文档库 最新最全的文档下载
当前位置:文档库 › 函数、极限、连续重要概念公式定理

函数、极限、连续重要概念公式定理

函数、极限、连续重要概念公式定理
函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理

(一)数列极限的定义与收敛数列的性质

数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有

n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞

=.若

{}n x 的极限不存在,则称数列{}n x 发散.

收敛数列的性质:

(1)唯一性:若数列{}n x 收敛,即lim n n x A →∞

=,则极限是唯一的.

(2)有界性:若lim n n x A →∞

=,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤.

(3)局部保号性:设lim n n x A →∞

=,且()00A A ><或,则存在正整数N ,当n N >时,有

()00n n x x ><或.

(4)若数列收敛于A ,则它的任何子列也收敛于极限A .

(二)函数极限的定义

(三)函数极限存在判别法 (了解记忆)

1.海涅定理:()0

lim x x f x A →=?对任意一串0n x x →()0,1,2,n x x n ≠=L ,都有 ()lim n n f x A →∞

=.

2.充要条件:(1)()()0

lim ()lim lim x x x x x x f x A f x f x A +-

→→→=?==;

(2)lim ()lim ()lim ()x x x f x A f x f x A →∞

→+∞

→-∞

=?==.

3.柯西准则:()0

lim x x f x A →=?对任意给定的0ε>,存在0δ>,当

100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<.

4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0

lim ()lim (),

x x x x x x A ?φ→→==则0

lim ()x x f x A →=.

5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞

存在.

(四)无穷小量的比较 (重点记忆)

1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==.

(1)若()

lim

0()

x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)()

lim ,())()

x x x x ααββ=∞若则是比(低阶的无穷小量. (3)()

lim (0),())()

x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)()

lim 1,())()

x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)()

lim

(0),0,())()

k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时,

sin arcsin tan ~,arctan ln(1)e 1x x

x x x x x ?

????

???

+?

-??

()

2

11cos ~2(1)1~x x x x α

αα-+-是实常数 (五)重要定理 (必记容,理解掌握)

定理1 0

00lim ()()()x x f x A f x f x A -+→=?==.

定理2 0

lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中.

定理3 (保号定理):0

lim (),0(0),0x x f x A A A δ→=>设又或则一个,当

000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或.

定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域,恒有)()()x f x x ?φ≤≤(,且

lim ()lim (),x x x x x x A ?φ→→==则0

lim ()x x f x A →=.

定理6 无穷小量的性质:

(1)有限个无穷小量的代数和为无穷小量; (2)有限个无穷小量的乘积为无穷小量; (3)无穷小量乘以有界变量为无穷小量.

定理7 在同一变化趋势下,无穷大量的倒数为无穷小量;非零的无穷小量的倒数为无穷大量. 定理8 极限的运算法则:设()()lim ,lim f x A g x B ==,则 (1)lim(()())f x g x A B ±=± (2)lim ()()f x g x A B =? (3)()lim

(0)()f x A

B g x B

= ≠ 定理9 数列的极限存在,则其子序列的极限一定存在且就等于该数列的极限. 定理10 初等函数在其定义域的区间连续. 定理11 设()f x 连续,则()f x 也连续.

(六)重要公式 (重点记忆容,应考必备)

(1)0sin lim

1x x

x

→=

(2)1

1lim(1)e,lim(1)e n x

x n x n

→→∞

+=+=.(通过变量替换,这两个公式可写成更加一般的形式:设

()lim 0f x =,且()0f x ≠则有()()

sin lim

1f x f x =,()()

1

lim 1f x f x e +=????

)

(3)10110

10

0110,lim

,,n n n n m m x m m n m a x a x a x a a n m b b x b x b x b n m

---→∞-?

++++?= =?++++??∞ >?L L . (4)函数()f x 在0x x =处连续()()()000f x f x f x -+?==. (5)当x →+∞时,以下各函数趋于+∞的速度

()ln ,0,(1),a x x

x x a a a x >>→+∞速度由慢到快

()ln ,0,(1),!,a n n

n n a a a n n >>→+∞速度由慢到快

(6)几个常用极限

)01,n a >=

1,n = lim

arctan 2

x x π

→+∞

=

lim arctan 2

x x π

→-∞

=-

lim arccot 0,x x →+∞

= lim arccot x x π→-∞

=

lim e 0,x x →-∞

= lim e ,x x →+∞

=∞ 0

lim 1x x x +

→=.

(七)连续函数的概念

1. ()f x 在0x x =处连续,需满足三个条件:

()f x 在点0x 的某个领域有定义

②()f x 当0x x →时的极限存在

③()()0

0lim x x f x f x →=()()0000lim lim 0x x x y f x x f x ?→→??=+?-=????. 2. ()f x 在0x 左连续:()f x 在(]00,x x δ-有定义,且()()0

0lim x x f x f x -

→=. 3. ()f x 在0x 右连续:()f x 在[)00,x x δ+有定义,且()()0

0lim x x f x f x +

→=. 4. ()f x 在(),a b 连续:如果()f x 在(),a b 点点连续.

5. ()f x 在[],a b 连续:如果()f x 在(),a b 连续,且左端点x a =处右连续,右端点x b =处左连续.

(八)连续函数在闭区间上的性质 (重点记忆容)

1.有界性定理:设函数()f x 在[],a b 上连续,则()f x 在[],a b 上有界,即?常数0M >,对任意的

[],x a b ∈,恒有()f x M ≤.

2.最大最小值定理:设函数()f x 在[],a b 上连续,则在[],a b 上()f x 至少取得最大值与最小值各一次,即,ξη?使得:

()(){}[]max ,,a x b

f f x a b ξξ≤≤=∈; ()(){}[]min ,,a x b

f f x a b ηη≤≤=∈.

3.介值定理:若函数()f x 在[],a b 上连续,μ是介于()f a 与()f b (或最大值M 与最小值m )之间的任一实数,则在[],a b 上至少?一个ξ,使得

()().f a b ξμξ=≤≤.

4.零点定理:设函数()f x 在[],a b 上连续,且()()0f a f b ?<,则在(),a b 至少?一个ξ,使得

()()0.f a b ξξ=<<

(九)连续函数有关定理

1.连续函数的四则运算:连续函数的和、差、积、商(分母在连续点处的数值不为零)仍为连续函数. 2.反函数的连续性:单值、单调增加(减少)的连续函数,其反函数在对应区间上也单值、单调增加(减少)且连续.

3.复合函数的连续性:()u x ?=在点0x 连续,()00x u ?=,而函数()y f u =在点0u 连续,则复合函

数()y f x ?=????在点0x 连续.

4.初等函数的连续性:一切初等函数在其定义区间是连续函数.

(十)间断点的定义及分类

1.定义:若在0x x =处,()0

lim x x f x →不存在,或()0f x 无定义,或()()0

0lim x x f x f x →≠,则称()f x 在0x x =处间

断,0x x =称为()f x 的间断点.

2.间断点的分类

一、函数、极限、连续

(一)数列极限的定义与收敛数列的性质

数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有

n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞

=.若

{}n x 的极限不存在,则称数列{}n x 发散.

收敛数列的性质:

(1)唯一性:若数列{}n x 收敛,即lim n n x A →∞

=,则极限是唯一的.

(2)有界性:若lim n n x A →∞

=,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤.

(3)局部保号性:设lim n n x A →∞

=,且()00A A ><或,则存在正整数N ,当n N >时,有

()00n n x x ><或.

(4)若数列收敛于A ,则它的任何子列也收敛于极限A .

(了解记忆)

1.海涅定理:()0

lim x x f x A →=?对任意一串0n x x →()0,1,2,n x x n ≠=L ,都有 ()lim n n f x A →∞

=.

2.充要条件:(1)()()0

lim ()lim lim x x x x x x f x A f x f x A +-

→→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞

→+∞

→-∞

=?==.

3.柯西准则:()0

lim x x f x A →=?对任意给定的0ε>,存在0δ>,当

100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<.

4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0

lim ()lim (),

x x x x x x A ?φ→→==则0

lim ()x x f x A →=.

5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞

存在.

(四)无穷小量的比较 (重点记忆)

1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==.

(1)若()

lim

0()

x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)()

lim ,())()

x x x x ααββ=∞若则是比(低阶的无穷小量. (3)()

lim

(0),())()

x c c x x x ααββ=≠若则称与(是同阶无穷小量.

相关文档