GND GND

空间域滤波器(实验报告)

数字图像处理作业 ——空间域滤波器 摘要 在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。本文利用matlab软件,采用空域滤波的方式,对图像进行平滑和锐化处理。平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。本文使用的平滑滤波器有中值滤波器和高斯低通滤波器,其中,中值滤波器对去除椒盐噪声特别有效,高斯低通滤波器对去除高斯噪声效果比较好。使用的锐化滤波器有反锐化掩膜滤波、Sobel边缘检测、Laplacian边缘检测以及Canny算子边缘检测滤波器。不同的滤波方式,在特定的图像处理应用中有着不同的效果和各自的优势。

1、分别用高斯滤波器和中值滤波器去平滑测试图像test1和2,模板大小分别 是3x3 , 5x5 ,7x7;利用固定方差 sigma=1.5产生高斯滤波器. 附件有产生高斯滤波器的方法。 实验原理分析: 空域滤波是直接对图像的数据做空间变换达到滤波的目的。它是一种邻域运算,其机理就是在待处理的图像中逐点地移动模板,滤波器在该点地响应通过事先定义的滤波器系数与滤波模板扫过区域的相应像素值的关系来计算。如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。 空域滤波器从处理效果上可以平滑空间滤波器和锐化空间滤波器:平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。 模板在源图像中移动的过程中,当模板的一条边与图像轮廓重合后,模板中心继续向图像边缘靠近,那么模板的某一行或列就会处于图像平面之外,此时最简单的方法就是将模板中心点的移动范围限制在距离图像边缘不小于(n-1)/2个像素处,单处理后的图像比原始图像稍小。如果要处理整幅图像,可以在图像轮廓边缘时用全部包含于图像中的模板部分来滤波所有图像,或者在图像边缘以外再补上一行和一列灰度为零的像素点(或者将边缘复制补在图像之外)。 ①中值滤波器的设计: 中值滤波器是一种非线性统计滤波器,它的响应基于图像滤波器包围的图像区域中像素的排序,然后由统计排序的中间值代替中心像素的值。它比小尺寸的线性平滑滤波器的模糊程度明显要低,对处理脉冲噪声(椒盐噪声)非常有效。中值滤波器的主要功能是使拥有不同灰度的点看起来更接近于它的邻近值,去除那些相对于其邻域像素更亮或更暗,并且其区域小于滤波器区域一半的孤立像素集。 在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。在处理之后,位于窗口正中的像素的灰度值,用窗口内各像素灰度值的中值代替。例如若窗口长度为5,窗口中像素的灰度值为80、90、200、110、120,则中值为110,因为按小到大(或大到小)排序后,第三位的值是110。于是原理的窗口正中的灰度值200就由110取代。如果200是一个噪声的尖峰,则将被滤除。然而,如果它是一个信号,则滤波后就被消除,降低了分辨率。因此中值滤波在某些情况下抑制噪声,而在另一些情况下却会抑制信号。 将中值滤波推广到二维的情况。二维窗口的形式可以是正方形、近似圆形的或十字形等。本次作业使用正方形模板进行滤波,它的中心一般位于被处理点上。窗口的大小对滤波效果影响较大。 根据上述算法利用MATLAB软件编程,对源图像test1和test2进行滤波处理,结果如下图:

各种滤波器

设计一个九级集总参数低通滤波器,电路结构如图所示,要求截止频率为450MHz,通带内增益大于-1dB,阻带内650M以上增益小于-50dB。通带内反射系数要求小于-15dB。要求优化参数Cost<0.5(最佳为 5(波长线长为相对值)。计算线长Z为2.5和3.5两处的输入阻抗、反射系数。并画出Z为2.5时的阻抗与导纳圆图。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-300MHz 增益参数S21:通带内0MHz-300MHz S21>-0.5dB ;阻带内420MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-300MHz S11<-10dB ; 2、为了节省成本,计划将该滤波器设计为7级结构。你能把它设计出来吗?根据你的优化仿真结果,探讨滤波器级数与其性能的关系。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-350MHz 增益参数S21:通带内 S21>-1dB 阻带内550MHZ以上 S21<-45dB 反射系数S11:通带内 S11<-15dB 2、简述功分器的基本技术要求及其主要特性参数。

通带频率范围:0MHz-400MHz 增益参数S21:通带内0MHz-400MHz S21>-0.2dB 阻带内600MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-400MHz S11<-10dB 要求优化参数 2、简述HFSS的特点及其主要应用的范围。 IVCURVEI来测量非线性器件——三极管GBJT3的特性曲线并加入调谐,分析其变化。 高通滤波器===== 设计具体要求 ====== 通带频率范围:550MHz以上 增益参数S21:通带内S21>-2dB ;阻带内0-400MHz,S21<-50dB 反射系数S11:通带内S11<-20dB; 2、你会添加Marker吗?试在S21曲线上,添加一横坐标为600MHz的Marker。添加后需请老师签字。 3、使用TXLine工具计算微带线εr=12.9,t/h=0.1,分别计算W/h=2.5,3.0以及3.5时的特性阻高通滤波器 ===== 设计具体要求 ====== 设计一个九级集总参数高通滤波器,电路结构如图所示,要求截止频率为550MHz,通带内增益大于-1dB,阻带内0-350MHz增益小于-45dB。通带内反射系数要求小于-15dB。 2、如果要设计低通滤波器,与前面相比,有哪些步骤需要变化?并画出结构简图。 MicrowaveOffice的Optimize功能选择框中的优化算法,并画出优化算法框图。

滤波器的主要特性指标

电子知识 1、特征频率: ①通带截频fp=wp/(2p)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频fr=wr/(2p)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率fc=wc/(2p)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。 ④固有频率f0=w0/(2p)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 2、增益与衰耗 滤波器在通带内的增益并非常数。 ①对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增益;带通则指中心频率处的增益。 ②对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。 ③通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB为单位,则指增益dB值的变化量。 3、阻尼系数与品质因数 阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标。 阻尼系数的倒数称为品质因数,是*价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w。式中的△w为带通或带阻滤波器的3dB带宽,w0为中心频率,在很多情况下中心频率与固有频率相等。 4、灵敏度 滤波电路由许多元件构成,每个元件参数值的变化都会影响滤波器的性能。滤波器某一性能指标y对某一元件参数x变

化的灵敏度记作Sxy,定义为:Sxy=(dy/y)/(dx/x)。 该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该灵敏度越小,标志着电路容错能力越强,稳定性也越高。 5、群时延函数 当滤波器幅频特性满足设计要求时,为保证输出信号失真度不超过允许范围,对其相频特性∮(w)也应提出一定要求。在滤波器设计中,常用群时延函数d∮(w)/dw*价信号经滤波后相位失真程度。群时延函数d∮(w)/dw越接近常数,信号相位失真越小。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。

信号与系统综合实验报告-带通滤波器的设计DOC

广州大学 综合设计性实验 报告册 实验项目选频网络的设计及应用研究 学院物电学院年级专业班电子131 姓名朱大神学号成绩 实验地点电子楼316 指导老师

《综合设计性实验》预习报告 实验项目:选频网络的设计及应用研究 一 引言: 选频网络在信号分解、振荡电路及其收音机等方面有诸多应用。比如,利用选频网络可以挑选出一个周期信号中的基波和高次谐波。选频网络的类型和结构有很多,本实验将通过设计有源带通滤波器实现选频。 二 实验目的: (1)熟悉选频网络特性、结构及其应用,掌握选频网络的特点及其设计方法。 (2)学会使用交流毫伏表和示波器测定选频网络的幅频特性和相频特性。 (3)学会使用Multisim 进行电路仿真。 三 实验原理: 带通滤波器: 这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减和抑制。 典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成,如图1所示。 电路性能参数可由下面各式求出。 通带增益:CB R R R R A f vp 144+= 其中B 为通频带宽。 中心频率:)1 1(121 3 12 20R R C R f += π

通带宽度:)2 1(14 321R R R R R C B f -+= 品质因数:B f Q 0 = 此电路的优点是,改变f R 和4R 的比值,就可以改变通带宽度B 而不会影响中心频率0f 。 四 实验内容: 设计一个中心频率Hz f 20000=,品质因数5>Q 的带通滤波器。 五 重点问题: (1)确定带通滤波器的中心频率、上限频率及下限频率。 (2)验证滤波器是否能筛选出方波的三次谐波。 六 参考文献: [1]熊伟等.Multisim 7 电路设计及仿真应用.北京:清华大学出版社,2005. [2]吴正光,郑颜.电子技术实验仿真与实践.北京:科学出版社,2008. [4]童诗白等.模拟电子技术基础(第三版).北京:高等教育出版社, 2001. 图1 二阶带通滤波器

二阶有源滤波器参数计算

二阶有源滤波器设计 一.滤波器类型 按照在附近的频率特性,可将滤波器分为以下三种: 1.巴特沃兹响应 优点:巴特沃兹滤波器提供了最大的通带幅度响应平坦度,具有良好的综合性能,其脉冲响应优于切比雪夫,衰减速度优于贝塞尔。 缺点:阶跃响应存在一定的过冲和振荡。 2.切比雪夫响应 优点:与巴特沃兹相比,切比雪夫滤波器具有更良好的通带外衰减。 缺点:通带内纹波令人不满,阶跃响应的振铃较严重。 3.贝塞尔响应 优点:贝塞尔滤波器具有最优的阶跃响应——非常小的过冲及振铃。 缺点:与巴特沃兹相比,贝塞尔滤波器的通带外衰减较为缓慢。 (注意: 巴特沃兹及贝塞尔响应的3dB衰减位于截止频率处。 而切比雪夫响应的截止频率定义为响应下降至低于纹波带的频点频率。 对于偶数阶滤波器而言,所有纹波均高于0dB的直流响应,因此截止频点位于0dB衰减处;而对于奇数阶滤波器而言,所有纹波均低于 0dB的直流响应,因此截止频点定义为低于纹波带最大衰减点。)

二.最常用的有源极点对电路拓扑 1.MFB拓扑 也称为无限增益拓扑或Rauch拓扑; 适用于高Q值高增益电路; 其对元件值的改变敏感度较低。 2.Sallen-Key拓扑 下列情况时,使用效果更佳: 对增益精度要求较高; 采用了单位增益滤波器; 极点对Q值较低(如:Q<3); (特例:某些高Q值高频率滤波器若采用MFB拓扑,则C1值须很小以得到合适的电阻值。而由于寄生电容干扰使得低容值将导致极大干 扰)。 (注意: MFB拓扑不能用于电流反馈型运放,而S-K拓扑电压、电流反馈型运放均可; 差分放大器只能采用MFB拓扑; S-K拓扑的运放输出阻抗随频率增加而增加,故通带外衰减能力受限,而MFB拓扑则无此问题。)

整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻 并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω 100Ω 50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω) 200Ω 100Ω

50 Ω 25 Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: a v g ) r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

射频分布参数滤波器的仿真

实验4 分布参数滤波器的仿真 实验目的: 通过仿真理解和掌握微带滤波器的实现方法。 实验原理: 1.理查德(Richards)变换 通过理查德(Richards)变换,可以将集总元器件的电感和电容用一段终端短路或终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元器件到分布参数元器件的变换。2.科洛达(Kuroda)规则 科洛达(Kuroda)规则是利用附加的传输线段,得到在实际上更容易实现的滤波器。例如,利用科洛达规则即可以将串联短截线变换为并联短截线,又可以将短截线在物理上分开。在科洛达规则中附加的传输线段称为单位元器件,单位 。 元器件是一段传输线,当f = f0时这段传输线长为8 3.设计步骤: 1.根据设计要求选择归一化滤波器参数 2.用λ/8传输线替换电感和电容 3.根据Kuroda规则将串联短线变换为并联短线 4.反归一化并选择等效微带线 实验内容: 1.设计一个微带短截线低通滤波器,该滤波器的截止频率为4GHz,通带内波纹为3dB,滤波器采用3阶,系统阻抗为50Ω。 实验步骤: 微带短截线低通滤波器设计举例 下面设计一个微带短截线低通滤波器,该滤波器的截止频率为4GHz,通带内波纹为3dB,滤波器采用3阶,系统阻抗为50Ω。设计微带短截线低通滤波器的步骤如下。 (1)滤波器为3阶、带内波纹为3dB的切比雪夫低通滤波器原型的元器件值为 集总参数低通原型电路如图11.29所示。 (2)利用理查德变换,将集总元器件变换成短截线,如图11.30(a)所示,图中短截线的特性阻抗为归一化值。 (3)增添单位元器件,然后利用科洛达规则将串联短截线变换为并联短截线,如图11.30(b)所示,图中短截线的特性阻抗为归一化值。

模拟滤波器频率特性测试

实验二 模拟滤波器频率特性测试 一、实验目的 1、掌握低通无源滤波器的设计; 2、学会将无源低通滤波器向带通、高通滤波器的转换; 3、了解常用有源低通滤波器、高通滤器、带通滤波器、带阻滤波器的结构与特性; 二、预备知识 1、 学习“模拟滤波器的逼近”; 2、 系统函数的展开方法; 3、低通滤波器的结构与转换方法; 三、实验原理 模拟滤波器根据其通带的特征可分为: (1)低通滤波器:允许低频信号通过,将高频信号衰减; (2)高通滤波器:允许高频信号通过,将低频信号衰减; (3)带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减; (4)带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减; 各种滤波器的频响特性图: 图2一1低通滤波器 图2一2高通滤波器 图2一3带通滤波器 图2一4带阻滤波器 在这四类滤波器中,又以低通滤波器最为典型,其它几种类型的滤波器均可从它转化而来。 1、系统的频率响应特性是指系统在正弦信号激励下系统的稳态响应随激励信号频率变化的情况。用矢量形式表示: ()()()j H j H j e φωωω= 其中:|H(j ω)|为幅频特性,表示输出信号与输入信号的幅度比随输入信号频率的变化关系;φ(ω)为相频特性,表示输出信号与输入信号的相位差随输入信号频率的变化关系。

2、H(j ω)可根据系统函数H(s)求得:H(j ω)= H(s)︱s=j ω因此,对于给定的电路可根椐S 域模型先求出系统函数H(s),再求H(j ω),然后讨论系统的频响特性。 3、频响特性的测量可分别测量幅频特性和相频特性,幅频特性的测试采用改变激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差 ()2T τφωπ = 当响应超前激励时为 ()φω正,当响应落后激励时()φω为负。 四、实验原理图 图2一5实验电路 图中:R=38k Ω,C=3900pF ,红色框内为实验板上的电路。 五、实验内容及步骤: 将信号源CH1的信号波形调为正弦波,信号的幅度调为Vpp=10V 。 1、RC 高通滤波器的频响特性的测量: 将信号源的输出端(A)接实验板的IN1端,滤波后的信号OUT1接示波器的输入(B) 。根据被测电路的参数及系统的频特性,将输入信号的频率从低到高逐次改变十 次以上(幅度保持Vipp=10v) , 逐个测量输出信号的峰峰值大小(Vopp)及输出信号与输入信号的相位差 ,并将测量数据填入表一: 表一 2.RC 低通滤波器的频响特性的测量: 将信号源的输出(A)接实验板的IN2,滤波后的输出信号OUT2接示波器的输入(B) 。根据被测电路的参数及系统的幅频特性,将输入信号的频率从低到高逐次改变十 次以上(幅度保持Vipp=10v) , 逐个测量输出信号的峰峰值大小(Vopp) 及Φ(ω),并将测量数据填入表二: 表二 Vi(V) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 f(Hz) 150 200 300 350 400 450 500 550 1000 1500 2000 2500 3000 3500 4000 Vo(v) 1.44 1.2 1.26 2.96 3.28 3.60 4 4.24 6.60 7.44 8.00 8.40 8.72 8.76 8.88 φ(ω)(10 -2 ) 5.024 3.768 1.884 1.6328 1.5072 1.256 1.1304 1.0048 0.3768 0.1884 0.11304 0.08792 0.05024 0.04396 0.03768 Vi(V) 10 10 10 10 10 10 10 10 10 10 10

滤波器的主要参数

滤波器的主要参数 滤波器的主要参数(Definitions) 中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+ f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 通带带宽(BWxdB):(下图)指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fractional bandwidth)=BW3dB/f0×100%,也常用来表征滤波器通带带宽。 插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 I=10lgPin/Pl

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR>1。对于一个实际的滤波器而言,满足VSWR <1.5:1的带宽一般小于BW3dB,其占BW3dB的比例与滤波器阶数和插损相关。 回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。 阻带抑制度:衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法为fs处衰减量As-IL;另一种为提出表征滤波器幅频响应与理想矩形接近程度的指标——矩形系数(KxdB>1),KxdB=BWxdB/BW3dB,(X可

集总参数带通滤波器

课程设计Ⅳ报告 题目集总参数带通滤波器的设计 所在院(系) 学生姓名学号 指导教师 完成地点 年月日

基于ADS的集总参数带通滤波器的设计 摘要:滤波器在通信系统中应用较为广泛,利用滤波器的选频作用,可以滤除通信中的干扰噪声或测试中进行频谱分析。本文利用ADS软件设计一款带通滤波器,并对其进行优化和瞬态仿真分析。经过分析得出,在满足其他各项设计指标要求的前提下,优化后的滤波器选频特性得到明显提高。 关键词:带通滤波器;ADS;优化仿真;瞬时仿真

利用ADS软件设计一个集总参数带通滤波器,集总参数带通滤波器设计指标如下。 带通滤波器的中心频率为150MHz。 通带频率范围为140MHz到160MHz。 通带内最大衰减为3dB。 在100MHz和200MHz时衰减大于30dB。 特性阻抗选为50Ω。

引言.............................................................................................................................. - 1 - 一.创建原理图......................................................................................................... - 2 - 二.利用设计向导生成集总参数带通滤波器原理图........................................... - 2 - 三.观察原理图的仿真结果 .................................................................................... - 4 - 四.实现集总参数带通滤波器的原理图 ............................................................... - 7 - 1.创建新设计.................................................................................................... - 7 - 2.设计原理图.................................................................................................... - 7 - 3.原理图仿真与优化..................................................................................... - 11 - 参考文献.................................................................................................................... - 17 -

滤波器幅频特性的测试

实验一 1-1 滤波器幅频特性的测试 一.实验目的 1.了解无源和有源滤波器的工作原理及应用。 2.掌握滤波器幅频特性的测试方法。 二.实验原理 滤波器是一种选频装置,可以使某给定频率范围内的信号通过而对该频率范围以外的信号极大地衰减。 1.RC 无源低通滤波器 RC 无源低通滤波器原理如图1-1所示。这种滤波器是典型的一阶RC 低通滤波器,它的电路简单,抗干扰性强,有较好的低频性能,构成的组件是标准电阻、电容,容易实现。其传递函数为 =)(s H 1 1 )()(+= s s u s u i o τ (1-1) 式中:τ=RC 。 低通滤波器频率特性为 ωτ ωj j H += 11 )( (1-2) 图1-1 RC 低通滤波器 其幅频特性 )(ωA 为 2 )(11)(ωτω+= A (1-3) 低通滤波器的截止频率为 RC f c π21 = (1-4) 图1-2 一阶有源低通滤波器 2.RC 有源低通滤波器 RC 有源低通滤波器原理如图1-2所示。它是将一阶RC 低通滤波网络接入运算放大器输入端构成的。运算放大器在这里起隔离负载影响、提高增益和带负载能力的作用。有源低通滤波器的传递函数为 1 )()()(+= = s K s u s u s H i o τ (1-5) 式中:1 1R R K F + =(R 1、R F 参数可参考图1-2,也可自选)。 频率特性为 ωτ ωj K j H += 1)( (1-6) R

式(1-5)与式(1-1)相似,只是增益不同。 3.幅频特性的测试 本实验是对以上两种低通滤波器进行幅频特性测试。滤波器的幅频特性采用稳态正弦激励试验的办法求得。对滤波器输入正弦信号x(t)=x0sinωt,在其输出达到稳态后测量输出和输入的幅值比。这样可得到该输入信号频率ω下滤波器的传输特性。逐次改变输入信号的频率,即可得到幅频特性曲线。 三.实验仪器和设备 1.低频信号发生器一台 2.毫伏表一台 3.直流稳压电源一台 4.RC无源滤波器接线板一块 5.有源低通滤波器线路板一块 四.实验步骤 1.将RC滤波器接线板低通滤波器部分的R值调到适当的位置。将低频信号发生器输出端接入RC低通滤波器输入端,双路毫伏表中的一路接低通滤波器的输入端,另一路接输出端。 2.由信号发生器输出一定幅度的正弦信号电压。先检查低频信号发生器幅值调节旋钮,使之在最小(逆时针旋转到底)位置,输出信号频率调到20Hz,然后逐渐调大信号电压使监测毫伏表指示约1伏,记下滤波器输入和输出的信号电压值。 3.不断由小到大改变滤波器输入信号频率,每改变一次信号频率,待毫伏表读数稳定了以后读取一组滤波器输入和输出信号电压值,记录到原始数据记录纸上。 4.将信号发生器幅值调节旋钮调到最小,按图1-3连接测试系统。考虑到有源低通滤波器具有放大作用,注意监测滤波器输出信号的毫伏表测量档位要比监测输入信号的相应加大。 图1-3 5.重复实验步骤2、3。 五.实验数据处理 1.用对数坐标纸绘出RC无源低通滤波器和有源低通滤波器的幅频特性曲线。 2.比较两种滤波器的特性,分析有源滤波器的优点。 六.思考题 1.若要能自动绘出滤波器的幅频特性曲线,实验系统如何设计?试绘出仪器组合框图,并作简要说明。 2.滤波器的建立时间T e如何测定?

有源模拟滤波器实验报告

实验报告

工程大学教务处制 一、实验目的 1.掌握滤波器的滤波性能特点。 2.掌握常规模拟滤波器的设计、实现、调试、测试方法。 3.掌握滤波器主要参数的调试方法。 4.了解电路软件的仿真方法。 二、实验原理 有源滤波器的设计,就是根据所给定的指标要求,确定滤波器的结束n,选择具体的电路形式,算出电路中各元件的具体数值,安装电路和调试,使设计的滤波器满足指标要求,具体步骤如下: 1.根据阻带衰减速率要求,确定滤波器的阶数n。 2.选择具体的电路形式。 3.根据电路的传递函数和归一化滤波器传递函数的分母多项式,建立起系数的方程 组。 4.解方程组求出电路中元件的具体数值。 5.安装电路并进行调试,使电路的性能满足指标要求。 根据滤波器所能通过信号的频率围或阻带信号频率围的不同,滤波器可分为低通、高通、带通与带阻等四种滤波器。 a)有源二阶低通滤波器(LPF) 图1 压控电压源二阶低通滤波器 b)有源二阶高通滤波器(HPF)

图2 压控电压源二阶高通滤波器 c)有源带通滤波器(BPF) 图3 压控电压源二阶带通滤波器 d)带阻滤波器(NF) 图4 压控电压源双T 二阶有源带阻滤波器 三、实验仪器 1.示波器 2.信号源 3.万用表 4.直流稳压电源 四、实验容

1.二阶低通滤波器 ①参照图4 电路安装二阶低通滤波器。元件值取:R1 = R2 = R = 1.6kΩ,R3 = 17k Ω,R4 =10k Ω, C1 = C2 = C =0.1μF,计算截止频率fc、通带电压放大倍数Auo 和Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万用 表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,并将 测量结果与理论值相比较。 2.二阶高通滤波器 ①参照图6 电路安装二阶高通滤波器。元件值取:R1 = R2 = R = 1.6kΩ,R3 = 1.7k Ω,R4 = 10kΩ,C1 = C2 = C = 0.1μF,Q = 0.707,计算截止频率fc 和通带电压放大倍数Auo 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,并 将测量结果与理论值相比较。 3.二阶带通滤波器 ①参照图9 电路安装二阶带通滤波器。元件值取:R1 = R2 = R = 1.5kΩ,R3 = 2R = 3kΩ,R4 = 10kΩ, R5 = 19kΩ,C1 = C2 = C = 0.1μF,计算截止频率fc、通带电压放大倍数Auo 和 Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,测 出带宽BW,并将测量结果与理论值相比较。 4.二阶带阻滤波器 ①参照图12 电路安装二阶带通滤波器。元件值取:R1 = R2 =R = 3kΩ,R3 = 0.5R = 1.5kΩ,R4 = 20kΩ, R5 = 10kΩ,C1 = C2 = C = 0.1μF,C3 = 2C = 0.2μF,计算截止频率fc、通带 电压放大倍数Auo 和Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,测 出带宽BW,并将测量结果与理论值相比较。 五、实验预习和仿真 1.压控电压源型有源二阶低通滤波器 仿真电路:

相关文档
相关文档 最新文档