文档库 最新最全的文档下载
当前位置:文档库 › 分式方程与无理方程

分式方程与无理方程

分式方程与无理方程
分式方程与无理方程

分式方程

一、教学重点和难点

1.教学重点:

(1)可化为一元一次方程的分式方程的解法.

(2)分式方程转化为整式方程的方法及其中的转化思想. 2.教学难点:理解解分式方程时可能无解的原因 3.疑点及分析和解决办法:

解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.

二、教学过程

第一步:引入新课

1.回忆:一元一次方程的解法,并且解方程26

3

242=--+x x 2.提出本章引言的问题:

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

分析:设江水的流速为v 千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程v

v

-=

+206020100

.

第二步:归纳定义

1提问:方程v

v -=

+206020100

和方程

26

3

242=--+x x 有何不同? 2归纳: 像这样分母中含未知数的方程叫做分式方程.

注意:分母是否含有末知数是区别分式方程与整式方程的关键。

3巩固练习:下列方程中,哪些是分式方程?哪些整式方程?

13

(2)

2x x

=

-

(1) (2) (3) ( 4)

(5) (6) (7) (8)

第三步:探究分析

1提问:如何来解分式方程

v

v -=

+2060

20100呢? 2归纳:解分式方程的基本思想和解法

分式方程------整式方程------解整式方程-----检验 3练习

( x=9 )

( 增根 x=5)

(增根 x=1)

第四步:学习小结

1解分式方程的基本思想: 把分式方程“转化”为整式方程,再利用整式方程的解法求解

2解分式方程的方法:

在方程的两边同乘最简公分母,就可约去分母,化成整式方程 3解分式方程的解的两种情况:

① 所得的根是原方程的根、②所得的根不是原方程的根

4原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原

方程的增根

5产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了零

6验根的方法:把求得的根代入最简公分母,看它的值是否为零。使最简公分母值.......

为零的根是.....

增根..,不为零的根是原方程的根 第五步:随堂练习

2(1)23

x x

-=437x y +=(1)(4)1x x x -=-3(3)2x x π-=2131x x x ++=215=-x x )(10

5

1

26=-+x x )(3

23)1(-=

x x 25

1051)2(2

-=-x x 11

)2)(1(3)3(--=+-x x

x x

1如果 有增根,那么增根为x=( )

2解关于x 的方程 产生增根,则常数m=( )

3

221)

1(+=

x x 13

321)

2(++=+x x x x 1

412)

3(2

-=-x x 01

5)

4(2

2=--+x

x x x x

x -=+-213211

13-=--x m

x x

无理方程

【一】 知识梳理:

1、 无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理

方程.

2、 有理方程:整式方程和分式方程统称为有理方程;有理方程和无理方程统称为初等代数

方程,简称代数方程.

3、 解无理方程基本思路:通过乘方,把无理方程转化为有理方程.

4、 无理方程的增根:(解无理方程验根的必要性)

乘方之后所得整式方程的根,代入原无理方程检验得不是原无理方程的根. 5、 解分式方程基本步骤:

① 去根号,把无理方程化为有理方程; ② 解这个有理方程;③ 验根;④写

出原方程的根

1、下列方程中,不是无理方程的是( )

(A x =; (B 1=;

(C 1=; (D 1+=. 2、下列方程中,有实数根的方程是( )

(A 0=; (B 1

02

=; (C 2=; (D )

3x =- 4、4x +=

53x = 61=

分式方程和无理方程的解法

一、可化为一元二次方程的分式方程

1.去分母化分式方程为一元二次方程 【例1】解方程

2142

122

4x x x x +-=+--. 分析:去分母,转化为整式方程. 解:原方程可化为:

142

12(2)(2)2

x x x x x +-=++-- 方程两边各项都乘以2

4x -:

2(2)42(2)4x x x x -+-+=-

即2

364x x -=-, 整理得:2

320x x -+= 解得:1x =或2x =.

检验:把1x =代入2

4x -,不等于0,所以1x =是原方程的解;

把2x =代入24x -,等于0,所以2x =是增根.

所以,原方程的解是1x =.

说明:

(1) 去分母解分式方程的步骤:

①把各分式的分母因式分解; ②在方程两边同乘以各分式的最简公分母; ③去括号,把所有项都移到左边,合并同类项; ④解一元二次方程; ⑤验根.

(2) 验根的基本方法是代入原方程进行检验,但代入原方程计算量较大.而分式方程可

能产生的增根,就是使分式方程的分母为0的根.因此我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为0.若为0,即为增根;若不为0,即为原方程的解.

2.用换元法化分式方程为一元二次方程

【例2】解方程 2223()4011

x x x x --=--

分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程的结构

特点,设2

1x y x =-,即得到一个关于y 的一元二次方程.最后在已知y 的值的情况下,用

去分母的方法解方程2

1

x y x =-.

解:设2

1

x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-.

(1)当4y =时,241x x =-,去分母,得22

4(1)4402x x x x x =-?-+=?=;

(2)当1y =-时,22211101x x x x x x x =-?=-+?+-=?=-. 检验:把各根分别代入原方程的分母,各分母都不为0.

所以,2x =,x =

都是原方程的解.

说明:用换元法解分式方程常见的错误是只求出y 的值,而没有求到原方程的解,即x 的值.

【例3】解方程 222

28(2)3(1)

1112x x x x x x

+-+=-+. 分析:注意观察方程特点,可以看到分式2221x x x +-与221

2x x x

-+互为倒数.因此,可以设

22

21

x x

y x +=-,即可将原方程化为一个较为简单的分式方程. 解:设2221

x x

y x +=-,则22

112x y x x -=+

原方程可化为:2338118113018

y y y y y y +

=?-+=?==或. (1)当1y =时,222221

12121

x x x x x x x +=?+=-?=--;

(2)当3

8y =时,22222231816335163038

51x x x x x x x x x x +=?+=-?++=?=-=--或. 检验:把把各根分别代入原方程的分母,各分母都不为0.

所以,原方程的解是12x =-

,3x =-,1

5

x =-. 说明:解决分式方程的方法就是采取去分母、换元等法,将分式方程转化为整式方程,体现了化归思想.

二、可化为一元二次方程的无理方程

根号下含有未知数的方程,叫做无理方程. 1.平方法解无理方程

【例4】解方程

1x -=

分析:移项、平方,转化为有理方程求解.

解:1x =+ 两边平方得:2

721x x x +=++ 移项,合并同类项得:260x x +-= 解得:3x =-或2x =

检验:把3x =-代入原方程,左边≠右边,所以3x =-是增根.

把2x =代入原方程,左边 = 右边,所以2x =是原方程的根.

所以,原方程的解是2x =.

说明:含未知数的二次根式恰有一个的无理方程的一般步骤:

①移项,使方程的左边只保留含未知数的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.

【例5】解方程

3=

分析:直接平方将很困难.可以把一个根式移右边再平方,这样就可以转化为上例的模式,再用例4的方法解方程.

解:3=-

两边平方得:3293x x -=-++

整理得:1427x x =-?=- 两边平方得:2

9(3)4914x x x +=-+

整理得:2

23220x x -+=,解得:1x =或22x =.

检验:把1x =代入原方程,左边=右边,所以1x =是原方程的根.

把22x =代入原方程,左边≠右边,所以22x =是增根.

所以,原方程的解是1x =.

说明:含未知数的二次根式恰有两个的无理方程的一般步骤:

①移项,使方程的左边只保留一个含未知数的二次根式;②两边平方,得到含未知数的二次根式恰有一个的无理方程;③一下步骤同例4的说明.

2.换元法解无理方程

【例6】解方程 23152x x ++=

分析:本题若直接平方,会得到一个一元四次方程,难度较大.注意观察方程中含未知数的二次根式与其余有理式的关系,可以发现:22

31533(51)x x x x ++=++.因此,可

y =,这样就可将原方程先转化为关于y 的一元二次方程处理.

解:y =,则2222

513153(1)x x y x x y ++=?+=-

原方程可化为:2

3(1)22y y -+=, 即2

3250y y +-=,解得:1y =或53

y =-

(1)当1y =2

15010x x x x =?+=?=-=或;

(2)当53

y =-

0y =≥,所以方程无解. 检验:把1,0x x =-=分别代入原方程,都适合. 所以,原方程的解是1,0x x =-=.

说明:解决根式方程的方法就是采取平方、换元等法,将根式方程转化为有理方程,体

现了化归思想.

A 组

1.解下列方程:

(1)

215

(1)(2)(2)(3)x x x x x x --=----

(2)

22

7

211211235x x x x x x +=---+ (3) 2

21

12

4y y =-+-

(4)

2

152

124x

x +=--

2.用换元法解方程:22

4

4x x += 3.解下列方程:

(1)

x =-

(2)

7x +=

(3)

2x =

4.解下列方程:

(1)

1=+

(2)

1-=

5.用换元法解下列方程:

(1) 120x -=

(2) 2

36x x ++

=

B 组

1.解下列方程:

(1)

22

2541

2

324x x x x x -+=--+- (2)

22

416

124x x x x x x --=+-+-- (3)

2

111

7(21)(7)231

x x x x x x +=++-+-+ (4)

21240111

x x x

x x x -+-=+-- 2.用换元法解下列方程:

(1)

2524(1)

1401(5)x x x x x x -+++=+- (2)

222(1)6(1)

711

x x x x +++=++

(3) 4222

211

2x x x x x

++++= 3.若1x =是方程14x x a x a

+=+-的解,试求a 的值. 4.解下列方程:

(1) 223

24123

x x x x =----

(2) 222

36x x a x

x a x a

a x -+=-+- 5.解下列方程:

(1) 2

3x +

=

(2)

5

=

(3) 2

2415x x -+=

第七讲 分式方程和无理方程的解法答案

A 组

1.(1) 1 ,(2)1,21,(3)0,1,(4)3,5x x x y y x x =-=-=-====-

2.x =

3.(1)1,(2)6,(3)x x x =-== 4.(1)5x =.(2) 20x =. 5.(1)9,(2)1,4x x x ===-

B 组

1.1(1)13,(3)5,1,(4)3

x x x x x =-±===-=

2.3(1)1,2,3,4,(2)114

x x x x x x x ===-=-=±=

=-

3.2

±

4.21

(1)0,2,22

x x x x a ±===

=-

5.(1)26,(3)3,1x x x x ====-

分式方程的增根与无解教学文案

分式方程的增根与无解 甲:增根是什么? 乙:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大了未知数的取值范围而产生的未知数的值.比如 例1、解方程:。① 为了去分母,方程两边乘以,得② 由②解得。 甲:原方程的解是。 乙:可是当时,原方程两边的值相等吗? 甲:这我可没注意,检验一下不就知道了。哟!当时,原方程有的项的分母为0,没有意义,是不是方程变形过程中搞错啦? 乙:求解过程完全正确,没有任何的差错。 甲:那为什么会出现这种情况呢? 乙:因为原来方程①中未知数x的取值范围是且,而去分母化为整式方程②后,未知数x的取值范围扩大为全体实数。这样,从方程②解出的未知数的值就有可能不是方程①的解。 甲:如此说来,从方程①变形为方程②,这种变形并不能保证两个方程的解相同,那么,如何知道从整式方程②解出的未知数的值是或不是原方程①的解呢? 乙:很简单,两个字:检验。可以把方程②解出的未知数的值一一代入去分母时方程两边所乘的那个公分母,看是否使公分母等于0,如果公分母为0,则说明这个值是增根,否则就是原方程的解。 甲:那么,这个题中就是增根了,可原方程的解又是什么呢? 乙:原方程无解。

甲:啊?!为什么会无解呢? 乙:无解时,方程本身就是个矛盾等式,不论未知数取何值,都不能使方程两边的值相等,如上题中,不论x取何值,都不能使方程①两边的值相等,因此原方程无解,又如对于方程,不论x取何值也不能使它成立,因此,这个方程也无解。 甲:是不是有增根的分式方程就是无解的,而无解的分式方程就一定有增根呢? 乙:不是!有增根的分式方程不一定无解,无解的分式方程也不一定有增根,你看: 例2、解方程, 去分母后化为,解得或,此时,是增根,但原方程并不是无解,而是有一个解,而方程,去分母后化为,原方程虽然无解,但原方程也没有增根。 乙:增根不是原分式方程的解,但它是去分母后所得的整式方程的解,利用这种关系可以解决分式方程的有关问题,你看: 例3、已知关于x的方程有增根,求k的值。 首先把原方程去分母,化为。③ 因为原方程的最简公分母是,所以方程的增根可能是或 若增根为,代入方程③,得,; 若增根为,代入方程③,得,。 故当或时,原方程会有增根。 甲:虽然无解的分式方程不一定有增根,有增根的分式方程不一定无解,但我还觉得无解与增根之间似乎有种微妙的关系,这是怎么一回事?

分式方程和无理方程

分式方程和无理方程 一. 解分式方程和无理方程必需检验 1. 方程01312=--+x x 的解是_________. 2.方程x x -=-2的解是 __________. 3. 方程x x =+2的解是 ___________. 4.方程 1415112-=--+-x x x x 的解是 __________. 5.方程 2x-332=+x 的解是 ( ) A. 21 和3 B. 21 C. -2 1 和3 D. 3 6. 关于x 的方程x k k x -=-的根为 ( ) A. x = k B. x 1 = k+1 , x 2 = k – 1 C. x 1 = k , x 2 = k + 1 D. x = 2k 7. 方程 4 42144122-=+++-x x x x x 的解是 ( ) A. x 1 = -2 , x 2 = 4 B. x 1 = 2, x 2 = – 4 C. x = 4 D. x = - 4 8.方程3 12)3(42+-=++x x x 的根的个数是 ( ) A. 0个 B. 1个 C. 2个 D. 无数多个 二. 与增根有关的填空与选择题. 1. 解分式方程 3 31+=--x m x x 时去分母一步产生了增根,那么m 的值是 ____________. 2. 当m = _____时 , 去分母解方程2 22-=--x m x x 时会产生增根. 3. 解关于x 的方程x m m x x -=--131得 x = 1 34-m m ,当m = ____时,此根是增根. 4. 使分式方程212-=-+x k x x 产生增根的k 的值是 ( ) A. k = 0 B. k = 0, k = 2 C. k = 1 D. k = 2 5. 解关于x 的方程1 3213+-=++x x ax x 有增根x = -1,则a 的值是 ( ) A. 0或1 B. 0 C. 3 D. –2 6. 方程011522=-?-+y y y 的解是 ( ) A. 3 B. 3或-5 C. –5或 –1 D. 3 , -5 ,1 7. 方程 0345=-?-x x 的解是 ( )

整式方程和分式方程-教师版

【例1】下列关于x 的方程中,为一元整式方程的是( ) A .343x y -= B .24x - C .32 2x x =- D .22350x x --= 【难度】★ 【答案】D 【解析】含有一个未知数,且各项均为整式的方程,称为一元整式方程. 【总结】考察一元整式方程的概念. 【例2】判断下列关于x 的方程,哪些是一元整式方程,并指出这些整式方程分别是一元几次方 程? ① 23270x a x +-=; ②321 240(0)x x x a b a b +- =+≠+; ③1 3(0)1 x x x + =≠-; ④212(0)x x x +=-≠; ⑤2 13502 m xm x ?+-=-; ⑥ 352270(1)1x x x b b +--=≠-. 【难度】★ 【答案】 ①、②、⑥都是整式方程;①是一元二次方程;②是一元三次方程;⑥是一元五次方 程. 【解析】“元”表示未知数的个数,“次”表示未知数的最高次数,各项都是整式的方程是整式方程; 【总结】考察一元整式方程的概念. 【例3】(1)若关于x 的方程62ax x +=的解为2,则a =__________; (2)若方程2250x kx --=的一个根是1-,则k =__________. 【难度】★ 【答案】(1)1a =-(2)3k = 【解析】(1)把2x =代入62ax x +=,得:2641a a +=∴=-,; (2)把1x =-代入2250x kx --=,得:2503k k +-=∴=,. 【总结】考察对方程的解的概念的理解及应用. 例题解析

【例4】若关于x 的二项方程420x m +=没有实数根,则m 的取值范围是( ) A .0m ≤; B .0m <; C .0m ≥; D .0m >; 【难度】★ 【答案】D 【解析】因为42x m =-,所以41 2x m =-,若方程没有实数根,则0m >. 【总结】考察二项偶次方程有解的情况. 【例5】关于x 的方程2410mx x --=实数根的情况是( ) A .1个 B .2个 C .1个或2个 D .不确定 【难度】★★ 【答案】D 【解析】当0m =时,方程化为1 4104 x x +==-,,只有一个解;当0m ≠时,方程为一元二次 方程,160m =+≥V ,即16m ≥-且0m ≠时,方程有两个实数根,160m =+

分式方程与无理方程(非常规)

分式方程与无理方程(非常规) 例1、求方程x+2-x =4+2的实数解 例2、解方程x a -+b x -=b a -(a >b ) 例3、解方程x x 1- +x 1-1=x 例4、解方程1-x +24-y +39-z =2 1 (x+y+z ) 例5、解方程x -5+x +2=5+2 例6、求方程的整数解2x +y 2=32 例7、已知实数x 1,x 2,???x n 满足 1+2 11 x x = 1 +2 22 x x =???= 1 +2 n n x x , x 1+x 2+???x n + 11x +21x +???+n x 1=3 10 。 求x 1 例8、已知实数a ,b ,c ,d 互不相等,且a+b 1=b+c 1=c+d 1=d+a 1 =x , 试求x 的值 例9、已知关于x 的方程(a 2 -1)(1-x x )2-(2a+7)( 1 -x x )+1=0有实数根 (1)求a 的取值范围 (2)若原方程的两个实数根为x 1,x 2,且1-11x x +1-22x x =11 3 ,求a 的值 练习: 1、方程 x - x 4=x x 3的实数根的个数为 个 2、如果a+b-21-a -42-b =33-c - 2 1 c-5,则a+b+c 的值为 3、若方程p x -=x 有两个不相等的实数根,则实数p 的取值范围是 4、若实数x ,y ,z 满足x+ y 1 =4,y+z 1=1,z+x 1=37,则xyz 的值为 5、满足x y +x y-x 2003-y 2003+xy 2003 =2003的正整数对的个数是 6、已知 a 1-a =1,那么代数式a 1 +a 的值为 7、对于x 的哪些实数值,等式12-+ x x +1-2-x x =2成立? 8、解方程16+16x +x x +16= 416x

数学初高中衔接之分式方程和无理方程

2.2 分式方程和无理方程 初中大家已经学习了可化为一元一次方程的分式方程的解法.本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法.并且只要求掌握 (1) 不超过三个分式构成的分式方程的解法,会用” 去分母” 或” 换元法” 求方程的根,并会验根; (2) 了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用” 平方” 或” 换元法” 求根,并会验根. 一、可化为一元二次方程的分式方程 1 .去分母化分式方程为一元二次方程 【例 1 】解方程. 分析:去分母,转化为整式方程. 解:原方程可化为: 方程两边各项都乘以: 即,整理得: 解得:或. 检验:把代入,不等于 0 ,所以是原方程的解; 把代入,等于 0 ,所以是增根. 所以,原方程的解是. 说明: (1) 去分母解分式方程的步骤: ① 把各分式的分母因式分解;② 在方程两边同乘以各分式的最简公分母; ③ 去括号,把所有项都移到左边,合并同类项;④ 解一元二次方程;⑤ 验根. 26

(2) 验根的基本方法是代入原方程进行检验,但代入原方程计算量较大.而分式 方程可能产生的增根,就是使分式方程的分母为 0 的根.因此我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为 0 .若为 0 ,即为增根;若不为 0 ,即为原方程的解. 2 .用换元法化分式方程为一元二次方程 【例 2 】解方程 分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程 的结构特点,设,即得到一个关于的一元二次方程.最后在已知的 值的情况下,用去分母的方法解方程. 解:设,则原方程可化为:解得或. (1) 当时,,去分母,得; (2) 当时,. 检验:把各根分别代入原方程的分母,各分母都不为 0 . 所以,,都是原方程的解. 说明:用换元法解分式方程常见的错误是只求出的值,而没有求到原方程的解,即的值. 【例 3 】解方程. 分析:注意观察方程特点,可以看到分式与互为倒数.因此,可 以设,即可将原方程化为一个较为简单的分式方程. 27

分式方程和无理方程

天材教育学科教师辅导讲义

分式方程 【知识梳理】 A 1.分式概念:若A、B表示两个整式,且B中含有字母,则代数式一叫做分式. B 2?分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3 .分式运算 4?分式方程的意义,会把分式方程转化为一元一次方程. 5. 了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】 1. 类比(分式类比分数)、转化(分式化为整式) 2. 检验 【例题精讲】 八“x22x 1 x 1 1.化简:22 X 1 XX 2 x 2x 2x 4 卄亠小匚 2 ?先化简,再求值:2x 2 ,其中x 2 V2 . x24 x 2 1 x 3 ?先化简(1 )2x,然后请你给x选取一个合适值,再求此时原式的值. x 1 x 1 「小 5 1 - x 2 x 2 16 4 ?解下列万程(1) 2 20 (2)2 x 3x x x x 2 x 2 x 4 则根据题意所列方程正确的是() 312 312 d312 312 , =1 _ = 1 A. x x—2& B.兀+ X 巫-匹=1 21L-竺" c.工X十% D. X—2戌X (二) 无理方程 【一】知识梳理: 1、无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程. 2、有理方程:整式方程和分式方程统称为有理方程;有理方程和无理方程统称为初等代数方程,简称代数 方程. 3、解无理方程基本思路:通过乘方,把无理方程转化为有理方程. 4、无理方程的增根:(解无理方程验根的必要性) 乘方之后所得整式方程的根,代入原无理方程检验得不是原无理方程的根.

数学-8年级-第4讲-整式方程与分式方程

1对3辅导教案 1.知道一元整式方程与高次方程的有关概念; 2.理解含字母系数的一元一次方程、一元二次方程的概念,掌握它们的基本解法; 3.会解可化成一元二次方程的分式方程. (此环节设计时间在10-15分钟) 教法说明:首先回顾下上次课的预习思考内容 1.一元整式方程:如果方程中只有一个未知数且两边都是关于未知数的整式,这个方程叫做一元整式方程. 2.一元n 次方程:一元整式方程中含未知数的项的最高次数是n (n 是正整数),这个方程叫做一元n 次方程. 3.一元高次方程:一元整式方程中含有未知数的项的最高次数是n ,若次数n 是大于2的正整数,这样的方程统称为一元高次方程. 4.(1)二项方程:如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的 方程就叫做二项方程. (2)二项方程的一般形式为0(0,0,)n ax b a b n +=≠≠是正整数 (3)二项方程根的情况:当n 为奇数时,方程有且只有一个实数根 当n 为偶数时,如果ab <0,那么方程有两个实数根,且这两个根互为相反数; 如果ab >0,那么方程没有实数根. 5.下面四个方程中是整式方程的是( ).

A .212x x x =+ B .33x x x --= C .100991x x x -=- D .()71 10x x += 6.下面四个关于x 的方程中,次数和另外三个不同的是( ). A .231ax x a +=- B .32x x ax -= C .3230ax a x x ++= D .33x a = 7.下列方程中,是二项方程的是( ) A . 230x x +=; B .42230x x +-=; C .41x =; D . 2 (1)80x x ++=. 参考答案:5.C ; 6.A ; 7.C (此环节设计时间在50-60分钟) 例题1:用适当的方法解下列方程 (1)()2 28x -= (2)22410x x --= (3)2699910x x --= (4)()()2 12115x x ---= 教法说明:首先回顾下解一元二次方程的四种方法:开平方法、因式分解法、配方法、公式法,要求灵活应用四种方法解一元二次方程,可以让学生观察四个方程分别用什么方法解比较简单。 强调:求根公式要求学生熟练掌握 参考答案:(1)开平方法:12222,222x x =+=-+; (2)公式法:122626 ,22 x x +-= = (3)配方法:12103,97x x ==-; (4)因式分解法:126,2x x ==- 例题2:解下列关于x 的方程 (1)(32)2(3)a x x -=- (2)2 2 11(1)bx x b -=-≠-

分式方程——增根与无解

分式方程中的增根与无解 考点1解分式方程 (1)=+1 (2)+= 考点2增根 1.若关于x的方程有增根,试求k的值. 2.若关于x的方程+=2有增根,求增根和m的值? 3.解关于x的分式方程时不会产生增根,则m的取值是( ) A.m≠1?B.m≠﹣1C.m≠0? D.m≠±1 4.已知关于x的方程﹣=0的增根是1,则字母a的取值为() A.2B.﹣2?C.1 D.﹣1

1.当a=时,关于x的方程ax=1无解;当m= 时,关于x的方程(m-1)x=5无解;当时,关于x的二元一次方程ax2+bx+c=0无解。 2.若关于x的方程=6+无解,求m的值? 3.当a为何值时,关于x的方程﹣=1无解? 考点4有解 1.当a= 时,关于x的方程ax=1有解,解为;当m=时,关于x的方程(m-1)x=5有解,解为;当时,关于x的二元一次方程ax2+bx+c=0有解,解为。 1.已知x=3是分式方程﹣=2的解,那么实数k的值为() A.﹣1 B.0 C.1?D.2 2.已知关于x的方程有正根,则实数a的取值范围是() A.a<0且a≠﹣3? B.a>0?C.a<﹣3 D.a<3且a≠﹣3 3.若关于x的分式方程+=1有非负数解,求m的取值范围.

1.如果不等式组恰有3个整数解,则a的取值范围是() A.a≤﹣1 B.a<﹣1?C.﹣2≤a<﹣1 D.﹣2<a≤﹣1 2.已知关于x的不等式组有且只有1个整数解,则a的取值范围是() A.a>0 B.0≤a<1 C.0<a≤1 D.a≤1 3.已知,关于x的分式方程有增根,且关于x的不等式组只有4个整数解,那么b的取值范围是() A.﹣10恰有两个负整数解,则b的取值范围是()

初二 代数方程分式方程和无理方程讲义

代数方程2---分式方程 无理方程 板块一、分式方程 1、用“去分母”的方法解分式方程 例题1. 解分式方程 12244212=-+-++x x x x 例题2、解分式方程 2123x x x ++- + 2226x x x -+-=2632 x x x --+ 限时训练: 1、已知方程(1)11=+x x (2)6323=+x x (3)11182=+x (4)1=x x 中, 分式方程的个数是( ) (A ) 1 (B ) 2 (c )3 (D )4 2、分式226232 x x x x +---的值等于零,则x 的值应是________________ 3、分式方程1 214--=+x x x 的根是______________ 4、分式方程14 1212=-++x x 的最简公分母是________________ 5、分式方程21 32=+-x x 去分母后化为整式方程是___________________ 压轴题: 1、已知方程 24k 2-x 12x 2x -=-+有增根,求k 的值。 2、已知关于x 的分式方程 () 02222=-++-+-x x k x x x x x 只有一个解,求k 的值。

2、用“换元法”解分式方程: 例1、解分式方程 012 1863222=+-+-+-x x x x 例2:解下列分式方程: 2 122112122=+++-+x x x x 限时训练: 1、 分式方程0101712=+?? ? ??--??? ??-x x x x ,若设y x x =??? ??-1,则原方程可化为关于y 的整式方程为___________________________ 2、 在分式方程41 331122=+++++x x x x 中,可设____________=y ,则原方程化为关于y 的整式方程为__________________________ 3、 解分式方程12 222422=+-+ -x x x x ,宜用_______法来解,并且设____________=y 较合适。 4、 解分式方程组???????=++=-+871033y y x y y x 时,可设m=______________,n=_______________, 原方程组可化为整式方程组_________________ 压轴题: 1、已知:622122=+++ x x x x ,求x x 1+的值 2、解方程:22 356635620x x x x -+- +=

分式方程的增根与无解的区别及联系

分式方程的增根与无解的区别 分式方程的增根与无解是分式方程中常见的两个概念,分式方程无解和分式方程有增根决不是一回事。 (一)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根 例1 解方程2 344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).② 解这个方程,得x=2. 经检验:当x=2时,原方程无意义,所以x=2是原方程的增根. 所以原方程无解. 【说明】显然,方程①中未知数x 的取值范围是x ≠2且x ≠-2.而在去分母化为方程②后,此时未知数x 的取值范围扩大为全体实数.所以当求得的x 值恰好使最简公分母为零时,x 的值就是增根.本题中方程②的解是x =2,恰好使公分母为零,所以x =2是原方程的增根,原方程无解. (二)原方程化去分母后的整式方程无解 例2 解方程22321++-=+-x x x x . 解:去分母后化为x -1=3-x +2(2+x ). 整理得0x =8. 因为此方程无解,所以原分式方程无解. 【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根. (三)原分式方程无解,去分母后的整式方程的解就等于增跟 例3(2007湖北荆门)若方程 32x x --=2m x -无解,则m=——————. 解:原方程可化为32x x --=-2m x -.

方程两边都乘以x -2,得x -3=-m . 解这个方程,得x=3-m . 因为原方程无解,所以这个解应是原方程的增根.即x=2, 所以2=3-m ,解得m=1. 故当m=1时,原方程无解. 【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例. (四)分式方程在什么情况下会产生增根?产生无解? 例4当a 为何值时,关于x 的方程223242 ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2) 整理得(a -1)x =-10 ② 若原分式方程有增根,则x =2或-2是方程②的根. 把x =2或-2代入方程②中,解得,a =-4或6. 【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值. 若将此题“会产生增根”改为“无解”,即: 当a 为何值时,关于x 的方程223242 ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下: 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2) 整理得(a -1)x =-10 ② 若原方程无解,则有两种情形: (1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。

(完整版)初中数学知识点总结分式方程和无理方程

初中数学知识点总结分式方程和无理方程 知识点总结 一.分式方程、无理方程的相关概念: 1.分式方程:分母中含有未知数的方程叫做分式方程。 2.无理方程:根号内含有未知数的方程。(无理方程又叫根式方程) 3.有理方程:整式方程与分式方程的统称。 二.分式方程与无理方程的解法: 1.去分母法: 用去分母法解分式方程的一般步骤是: ①在方程的两边都乘以最简公分母,约去分母,化成整式方程; ②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。 在上述步骤中,去分母是关键,验根只需代入最简公分母。 2.换元法: 用换元法解分式方程的一般步骤是: ②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想; ③三解:解这个分式方程,将得出来的解代入换的元中再求解; ④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。 解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。 三.增根问题: 1.增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的增根。 2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。 3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为0。 解分式方程的思想就是转化,即把分式方程整式方程。 常见考法 (1)考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主; (2)分式方程的解法,是段考、中考考查的重点。 误区提醒

分式方程解法与增根

分式方程(一) 1.分式方程主要是看分母是否有外未知数; 2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母. 3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数. 例题1 下列方程中,哪些是分式方程? ①5(x+1)+x=10 ②21=y ③ 3 21x x -= +π ④42213+-+y y ⑤()x x 33221 =- ⑥ 1212=+y x 例题2 解下列分式方程 (1) x x 311=-; (2) x x x 38741836---=- (3)112112++=++-x x x x ; (4) 11 4 112=---+x x x ; (5) 021211=-++-x x x x ; (6) 22 3 22=--+x x x ; (7) 1 71372 22 2 --+ =-- +x x x x x x (8) 2 1 23524245--+=--x x x x

(9) 01 1 2212 =-++--x x x x (10) 8 6871252652 22 +--=---+-+x x x x x x x x x (11) 12 752352 2+--=+--x x x x x x 例题3:解分式方程: (1) 4 1 215111+++=+++x x x x (2) 8 7 329821+++++=+++++x x x x x x x x (3) )(11b a x b b x a a ≠+=+ (4) ) 1999x )(1998x (1 .....)3x )(2x (1)2x )(1x (1)1x (x 1+++ ++++++++ 并求当x=1时,该代数式的值 (5)若关于x 的分式方程9 13 23322 2---=+-x x x a 的解是x=4,则a 的值是多少?

初中数学专题复习分式方程与无理方程(含答案)

第15课分式方程与无理方程 目的:复习分式方程和无理方程的概念和解法. 中考基础知识 1.分式方程:分母含有_______的方程. 2.分式方程的解法: (1)分式方程转化为______方程来解; (2)分式方程转化为______方程为解. 3 (1)无理方程转化为_________方程来解; (2)无理方程转化为_________方程来解. 4x的取值范围扩大了,可能会出现_____根,因此在解无理方程和分式方程时必须______根,解分式方程是代入________去分母验根,解无理方程是代入______验根. 备考例题指导 例1.解方程31 1 x x - + - 2 1 x x - - =1+ 2 2 1 x- . 解:分解分母:31 1 x x - + - 2 1 x x - - =1+ 2 (1)(1) x x -+ , 方程两边同乘以(x+1)(x-1)(这一步是关键) 得(3x-1)(x-1)+(2-x)(x+1)=(x+1)(x-1)+2,化简得x2-3x+2=0, (x-2)(x-1)=0, x1=2,x2=1. 检验:把x1=2,x2=1分别代入(x+1)(x-1) 当x1=2时,它不等于0,当x2=1时,它等于0 ∴得x=1是原方程的增根,x=2是原方程的根. ∴原方程的解是x=2 (一定要验根) 例2.解方程 2 2(1) 1 x x + + + 2 6(1) 1 x x + + =7. 分析:直接去分母难度较大,宜用换元法. 解:设 21 1 x x + + =y,则原方程转化为方程:

2y+6 y =7,去分母得2y2-7y+6=0, 解之得y1=3 2 ,y2=2. 当y=3 2 时,有 21 1 x x + + = 3 2 ,解得x1= 3 4 + ,x2= 3 4 - . 当y=2时,有 21 1 x x + + =2,解得x3x4=1 经检验:x1,x2,x3x4 例3-2x+1=0. =2x-1, (想一想为什么要这样移项) 平方,得4x+1=(2x-1)2, 解之得x1=0,x2=2. 把x1,x2代入原方程检验得,x1是原方程的增根,x2是原方程的根.∴原方程的解为x=2. 例4.解方程3x2-6x-+4=0. 分析:采用例3方法会出现难解的高次方程,因此可用换元法. 解:变形,3x2-8=0. =y,则原方程变为:3y2-2y-8=0, 解之得y1=2,y2=-4 3 (不合算术根定义,舍去) =2,解之得x1=0,x2=2. 经检验:x1,x2都是原方程的解; ∴原方程的根为:x1=0,x2=2. 注:这个方程也可用因式分解法降次求解:

分式方程及分式化简

分式方程及分式化简 【知识精读】 1. 解分式方程的基本思想:把分式方程转化为整式方程。 2. 解分式方程的一般步骤: (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (2)解这个整式方程; (3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。 3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。 下面我们来学习可化为一元一次方程的分式方程的解法及其应用。 【分类解析】 例1. 解方程: x x x --+=121 1 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根 解:方程两边都乘以()()x x +-11,得 x x x x x x x x x 222211121232 3 2 --=+---=--∴==()()(),即,经检验:是原方程的根。 例2. 解方程 x x x x x x x x +++++=+++ ++1267235 6 分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现 ()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母 的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:x x x x x x x x ++-++=++- ++6756231 2 方程两边通分,得 1671 236723836 9 2 ()()()()()()()()x x x x x x x x x x ++= ++++=++=-∴=- 所以即 经检验:原方程的根是x =-92 。 例3. 解方程: 1210433234892423871619 45 x x x x x x x x --+--=--+ -- 分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。 解:由原方程得:31434289328741 45 --++-=--++ -x x x x 即28928628102 87 x x x x ---=-- - 于是 , 所以解得:经检验:是原方程的根。 189861 810878986810871 1()()()() ()()()()x x x x x x x x x x --=----=--== 例4. 解方程:612444444 0222 2y y y y y y y y +++---++-=2 分析:此题若用一般解法,则计算量较大。当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。 解:原方程变形为:62222222022 2 ()()()()()()()y y y y y y y y ++-+--++-= 约分,得 62222202 y y y y y y +-+-++-=()()

分式方程的概念及解法

分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和 都是分式方程,而关于的方程和都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。 规律方法指导 1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 1、下列各式中,是分式方程的是() A.B.C.D. 举一反三:

八下分式方程的增根与无解

八下分式方程的增根与 无解 Hessen was revised in January 2021

八年级数学下---分式方程的增根与无解专项练习 分式方程有增根:指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;(注意是分母为0的x值不一定都是增根) 分式方程无解:是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解. 练习1:1、当k为何值时,方程x x k x - - = - 1 33 会出现增根 2、已知分式方程33 1 2 x ax x + + + =有增根,求a的值。 3、分式方程 x x m x x x - + - = + 111 有增根x=1,则m的值为多少 4、a为何值时,关于x的方程 4 1 2 1 x x x a x x - += + - () 有解 5、求使分式方程 x x m x - -= - 3 2 3 2 产生增根的m的值。

6、已知关于x 的方程2x x k 2x 21x 12-+=++-有增根,求k 的值。 7、当m 为何值时,关于x 的方程 2111 2x x m x x x ---=+-无实根。 练习2:1、若方程4412212--=--+x x x k x 会产生增根,则( ) A 、2±=k B 、k=2 C 、k=-2 D 、k 为任何实数 2、若解分式方程21112x x m x x x x +-++=+产生增根,则m 的值是( ) A. -1或-2 B. -1或2 C. 1或2 D. 1或-2 3、若方程)1)(1(6-+x x -1 -x m =1有增根,则它的增根是( ) A 、0 B 、1 C 、-1 D 、1或-1 4、若方程 有增根,则a =( ). 5、已知 有增根,则k =( ). 6、若分式方程 1x ?2+3=3?x a +x 有增根,则a 的值是 ( ) 7、关于x 的方程12144a x x x -+=--有增根,则a =( ) 8、 若分式方程=11 m x x +-有增根,则m 的值为( )

分式和分式方程知识点总结及练习(供参考)

分式和分式方程知识点总结 一、分式的基本概念 1、分式的定义 一般地,我们把形如B A 的代数式叫做分式,其中 A , B 都是整式,且B 含有字母。A 叫做分式的分子,B 叫做分式的分母。分式也可以看做两个整式相除(除式中含有字母)的商。 2.分式的基本性质 分式的分子和分母同乘(或除以)一个不为0的整式,分式的值不变。 M B M A M B M A B A ÷÷=??=。其中,M 是不等于0的整式。 3.分式的约分 把分式中分子和分母的公因式约去,叫做分式的约分。 4.最简分式 分子和分母没有公因式的分式叫做最简分式。利用分式的基本性质可以对分式进行化简 二、分式的运算 1、分式的乘除 分式的乘法法则 分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。 D B C A D C B A ??=? 分式的除法法则 分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。 C B D A C D B A D C B A ??=?=÷

2、分式的加减 同分母的分式加减法法则 同分母的两个分式相加(减),分母不变,把分子相加(减)。 B C A B C B A ±=± 异分母的分式加减法法则 异分母的两个分式相加(减),先通分,化为同分母的分式,再加(减)。 分式的通分 把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个相同的分母叫做这几个分式的公分母。 几个分式的公分母不止一个,通分时一般选取最简公分母 BD BC AD BD BC BD AD D C B A ±=±=± 分式的混合运算 分式的混合运算,与数的混合运算类似。先算乘除,再算加减;如果有括号,要先算括号里面的。 三、分式方程 1、分式方程的定义 分母中含有未知数的方程叫做分式方程。 2、分式方程的解 使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根)。 3、解分式方程的步骤 1.通过去分母将分式方程转化为整式方程,

分式方程的增根与无解[1]

例谈分式方程的增根与无解 分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此. 分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下: 例1 解方程2 344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).② 解这个方程,得x=2. 经检验:当x=2时,原方程无意义,所以x=2是原方程的增根. 所以原方程无解. 【说明】显然,方程①中未知数x 的取值范围是x ≠2且x ≠-2.而在去分母化为方程②后,此时未知数x 的取值范围扩大为全体实数.所以当求得的x 值恰好使最简公分母为零时,x 的值就是增根.本题中方程②的解是x =2,恰好使公分母为零,所以x =2是原方程的增根,原方程无解. 例2 解方程22321++-=+-x x x x . 解:去分母后化为x -1=3-x +2(2+x ). 整理得0x =8. 因为此方程无解,所以原分式方程无解. 【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.

第七讲 分式方程和无理方程的解法

分式方程和无理方程的解法 初中大家已经学习了可化为一元一次方程的分式方程的解法.本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法.并且只要求掌握(1)不超过三个分式构成的分式方程的解法,会用”去分母”或”换元法”求方程的根,并会验根;(2)了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用”平方”或”换元法”求根,并会验根. 分析:去分母,转化为整式方程. 解:原方程可化为: 142 12(2)(2)2 x x x x x +-=++-- 方程两边各项都乘以2 4x -: 2(2)42(2)4x x x x -+-+=- 即2 364x x -=-, 整理得:2 320x x -+= 解得:1x =或2x =. 检验:把1x =代入2 4x -,不等于0,所以1x =是原方程的解; 把2x =代入24x -,等于0,所以2x =是增根. 所以,原方程的解是1x =. 说明: (1) 去分母解分式方程的步骤: ①把各分式的分母因式分解; ②在方程两边同乘以各分式的最简公分母; ③去括号,把所有项都移到左边,合并同类项; ④解一元二次方程; ⑤验根. (2) 验根的基本方法是代入原方程实行检验,但代入原方程计算量较大.而分式方程可能产生的增根,就是使分式方程的分母为0的根.所以我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为0.若为0,即为增根;若不为0,即为原方程的解. 2.用换元法化分式方程为一元二次方程 【例2】解方程 22 23()4011 x x x x --=-- 分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程的结构特点, 设 2 1x y x =-,即得到一个关于y 的一元二次方程.最后在已知y 的值的情况下,用去分母的方法解方程 2 1 x y x =-. 解:设 2 1 x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-.

相关文档
相关文档 最新文档