文档库 最新最全的文档下载
当前位置:文档库 › 浅析变压器油温升高原因

浅析变压器油温升高原因

浅析变压器油温升高原因
浅析变压器油温升高原因

变压器油温过高原因浅析

变压器油温是衡量变压器是否正常运行的重要条件。运行中的变压器,有时其油温升高,超过许可限度,在此浅析其原因,供检修参考。

当发现变压器油温过高时,首先应检查变压器的负荷大小、冷却油的温度以及检查温度计本身是否失灵,若以上检查均正常,则要与以往的同负荷时的温度相比较。若油温比以往条件下高,且温升继续加大,则有可能是变压器内部故障原因导致的。一般油浸式变压器内部故障导致油温过高的有以下几种情况,下面作简要分析。

导致变压器油温过高最常见的故障是线圈匝间短路。当几个相邻线圈匝间的绝缘被损坏时,它们之间将会出现短路电流,此短路电流使变压器油温迅速上升。造成线圈匝间短路的第一个原因是物理损伤线圈绝缘层。造成物理损伤线圈绝缘层引起匝间短路的原因有很多,包括外力作用、绝缘老化、制造工艺等几个方面,而其中引起线圈绝缘损伤的最常见的原因是变压器内部某绝缘层的绝缘较薄弱,线圈固定不好,线圈中的各别匝数随电流频率震动,磨坏绝缘层导致短路。引起变压器匝间短路的另一个重要原因是设备过载运行。过载运行中的变压器中,会导致设备过电流和过电压,变压器过载发热会击穿此处的绝缘使线圈匝间短路。测量线圈匝间是否短路,可以通过测量线圈的直流电阻的平衡率来确定。可以用电桥测量三相绕组的直流电阻的平衡率,若线圈匝间短路则有可能测不出电阻或测出的直流电阻的平衡率偏差很大。

导致变压器油温过高的另一个常见故障是变压器分接开关接触不良。运行中分接开关的接触点压力不够或接触处污秽等原因,会使接触不良点电阻变大,发热加巨,导致变压器整体的温度上升,引起变压器损耗增大。一般情况下,在倒换分接头后和变压器过负荷运行时,更易使分接开关接触不良而发热,引起变压器油温过高。在常用的油浸式变压器中,导致变压器分接开关接触不良的一般原因为产品质量有问题,设计不合理。由于产品设计不合理,选用材料不当,加上长时间运行,橡胶密封圈易老化,以及分接开关固定在油箱大盖上的塑料帽老化、变形等原因,易使分接开关和变压器油箱大盖接缝处和分接开关中心轴、铁箍和防渗螺丝等各缝隙间渗油。由于静触点座固定在长螺杆卡在油箱大盖上的定位档

中不可能转动,即静触点对变压器大盖不会发生相对位置的改变,这样静触点座对铁箍的相对位置改变导致了动触点相对位置的变化,引起错位现象,从而导致了开关触点接触不良。确定分接开关是否接触不良可以通过测量线圈直流电阻来实现。一般在中、小型变压器的实际测量中,大多采用直流电桥法,当被测线圈的电阻值在1欧以上的多用单臂电桥测量,1欧以下的则用双臂电桥测量。根据规范要求,三相变压器应测出线间电阻,有中性点引出的变压器,要测出相电阻。由于变压器制造质量、运行单位维修水平、测试人员使用的仪器精度及测量接线方式的不同,测出的三相电阻值也不相同,通常引入如下误差公式进行判别△R%=[(Rmax-Rmin)/RP]×100%

RP=(Rab +Rbc +Rac)/3

式中△R%――――误差百分数

Rmax――――实测中的最大值(Ω)

Rmin――――实测中的最小值(Ω)

RP――――三相中实测的平均值(Ω)

规范要求,1600KV A以上的变压器,各相线圈的直流电阻值相互间的差别不应大于三相平均值的2%,1600KV A以下的变压器,各相线圈的直流电阻值相互间的差别不应大于三相平均值的4%,线间差别不应大于三相平均值的2%;本次测量值与上次测量值相比较,其变化也不应大于上次测量值的2%。对测量值进行比较分析,如一个线圈阻值不变,另外两个线圈阻值降为正常值的0.5倍左右,或者两个线圈阻值增值正常值的2倍左右,另一个线圈降至正常值的0.5倍时,可基本判断为变压器分接开关接触不良。

同样,变压器铁心短路也会造成变压器油温过高故障。变压器铁芯短路会造成铁心涡流损耗增加而局部过热,从而导致变压器油温过高故障。一般造成油浸式变压器铁芯短路的原因有以下几点:

1、铁心加工工艺不合理。如毛刺超标,剪切中放的不平,夹有细小的金属

颗粒或硬质非金属微粒,将叠片压出一个个小坑,另一面则成小凸点,

叠装后也将破坏绝缘层造成片间短路。

2、制造变压器或更换铁心大修时,选用的硅钢片质量有问题。如硅钢片表

面粗糙不光滑;热轧硅钢片涂的绝缘漆膜脱落,冷轧硅钢片的绝缘氧化膜

附着力差也会脱落,都会造成铁心片间短路,形成多点接地。

3、变压器油箱和散热器在制造过程中,焊渣等清理不彻底,在长期的强油

循过程中,逐渐被油流带出,将铁心和油箱壁短接。

4、变压器内存在导电悬浮物,在电磁场的作用下形成导电小桥,使铁心与

油箱壁或油箱底部短接。

5、叠压不当。叠压系数取得过大,使压力过大,破坏了片间绝缘。

6、运行维护不当。变压器长期超铭牌容量运行使片间绝缘老化;平时巡视和

检测不够,使铁心局部过热严重,片间绝缘遭破坏造成多点接地。还有,变压器在制造或大修过程中,钢刷丝、起重用的钢丝绳的断股及微小金

属丝在电磁场的作用下被竖起,造成铁心与油箱底部短接。

7、变压器进水,使铁心底部绝缘垫块受潮或穿芯螺杆绝缘损坏,引起铁心

绝缘急剧下降,造成铁心多点接地。

现总结以上几点关于油浸式变压器油温过高的常见原因,仅供参考,但是主要由哪个部位引起的,需要结合变压器油温、声音等具体情况现场分析,必要时需对变压器停电进行高压试验,以确定具体的故障原因。

赛罕坝风场杨景明刘明昭

变压器的上层油温一般不能超过85度

变压器的上层油温一般不能超过85度,高不能超过95度.P9 变压器过负荷的判断:当变压器发生过负荷时会出现如下现象:1)油温上升。2)变压器声音有变化。3)过负荷信号可能动作。4)冷却装置可能启动。5)电流表,功率表指示将大于额定值。P15-16 保证变,配电所安全运行的“两票三制”,即工作票制度,操作票制度,交接班制度,巡回检查制度,设备定期试验轮换制度。另缺陷管理制度等。P35. 装设接地线应注明需要装设的具体地点,名称。接地线编号由工作许可人填写。P38 确认工作负责人布置的工作任务,安全措施和危险点及防范措施。 工作班成员在明确了工作负责人,专责监护人交代的工作内容,人员分工,带电部位,现场布置的安全措施和工作的危险点及防范措施后,每个工作班成员在工作负责人所持工作票上签名,不得代签。P39 工作结束,工作负责人会同工作许可人进行验收,验收时任何一方不得变动安全措施,验收合格后做好有关记录和有关修试报告,资料,图纸等。P41 除第一种工作票和第二种工作票外,还有带点作业工作票,事故应急枪修单。事故应急抢修可不用工作票,但应使用事故应急抢修单。P46 该制度介绍了操作票使用的规定,填用操作票的要求,操作票的操作,操作的监护和复诵,操作票的管理等。P46 倒闸操作票填写规定:(1)使用操作票的范围:对1000V及以上的电气设备进行正常操作时,均应填写操作票。(2)倒闸操作由操作人员填写操作票。每张操作票只能填写一个操作任务。(3)操作票应填写设备的双重名称,设备的编号与设备的名称。P47-48 同一变电站的操作票应事先连续编号,操作票按编号顺序使用,作废的操作票,应注明“作废”字样,未执行的应注明“未执行”字样,已操作的应注明“已执行”字样。操作票应保存三个月。P48 五清:一是讲清,二是听清,三是问清,四是看清,五是点清。P48 1类缺陷:是紧急缺陷。2类缺陷:是重大缺陷。3类缺陷为一般缺陷。P50 任何缺陷发现和消除后都应及时,正确地记入缺陷记录簿中。P51 任何缺陷发现和消除后后都应及时,正确地记入缺陷纪录簿中。P51 设备一经合闸便带电运行的状态称热备用状态。P52 倒闸操作的五防:倒闸操作必须正确,不准发生误操作事故,否则后果不堪设想,要严格防止“误调度,误操作,误整定事故”发生。道闸操作一定要严格做到“五防”,即防止带负荷拉合隔离刀闸,防止带接地线(接地刀)合闸,防止带电挂接地线(接地刀),防止误拉合开关,防止误入带电间隔。保证操作安全准确。P53 倒闸操作的基本条件:1)有与现场一次设备和实际运行方式相符的一次系统模拟图(包刮各种电子接线图)2)操作设备应具有明显的标志,包刮:命名,编号,分合指示,旋转方向,切换位置的指示及设备相色等。3)高压电气设备都应安装完善的防误操作闭锁装置。4)有值班调度员,远行值班负责人正式发布的指令(规范的操作术语),并使用事先审核合格的操作票。5)下列情况应加挂机械锁。P54· 在操作过程中,发现误合隔离开关时,不允许将误合的隔离开关再拉开;发现误拉隔离开关时,不允许将误拉的隔离开关再重新合上,以防止带负荷拉,合隔离开关。(实操P314) 道闸操作必须由两人执行,其中一人对设备较熟悉者作监护人。P56 严禁带负荷拉,合隔离开关,所装电气和机械闭锁装置不能随意退出。P56-57 停电时,先断开断路器,后拉开负荷侧隔离开关,最后拉开电源侧隔离开关;送电时,先合上电源侧隔离开关,再合上负荷侧隔离开关,最后合上断路器。P57 填写操作票:值班长接受操作任务后,应立即指定监护人和操作人,操作票由操作人填写。

变压器声音异常判断

变压器声音异常判断 1、变压器正常运行,由于变压器交变磁场的作用,变压器会发出嗡嗡的声音, 这种声音低沉、而且比较有规律。 2、由于变压器安装、制造过程中造成紧固件螺栓等连接不牢或松动引起的变 压器声音异常,它的声音比较清脆,而且不均匀,通常发生在变压器某一部位,而不是整体,这种异常变化一般不会对变压器产生危害,运行人员可根据变压器异常声音发出的部位查找,如果是变压器外壳附件或螺栓松动可待机会处理。 3、由于变压器硅钢松动引起的变压器声音异常,声音尖锐、均匀,而且通常 由于硅钢片振动,硅钢片绝缘磨损后,会引起局部涡流发热增加,局部过热,我们可以从变压器气体在线监测仪气体含量或者产气率、变压器油的色谱分析总烃气体含量加以辅助判断,决定是否停用处理。 4、变压器局部绝缘击穿小电流放电会发出嗞嗞的声音,声音细小沙哑,我们 可以从变压器气体在线监测仪气体含量或者产气率、变压器油的色谱分析加以辅助判断,主要看乙炔气体的含量来决定是否停用处理。 5、变压器内部故障:如果发现变压器内部有汩汩的油沸腾的声音,并且伴随 变压器油温快速升高,判断为变压器内部严重短路故障而变压器保护未动时,立即停用变压器。 6、变压器过负荷:变压器过负荷后由于变压器电流增大,受变压器铁芯饱和 影响,变压器激磁电流增大更加明显,引起变压器声音异常升高。变压器本身允许短时过负荷运行,运行人员应加强监视。像我们的高压厂变或启备变可能会发生这种情况。 7、外系统单相接地的影响,特别是基波零序电流产生的磁通积极易引起变压 器铁芯饱和,三次谐波零序因变压器内部感应零序电流的去磁作用影响相对较小,但它们都会引起铁芯饱和,磁通波形畸变,励磁电流增大,引起变压器声音增大。这种情况在中性点接地变压器中反应比较明显,象6月20日发生的情况我们可以用切换#1、2主变中性点运行方式加以判断是否是系统引起,条件允许时可以适当降负荷或增加一部分负荷到中性点非接

变压器几种常见故障产生的原因及其处理方法

自爱迪生发明了电灯以后,电在人们生产、生活中的作用越来越重要。为满足人们各种用电需要,作为发电厂和变电站主要设备之一的变压器,不但能把电压降低为各级标准,而且能把电压升高为各级标准,进而将电能输送到各个不同的用电地区,这样有助于减少送电损失。 变压器几种常见故障产生的原因及其处理方法 袁世豪 (湛江中粤能源有限公司 广东 湛江 524099) 力运行人员应具备的基本技能,同时亦是其重点关注、研究的问题。 二、变压器故障产生的原因 1、自身原因 变压器在制造时,由于工艺不佳或者人为因素影响,而使得设备本身就存在着诸如焊接不良、端头松动、垫块松动、抗短路强度不足、铁心绝缘不良等问题。 2、运行原因 首先,变压器的超常负荷。变压器的长期超负荷工作,必然会使其内部零部件及连接件有着过高的温度,进而导致冷却装置不能正常运行,零部件受损。其次,变压器的使用不当。工作人员使用方式、方法不当,或者当设备出现问题时没有进行及时、正确维护,这必然加快变压器绝缘老化的速度。 3、线路干扰 线路干扰在致使变压器产生故障的所有因素中,它是最为重要的,其所引起的故障在所有故障中占有很大的比例。主要包括:在低负荷阶段出现的电压峰值、线路故障,合闸时产生的过电压,以及其他方面的异常现象 一、加强变压器故障及时、准确检修的必要性 在电力系统中占有至关重要地位的变压器,是电网传输电能的枢纽,它由油箱、油枕、铁心、线圈、绝缘导管、分接开关、散热器、防暴管、瓦斯继电器,以及热虹吸、温度计等附件组成,变压器运行、检修,及维护质量的高低,将直接影响电力生产安全和经济效益。 虽然变压器较于其他电力设备的故障率低,但据运行经验表明、相关数据显示,近几年电力系统变压器故障呈现出不断上升的趋势。按照故障发生的程度不同,故障有轻有重,当故障较轻时,虽然变压器能够继续运行,但若不及时处理,将会进一步损害其内部零部件或者外部辅助设备;当故障较重时,则直接影响变压器的正常运行,若不及时处理,将会损害设备的使用寿命,甚至发生安全事故。总之,变压器一旦发生故障,轻则影响电力系统的正常运作,并直接或间接地影响人民群众正常的生产、生活;重则带来较大的安全隐患及经济损失。因此,对变压器运行或停运后异常、故障问题的检修、确认与维护,是电 DOI :10.3969/j.issn.1001-8972.2011.03.032

变压器夏季高温时段运行温度过高现象的研究

变压器夏季高温时段运行温度过高现象的研究 发表时间:2018-06-06T10:41:10.420Z 来源:《电力设备》2018年第2期作者:徐添羽宋新微沈丁丁潘国华倪鹏飞 [导读] 摘要:在变压器的实际运行过程中,由于电磁场的存在,以及变压器中线圈内部电流的流动,不可避免的会出现电能的损耗,损耗的电能转化成热能进行扩散,最终引起变压器温度上升。 (国网浙江桐乡市区供电有限公司 314503) 摘要:在变压器的实际运行过程中,由于电磁场的存在,以及变压器中线圈内部电流的流动,不可避免的会出现电能的损耗,损耗的电能转化成热能进行扩散,最终引起变压器温度上升。由于电力变压器中存在电磁场和各线圈电流的流动而形成了电能损耗,进而转化为热能不断扩散,导致变压器各个部位的温度升高。本文主要从夏季高温时段变压器温度过高现状出发,分析可能引起变压器运行温度过高的原因,探究如何有效进行降温处理。 关键字:变压器;高温时段;温度过高 根据《运行规程》要求,油浸自冷变压器顶层油温超过80℃时,温度每增加6℃,变压器老化加倍,使用寿命缩短一半。主变运行温度超过80℃会加速主变老化,损害变压器使用寿命,故超温报警设置为80℃。变压器的构成材料中有铜与铁,在运行过程中必然会出现铜损和铁损,损耗最终都会转化成热能,因此变压器的铁芯和烧组在长时间使用后会出现温度上升的现象。加上烧组中有电流通过,也会引起发热。为了实现热平衡,变压器会向外界自发的进行散热,保持变压器各个部门的温度稳定。一旦变压器的各个部件长期处在高温状态,并且温度超出规定的限值,尤其是变压器中的油温,如果比超温报警温度80℃高,还在不断升温时,变压器的绝缘很容易出现损坏,一旦遇到高电压就可能会被击穿,最终造成电路故障,甚至引发安全事故。因此在变压器运行过程中,要做好散热工作,确保其温度不超过限定温度。在夏季高温时段,变压器的温度如果出现过高现象,除了与外部环境有关,还可能与变压器的散热装置、运行电压、负荷等因素有关联,需要有针对性的开展降温工作,确保变压器安全运行。 一、变压器夏季高温时段运行现状和存在问题 据统计在夏季高温期间,110kV变压器在高负荷情况下,存在主变超温运行的问题,从2015年至2017年,52台主变压器超温报警共计158次,这在一定程度上影响了主变压器的安全可靠运行,并且影响设备使用寿命,增加电网运行风险。 据现场调查结果,全年电网供电高负荷运行时间集中在夏季7-9月,伴随而来的是变压器高负载率运行,进而变压器运行温度升高,导致超温报警发生。因为每天不同时间段的供电负荷和天气温度的双重影响,所以超温报警天的时间段主要集中在上午10点-下午3点。 二、变压器温度升高的原因 (一)内部原因 (1)自然的内部损耗 变压器在运行过程中会出现自然的内部消耗,最终都会转化成热量,并且通过热辐射、热传导等方式向外部进行散热,如果散热与发热处于平衡时,温度一旦散热与发热出现不平衡,那么温度将会上升,出现温度过高现象,在夏季高温时间段受外部环境的影响,更加明显。 (2)分接开关接触不良 在变压器运行中,如果分解开关存在开关弹簧压力不够,造成接点接触面小过小,或者接触点存在积尘、油膜等造成接触电阻过大,引起接点过热,都会使得变压器温度上升,这种情况尤其容易发生在倒换分接开关或变压器过负荷运行状态下。 (3)绕组匝间出现短路 如果在变压器的绕组匝中存在某几匝绝缘老化或者受外力受损,那么将会形成闭合的短路环流,并且匝数月少,闭合短路环流中产生的温度就越高,情况严重的时候还可能会将变压器烧毁,还有可能出现弧光,冷却油受此影响受热,影响整个变压器的温度。 (4)铁芯局部过热 变压器中的铁芯主要是具有绝缘性能的硅钢片,如果受到外力损伤,或者长期使用中铁芯的绝缘性能出现老化,那么铁芯中的涡流会变大,造成铁芯局部发热,情况严重的话会出现温度过热,影响油温温度,造成温度过高。 (5)变压器内油过少或者散热管出现阻塞 变油是变压器内部的主要绝缘体,不仅能够起到灭孤、绝缘的作用,还在很大程度上起到自我冷却的作用,当变压器内部的油过少时,发生在油中的热循环受阻,冷却速度达不到正常的速度,油温上升,造成变压器运行温度过高。 (二)外部原因 (1)变压器散热系统故障 一般来说,变压器除了配备有散热管,还配置有强迫风冷散热与水循环散热等散热系统,一旦散热系统出现故障,尤其是在夏季高温时间段,变压器将会因为散热条件过差而出现运行温度过高。 (2)变压器进出风口出现严重积尘甚至阻塞 变压器主要通过进出风口来实现空气对流,当过多的灰尘沉淀在出风口,空气对流受阻,变压器在同样的发热条件下无法通过对流有效向空气进行散热,散热条件变差,将会引起变压器运行温度上升。 三、预防变压器温度异常的具体措施 夏季高温时段遇到变压器温度过高的现象,需要及时做好降温处理,根据温度过高的原因进行细分,可以分为两个处理方向:(一)变压器运行出现异常造成高温 如果是因为运行异常造成高温,可以从以下四个方面进行处理: 1、根据变电站的实际情况选择合适容量与型号的变压器,尽可能的避免使用损耗参数低的变压器,在选择容量时要留有一定的余地。在多个变压器并列运行的情况下要做好环流的防范工作。 2、对变压器的温度要保持关注,一旦发现温度不对就需要采取有效的措施进行快速降温的同时,检测负载、油温、油位等是否正常,逐一进行故障排查。 3、借助红外线开展监测,对于漏磁造成的涡流、套管出口部分导体接触不良问问题都是肉眼看不到,需要借助相关的设备进行检

(完整word版)变压器运行中的各种异常及故障原因分析

变压器运行中的各种异常及故障原因分析 (一)声音异常 正常运行时,由于交流电通过变压器绕组,在铁芯里产生周期性的交变磁通,引起硅钢片的磁质伸缩,铁芯的接缝与叠层之间的磁力作用以及绕组的导线之间的电磁力作用引起振动,发出的“嗡嗡”响声是连续的、均匀的,这都属于正常现象。如果变压器出现故障或运行不正常,声音就会异常,其主要原因有: 1. 变压器过载运行时,音调高、音量大,会发出沉重的“嗡嗡”声。 2. 大动力负荷启动时,如带有电弧、可控硅整流器等负荷时,负荷变化大,又因谐波作用,变压器内瞬间发出“哇哇”声或“咯咯”间歇声,监视测量仪表时指针发生摆动。 3. 电网发生过电压时,例如中性点不接地电网有单相接地或电磁共振时,变压器声音比平常尖锐,出现这种情况时,可结合电压表计的指示进行综合判断。 4. 个别零件松动时,声音比正常增大且有明显杂音,但电流、电压无明显异常,则可能是内部夹件或压紧铁芯的螺钉松动,使硅钢片振动增大所造成。 5. 变压器高压套管脏污,表面釉质脱落或有裂纹存在时,可听到“嘶嘶”声,若在夜间或阴雨天气时看到变压器高压套管附近有蓝色的电晕或火花,则说明瓷件污秽严重或设备线卡接触不良。 6. 变压器内部放电或接触不良,会发出“吱吱”或“劈啪”声,且此声音随故障部位远近而变化。 7. 变压器的某些部件因铁芯振动而造成机械接触时,会产生连续的有规律的撞击或磨擦声。 8. 变压器有水沸腾声的同时,温度急剧变化,油位升高,则应判断为变压器绕组发生短路故障或分接开关因接触不良引起严重过热,这时应立即停用变压器进行检查。 9. 变压器铁芯接地断线时,会产生劈裂声,变压器绕组短路或它们对外壳放电时有劈啪的爆裂声,严重时会有巨大的轰鸣声,随后可能起火。 (二)外表、颜色、气味异常 变压器内部故障及各部件过热将引起一系列的气味、颜色变化。 1. 防爆管防爆膜破裂,会引起水和潮气进入变压器内,导致绝缘油乳化及变压器的绝缘强度降低,其可能为内部故障或呼吸器不畅。

变压器温度计相关知识

变压器温度计相关知识 由于变压器的使用寿命取决于它的绕组温度,绕组温度对绝缘材料起着决定性的作用。DL/T 572—1995《电力变压器运行规程》规定变压器的上层油温,一般不得超过95℃。上层油温如果超过95℃,变压器绕组的温度就要超过绕组绝缘物的耐热强度,从而加速绝缘物的老化。故变压器运行中,一般规定了85℃这个上层油温的界限。 为防止变压器油温过高,加速变压器的老化。故变压器一般安装温度计,油面温度计用来测量变压器油箱上层油温,监视变压器运行状态是否正常。 早期变压器一般只安装一只温度计,最近几年变压器油面温度计一般安装两只,主要对于容量较大的变压器,油箱内空间较大,变压器的发热和散热也是不均匀的,在变压器内不同的区域,温度相差可能较大,为了安全起见,需要较准确地测出变压器的油温,所以有时在变压器的长轴两端各设个信号温度计来检测其油温,以确保变压器更安全地运行。这样也可当其中一只温度计故障,由于一时无法安排停电处理,而无法监测变压器的油面温度。 这一年随着绕组温度计技术成熟,更在在1110kV安装绕组温度计,直接监测绕组温度计。 一、温度计的原理 变压器温度计是用来测量油箱里面上层油温的,起到监视电力变压器是否正常运行的作用。温度计按变压器容量大小可分为水银温度计、压力式(信号)温度计、电阻温度计三种测温方法。 通常800kVA以下的电力变压器箱盖上设有水银温度计座。当欲以水银温度计测量油面温度时,旋开水银温度计水银温度计是膨胀式温度计的一种,水银的冰点是:-38.87℃,沸点是:356.7℃,用来测量0--150℃或500℃以内范围的温度,它只能作为就地监督的仪表。用它来测量温度,不仅比较简单直观,而且还可以避免外部远传温度计的误差。使用水银温度计时应注意以下几点:座上的盖子(运输时防雨用的)在座内注满变压器油,将水银温度计插入进行测量。

变压器油介损异常分析及处理

92 | 电气时代2006年第9期 EA 应用与方案供配用电 变 压器油在交变电场作用下 统称为介质损耗因数(通常用tan 原 因 分 析 1.溶胶杂质的影响 变压器在出厂前油品或固体绝缘材料中存在着尘埃 投入运行一段时间后 一般仅在1010 扩散慢 粒子可自动聚结处于非平 衡的不稳定状态油中 存在溶胶后 从而导致油tan 电压的影响 造成分散体系在各水平面上的浓度不 等 底部浓度较大 则上层油的介损值较小 取样部位的不同 直接影响变压器油介质损耗的测定 蚊子和细 菌类生物侵入所造成的 因此 而 微生物胶体都带有电荷 变压器油处在全密封 油中的微 生物厌氧 特别是在 无色透明玻璃瓶中放置时 运行油温不同 油温在50 范围内 运行 所以介损相对增加比较快 一般冬季的 介质损耗因数比较稳定 可以通过油中的生物化验来确定 线圈铜导线严重 过热或烧损等都会使铜离子溶入到油中 导致介损的升高 当油中含水量较低(如30 对油的tan 其介质损耗因数急剧增加 目前有的变压器制造厂家取 消了净油器(热虹吸器)减少 了渗漏油点 尽管 目前变压器油是通过油枕内的胶囊与外界空气是隔绝的 但变压器上装有净油器(热虹吸器)更有利于 绝缘油质量的稳定 吸出 从而减缓了绝缘中水分的 增加对没有安装净油器(热虹吸器)的变压器油介损增 大 制造厂家的油介损测试设备进行油样试验 时 电桥的准确度达不到要求或温控装置加热过快 由于充电导体对绝缘油的介质损耗影响十分显著净化程度和变压器的运行 状况

电气时代2006年第9期 | 93 EA 应用与方案 供配用电应避免取样容器受到污染 保证空杯的介损值并在湿度小的清洁的试 验室内进行加热到终点温度 后立即测量 一般认为 最好在达到温度平衡后立即测量 需用两台介损仪进行对比试验 还应根据其他试验项目进 行综合判定应采用再生处理的 方法进行处理 恢复或改善油的理化指标 吸附剂法适合于处理劣化程度较轻的油 接触法系采用粉状吸附剂(如白土 而渗滤法即强迫油通 过装有颗粒状吸附剂(如硅胶 进行渗滤再生处理 当遇到油介损升高时 油经真空 净化处理后但油 的介质损耗因数值仍较高 而且与许多因数有关 大多数变压器油介质损耗因数增大的 原因是油中溶胶杂质等影响所致 9 能通过压板滤油机的滤纸 往 往不能达到目的 通常采用接触法和渗滤法再生处理可以得到良好效果 801 又能使油介损降到合格范 围 801 4%比例进 行浸泡 801 60  最后用压板式滤油机将浸泡后的变压器 油进行过滤后 使用AL2O3 吸附剂进行油再生时 油从变压器本体出来 真空滤油机 最后到油罐当中 将本体中的 油全部倒入油罐中 吸附 将油温加热至70  该滤油纸形状 及大小与普通滤油纸相同 四周用缝纫机缝好皱 纹纸内有丝棉 首先将药粉滤油纸放入烘箱内干 燥油温控制在 70  待油全部过滤一遍后 随着过滤遍数的增多 经过6 可将换纸时间固定为8 h/次 就会使油达到较好的处理效果 就采用硫酸 硫酸处理能除去油中多种老化产物 硫酸 主要包括沉降1)沉降阶段 首先 沉降下来的水分和杂质从沉降罐底部排渣阀排出 加酸处理时 边加酸边搅拌 酸 渣分次排出加入白土前 预热温度一般为100 温度一般不超过60 则认为反应基本完全 从罐底排掉白土渣 EA (收稿日期

变压器过热故障原因分析及处理对策

变压器过热故障原因分析及处理对策 一、变压器绕组过热分析 近十几年来,为降低变压器损耗,各制造厂先后采用了带有统包绝缘的换位导线绕制变压器绕组。由于早期国内对换位导线生产技术尚未全面掌握,使之采用换位导线的变压器在运行十年左右出现了统包绝缘膨胀。段间油道堵塞、油流不畅,匝绝缘得不到充分冷却,使之严重老化,以致发糊、变脆,在长期电磁振动下,绝缘脱落,局部露铜,形成匝间(段间)短路,导致变压器烧损事故。 另外,绕组本身的质量不良也会导致过热现象。 二、分接开关动、静触头接触不良引起的过热 在有载调压变压器中,特别是调压频繁、负荷电流较大的变压器,在频繁的调动中会造成触头之间的机械磨损、电腐蚀和触头污染,电流的热效应会使弹簧的弹性变弱,从而使动、静触头之间的接触压力下降。接触压力减小,会使触头之间的接触电阻增大,从而导致触头之间的发热量增大,由于发热又加速触头表面的氧化腐蚀和机械变形,形成恶行循环,如不及时处理,往往会使变压器发生损坏事故。 在无载调压变压器中,分接开关接触不良,也会使其表面腐蚀、氧化,或触头之间的接触压力下降使接触电阻增大,而形成变压器的过热性故障。 三、引线故障引起的过热故障 (1)引线接头过热:

引线接头(将军冒)过热也是多发性故障。例如,东北电网某局的一台主变压器,总烃为455.9ppm,乙炔为4.23ppm。吊检发现66KV A相套管穿缆引线过热,焊锡流出到夹件和压件上;有如,某台主变压器,B相套管头部发热,经检查,将军冒螺扣匹配不良,将螺扣烧坏5~6扣,造成过热。 (2)引线断股 某台DFL-6000/220型单相变压器,1990年5月开始发现色谱分析结果异常,热点温度可能高压1000℃,直到1993年5月进行大修时才发现,该变压器中性点套管内的引线有两股烧断、三股烧伤(共35股,240mm2),其原因是在1989年5月检修中,更新该中性点套管时引线(铜辫子)向上拉比较别劲,使引线外层半迭绕白布带脱落,裸辫子引线与套管内的铜管内壁相碰,发生分流、放电、过热。四、冷却装置异常引起变压器过热 (1)冷却装置风路堵塞 冷却装置风路堵塞引起的过热现象也时有报道。例如,某台OSFPSL-120000/220型变压器,运行11年均正常。1992年8月28日油温突然上升,由原来的42℃左右增加到90℃左右。与同容量的变压器比较温升相差很大,但电气试验结果正常。通过对外观检查发现,风冷却器散热管的翅片间积满了灰尘(长期运行从未清洗过),已将间隙堵死,电风扇的风已无法吹到散热管上,致使变压器的温度不断升高。经冲洗后油温一直在40℃左右。有如,某台DSFPSL-90000/220型变压器,上层油温偏高,曾达80~90℃,检查发现散热器风道缝隙

主变异常处理

主变异常处理;一.声音异常的处理:;1)当变压器内部有“咕嘟咕嘟”水的沸腾声时,可能;2)变压器声响明显增大,内部有爆裂声时,立即断开;3)当响声中夹有爆裂声时,既大又不均匀,可能是变;4)响声中夹有连续的、有规律的撞击或摩擦声时,可;二.油温异常升高的处理:;(一)变压器油温异常升高的原因;1)变压器冷却器运行不正常;2)运行电压过高;3)潜油泵故障或检修 主变异常处理 一.声音异常的处理: 二. 1) 当变压器内部有“咕嘟咕嘟”水的沸腾声时,可能是绕组有较严重的故障或分接开关接触不良而局部严重过热引起,应立即停止变压器的运行,进行检修。 2) 变压器声响明显增大,内部有爆裂声时,立即断开变压器断路器,将变压器转检修。 3) 当响声中夹有爆裂声时,既大又不均匀,可能是变压器的器身绝缘有击穿现象,应立即停止变压器的运行,进行检修。 4) 响声中夹有连续的、有规律的撞击或摩擦声时,可能是变压器的某些部件因铁芯振动而造成机械接触。如果是箱壁上的油管或电线处,可增加距离或增强固定来解决。另外,冷却风扇、油泵的轴承磨损等也发出机械摩擦的声音,应确定后进行处理 二.油温异常升高的处理:

(一)变压器油温异常升高的原因 1) 变压器冷却器运行不正常。 2) 运行电压过高。 3) 潜油泵故障或检修后电源的相序接反。 4) 散热器阀门没有打开。 5) 变压器长期过负荷。 6) 内部有故障。 7) 温度计损坏。 8) 冷却器全停。 (二)油温异常升高的检查 1) 检查变压器就地及远方温度计指示是否一致 2) 检查变压器是否过负荷。 3) 检查冷却设备运行是否正常。 4) 检查变压器声音是否正常,油温是否正常,有无故障迹象。 5) 检查变压器油位是否正常。 6) 检查变压器的气体继电器内是否积聚了可燃气体。 7) 必要时进行变压器预防性试验。

变压器油面绕组温度计的基本知识

1、这里着重介绍油面温度计,因为绕组温度计的温度指示并非真实绕组温度体征,而是通过油顶层温度与电流互感器小信号叠加而成的模拟信号。 2、绕组温度计的信号介绍: B W Y -80 4 A J (TH) 湿热带防护 J、机电一体化、输出(4-20)mA A、铂电阻 开关数量 线性刻度 油面 温度计 变压器 BWY-804AJ(TH)油面温度计:仪表内装有四组可调控制开关,可分别用于变压器冷却系统控制及讯号报警。同时能输出与温度值对应的(4-20)mA电流信号和Pt100铂电阻值,供计算机系统和二次仪表使用。 组成:主要由弹性元件、传感导管、感温部件、温度变送器、数字式温度显示仪组成。由弹性元件、传感导管和感温部件构成的密封系统内充满感温介质,当被测温度变化时,感温部件内的感温介质的体积随之变化,这个体积增量通过传感导管传递到仪表内弹性元件,使之产生一个相对应的位移,这个位移经机构放大后便可指示被测温度,并驱动微动开关,输出开、关控制信号以驱动冷却系统,达到控制变压器温升的目的。通过嵌装在一次仪表内的变送器,输出(4-20)m A标准信号,输入计算机系统和二次仪表,实现无人电站管理使用说明: 1、仪表在运行中必须垂直安放。 2温包安装:使用前必须确认温度计座内注满了油且油面能够完全浸没PT100。 3、温包与表头间的软管必须有相应的固定,间距在300mm为宜。弯曲半径不得小于R100mm。多余的软管应按大于直径Φ200mm盘成圆,固定在变压器本体上。(毛细管内为惰性液体) 4、调整温度表必须在专用设备特定温度下进行。 5、切忌用手随意拨动表指针动作。 常见故障: 1、表盘指针不动作且回零---毛细管内液体泄露,该故障为不可修复故障。 2、数显显示异常:极性接反,变送器故障 绕组温度计的工作原理: 变压器绕组温度计的温包插在变压器油箱顶层的油孔内,当变压器负荷为零时,绕组温度计的读数为变压器油的温度。当变压器带上负荷后,通过变压器电流互感器取出的与负荷成正比的电流,经变流器调整后流经嵌装在波纹管内的电热元件。电热元件产生的热量,使弹性元件的位移量增大。因此在变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。变压器绕组温度计指示的温度是变压器顶层油温与线圈对油的温升之和,反映了被测变压器线圈的最热部位温度。 绕组温度计的档位选定: 1、选定档位需要的几个参数:变压器一次额定电流、CT变比、铜油温差 2、计算公式:IP=I*/CT变比,得出二次互感器额定电流.根据铜油温差查曲线得到IS

变压器油温测量及检查处理

关于变压器的油温测量及检查处理法则 曾振华 华东交通大学电气与电子工程学院南昌330013 摘要:变压器的绝缘老化,主要是由于温度、湿度、氧化和油中分解的劣化物质的影响所致。但老化的速度主要由温度决定,绝缘的工作温度愈高,化学反应进行的愈快,绝缘的机械强度和电气强度丧失的愈快,绝缘老化速度愈快,变压器使用年限也愈短。实际上绕组温度受负荷波动和气温变化的影响,变化范围很大。为保证变压器的连续安全供电,变压器必须保证在一定温度下进行因此,对变压器的温度进行实时采集及检查处理,使其维持在一定的范围内,对变压器的寿命有重要的意义。 关键字:变压器温度铂电阻检查处理 1 变压器散热原理分析 变压器在运行时产生的损耗以热的形式通过油、油箱壁和散热器散发到周围的空气中。热量的散发通过导热、对流和辐射三种形式。从绕组和铁心的内部到其表面热量主要靠导热形式散发,从绕组和铁心表面到变压器油中热量主要靠对流的形式散发。散发到变压器油中的热量使油箱中的变压器油温度上升、密度下降、产生热浮力,而变压器油在热浮力的推动下,从油箱上部进人连接油管,通过油管进人散热器。变压器油在散热器中经过和外面空气的热交换,使散热器中的变压器油温度降低,从油箱下部进人连接油管,通过油管重新进入变压器油箱,形成自然循环。变压器的散热量可由式(1)确定: 式中,Ql为单位热负荷;Q为变压器的损耗;F变压器的总散热面积;C1与变压器性本身参数有关的常数;ty即变压器温升。 2 系统硬件设计 电力变压器运行中,对其油温的测量是维护电力变压器安全运行的基础和关键。电力变压器冷却系统的投退和超温报警等都由其安装的温度控制器来实现。 本变压器油温测量系统以MSP430F449为主控制器件,它是TI公司生产的16位超低功耗特性的功能强大的单片机。MSP430单片机内部具有高、中、低速多个时钟源,可以灵活的配置给各模块使用以及工作于多种低功耗模式,大大降低控制电路的功耗提高整体效率。首先,电力变压器油温经过传感器和信号调理电路采集放大为适合A/D转换的电压值。A /D转换器对模拟信号进行采样并转换位数字信号后经MSP430作预处理。借助MSP430 单片机和主机(上位机)之间的串行通信完成人机交互监测,系统框图如图1

关于变压器油处理的方法探讨

关于变压器油处理的方法探讨 发表时间:2016-12-14T14:37:07.157Z 来源:《电力设备》2016年第20期作者:杨立新[导读] 变压器安装是变电站安装工艺中最核心的一个部分,变压器油的状况又是变压器安装中最重要的一项指标。 (中设工程机械进出口有限责任公司) 摘要:变压器油是流动的液体,可充满油箱内各部件之间的气隙,排除空气,从而防止各部件受潮而引起绝缘强度的降低。变压器本身绝缘强度比空气大,所以油箱内充满油后,可提高变压器的绝缘强度。变压器油还能使木质及纸绝缘保持原有的物理和化学性质,并对金属起到防腐的作用,从而使变压器得绝缘保持良好的状态。此外,变压器油在运行中还可以吸收绕组和铁芯产生的热量,起到冷却的作用。所以变压器油的作用是绝缘和冷却。变压器油需要按国家质量标准检验合格后方可使用,如果达不到国家质量标准要求,需进行处理。介绍了变压器油从开始过滤到抽真空注入整个阶段过程控制的一些流程及工艺,阐述了通过使用这些方法来提高施工进度,有效地保证施工质量,减轻劳动强度。 关键词:变压器油;过程控制;过滤 变压器安装是变电站安装工艺中最核心的一个部分,变压器油的状况又是变压器安装中最重要的一项指标。随着电力技术的发展,电压等级越高变压器用油量越大,油的试验项目要求越多,验收标准也越来越高(见表1),在工期紧,工作量大、滤油设备有限的变压器油处理中,极易造成返工。因此,探讨变压器油的处理技术成为一项重要的课题。本文主要给出了普通变压器、直流变压器以及特高压变压器油从开始过滤、注入以及抽真空注入整个阶段的过程控制,以确保变压器用油各项指标的合格性。 1变压器油初始过滤阶段 1.1变压器滤油机和管道材料的选用及清洁 在500kV及以上的变压器油处理中使用的滤油机参数为:油处理能力为12000L/h,过滤器的粗滤芯为0.25mm,精过滤芯为1μm,体积为1869L,4组加热器功率为180kW。滤油机联管使用的为钢丝网骨架保温可伸缩性复合管。在使用滤油设备前,先对滤油机、联管整个系统进行30min以上抽真空除湿处理,再进行30min以上1t左右的热油循环过滤处理,取样合格后(含水量、电气强度)才能进行正常过滤处理。 1.2变压器油过滤时并联油路的设计 按单台变压器(换流变)注入100t油考虑,需准备8~9个15~20t油罐,到达现场的油罐一般布置在变压器附近,呈两行均匀排列,油罐的出口均朝向内侧布置在一条直线上,每个油罐的出口处安装控制阀对油的流入、流出进行单体控制,控制阀出口接一个T型三通接口,所有油罐的接口通过油管连接在一起,留一个空油罐作为滤油时油的转换使用。这样实现了油在过滤时,可以按需要进行任意油罐内油的过滤,避免了频繁拆除管道的繁琐。 1.3变压器油的防潮控制 在南方的天气湿度很大,已滤好油罐中油的含水量搁置一段时间后往往不能满足要求,处理方法为:在单罐油过滤时,油罐上的呼吸器保持通畅,当某个油罐过滤结束,油温降至常温后,可立即将油罐顶部的呼吸器连同顶盖一起用多层塑料布包紧,以防止空气中的水分渗入罐中。 1.4变压器油颗粒度的控制 一般来讲变压器油颗粒度是最难以控制的,在油样的其他值满足要求,仅颗粒度值不满足要求的前提下,可以在不投入滤油机的加热装置的情况下,进行反复过滤。防止油加热时间过长,造成油的粘度增加,而降低了油的品质。 特高压变压器油对颗粒度的控制,在使用普通滤油机过滤后还使用了精滤器进行再过滤,选用的精滤器参数为:油处理能力为12m3/h,运行温度为40~75℃,设计压力为0.4MPa,精滤器的系统分4级过滤,后3级过滤采用绝对过滤精度的滤材进行过滤。 1.5变压器油取样的控制 变压器油取样也是非常重要的一个环节,往往因为取样的方法不适宜,而造成油样的指标不合格。取油样一般适宜在晴朗天气,上午11:00至下午14:00之间进行。先放掉最初的油约1000mL进行放油油嘴的清洗,再取油进行取样瓶的清洗。取样时宜搭建简易的塑料棚进行防护,取样的人员2人为宜,周围10m内不宜有人走动,并禁止进行任何其他作业,以防止周围的扬尘影响颗粒度数值的控制。取样时操作人员不仅要将手部清洗干净,衣袖扎紧,在取样时还宜减缓呼吸。取变压器本体油样可用大瓶、小瓶、针管分别进行取样,大瓶的油样可用于简化分析取样,小瓶可用于颗粒度分析取样,针管可用于含气量、微水、色谱的分析取样。 2变压器抽真空注油阶段 2.1变压器油注入时排气阀和真空压力计的设计 a)排气阀。用于排出变压器油注入前管道内的空气。具体做法为:关闭注油阀,打开排气阀,打开滤油机,将油罐中的油缓缓注入连通变压器的油管内,在变压器油快到油管的底部入口时,将进油速度减缓,油面产生的许多气泡夹杂着油沫通过放气阀排出管道外部。调整从滤油机出口到变压器入口之间的油管,确保油管内的空气均被放气阀排出管外。

变压器油温异常的故障分析及处理方法

变压器油温异常的故障分析及处理方法 xhf0293创建于2007-7-10 17:05:25 阅读次数:138 标签:变压器油温异常 摘要:发现在正常条件下,油温比平时高出10摄氏度以上或负载不变而温度不断上升(在冷却装置运行正常的情况下)测可判断为变压器内部出现异常。主要为: 内部故障引起温度异常。其内部故障,如绕组匝 变压器气味、颜色异常的故障分析及处理方法 xhf0293创建于2007-7-10 17:04:50 阅读次数:76 标签:变压器气味、颜色异常 摘要:防爆管防爆膜破裂:防爆管防爆膜破裂会引起水和潮气进入变压器内,导致绝缘油乳化及变压器的绝缘强度降低。 套管闪络放电:营管闪络放电会造成发热导致老化,绝缘受损甚至引起爆炸。 变压器声音异常的故障分析及处理方法 xhf0293创建于2007-7-10 17:04:20 阅读次数:172 标签:变压器声音异常 摘要:变压器在正常运行时,会发出连续均匀的“嗡嗡”声。如果产生的声音不均匀或有其它特殊的响声,就应视为变压器运行不正常,并可根据声音

的不同查找出故障,进行及时处理。主要有以下几方面故障: 电力系统变压器调压方式及调压范围的选择规定 xhf0293创建于2007-6-25 16:57:26 阅读次数:457 标签:变压器调压方式调压范围 摘要: 1 各级变压器的额定变压比、调压方式、调压范围及每档调压值,应满足发电厂、变电所母线和用户受电端电压质量的要求,并考虑电力系统10~15 年发展的需要。 2 升压变压器高压侧的额定电 震级烈度为七级以上地区的变压器防震措施规定 xhf0293创建于2007-6-21 10:16:10 阅读次数:81 标签:变压器防震措施 摘要: a.电力变压器应有固定措施,对大、中型变压器应在上部拉线,有滚轮的可将滚轮拆除,还应将底盘固定于轨道上; b.电力变压器套管用软导线连接时,应适当放松;用硬导线连接时,应将软连接过渡 强迫冷却变压器的运行条件 xhf0293创建于2007-6-11 8:45:26 阅读次数:75 标签:变压器

电机运行时温度过高的原因

电机运行时温度过高的 原因 Hessen was revised in January 2021

电机运行时温度过高的原因,大致归纳为如下几个方面: (1)修过程中身故障引起的原因 ①定子绕组匝间或相间有短路故障,电流增大而发热。个别线圈局部有故障可以重新包扎绝缘,如果绕组整体绝缘老化发黑,必须重绕大修。 ②定子绕组有短路或并联绕组中某支路短线,泰州电机维修过程中引起三相电流不平衡增大损耗造成绕组过热。 ③将Δ形接成Y形,或Y形接成Δ形,在额定负载运行时,会使电机过热,要改正过来。 ④笼型转子段条引起电流过大而发热,建议改为铜笼或补焊。 ⑤定、转子扫膛、相擦,引起电机发热,因扫膛或相擦等于增加点击负载。解决办法是检查轴承,损坏的轴承要更新,另外检查电机装配质量,必要时要重新进行装配 (2)电方面引起的原因 ①电源电压高,超过电机额定电压的10%以上,引起电机铁损耗增加,使电机发热。 ②电源电压过低,低于电机额定电压的5%以上,电机在额定负载运行时会发热。泰兴电机维修解决办法是调整变压器分接开关的档次,把电源电压调整到正常的范围内。 ③过程中三相电源电压不平衡,相间电压不平衡度超过5%,引起三相电流不平衡而使电机发热。 ④缺相运行。 (3)负载方面 ①如果因为负载过大,泰州电机维修提醒应减轻负载或更换容量合适的电机。 ②启动过于频繁。 ③机械负载有故障。 (4)通风散热不良方面 ①电机通风道堵塞,应及时清扫。 ②绕组表面有灰尘和油污,影响散热,应及时清理。 ③风机故障。 ④环境温度过高,应采取降温措施。 电机过热处理办法: 1、负载过重。减轻负载或更换大的电机。 2、电机风扇损坏。更换。 3、电机轴承缺油或损坏,造成阻力增大或转子扫堂。加油或更换。

变压器油的处理和再生

变压器油的处理和再生 1 变压器油的过滤 1.1 当油化验酸值符合标准,而其它指标有部分不符合标准时,应进行滤油处理,使油达到标准规定的要求方为合格。滤油的方法可根据油的情况,采用压力式滤油机或油处理设备进行。过滤时主要是除支油中的水份和杂质。当处理油量大或者要除去油中大量水份时,采用油处理机进行曲,一般情况下采用压力式滤油机进行。 1.2 滤油时按滤油机的操作规程进行。用压力滤油机时,油温最好在40℃-60℃,用油处理机时,油温最好在60℃-80℃。滤油时,对油应进行2-3个循环,不满足要求时,还应继续进行。滤油时滤油纸必须先干燥,新油纸在100℃要干燥8小时以上,旧油纸在85℃-95℃范围内必须干燥24小时以上。油纸要求是中性的。在空气相对湿度超过70%时,以及雨雪天气不能进行滤油工作。用压力式滤油机滤油时,正常时压力表指示应在480Kpa以下,若超过490Kpa时,说明油纸已饱和或堵塞,要停机检查,油纸脏时,应更换。 1.3 滤脏油时,要一天清洗一次滤油机,一般情况下每隔三天清洗一次滤油机。滤油时,应在滤油处至少放置两只灭火器,工作人员应会使用灭火器,滤油机上应写“禁止烟火”字样或挂上“严禁吸烟”的标示牌。所有擦洗用的棉纱应妥善保管。 1.4 油的过滤起止时间应记入档案。 2变压器油的再生 当油的酸值不合要求时,采用滤油机过滤是不能解决问题的,必

须经过再生还原,使油恢复原有性能。将油里所含的酸除去,一般是利用表面吸附力强的吸附剂或利用酸—白土洁进行处理。利用吸附剂除酸有接触法和过滤法两种。过滤法是让油通过吸附剂的过滤器;接触法是把油加热和吸附剂的细粉仔细均匀地搅拌,然后澄清并过滤。

变压器油色谱异常分析及处理_图文(精)

变压器油色谱异常分析及处理 (陕西延安) 摘要:介绍了延安发电厂3#主变压器油色谱分析数据超标后的检查、试验、分析判断及处理。 关键词:变压器;色谱;分析;处理 延安发电厂3#主变压器(型号SFSb-20000/110,额定容量20MW),在8月13日的油样色普分析结果中,发现乙炔含量为6.51ppm,超过注意值5.0ppm,引 起注意,及时汇报加强监督,为了进一步判断分析,在8月17日,又取油样送检,分析结果仍然是油样不合格,且乙炔含量增长较快,由6.5 1ppm 增长到7.26 ppm,在8月18日,再次送检油样,分析结果仍然是油样不合格,且乙炔含量增长较快,增长到11.76 ppm,根据三比值计算编码为102,判断设备内部存在裸金属放电故障,及时汇报,立即退出运行安排检查。 1 设备修前测量试验情况 1.1变压器油气相色谱分析报告 采样时间气体组分 (uL/L) H 2 CO CO 2 CH4 C 2H6 C 2H4 C 3H8 C 2H2 C 3H6 C 1+C2 86.95 16281514 6 5

.13 6.32 7.95 .77 .77 1.31 .51 5.36 8 .17 13.35 22 1.87 275 5.66 5 .66 2 .22 4 2.82 7 .26 5 7.96 8 .18 60.6 22 5.75 341 6.01 1 1.57 1 .82 5 4.3 1 1.76 7 9.45 8 .20 64.82 21 7.14 359 1.95 1 4.34 2 .31 6 5.67 1 4.15 9 6.47 结论根据三比值计算 编码为102,判断设 备内部存在裸金属放 电故障,建议立即停 运检修。 以8月20日的数据为依据,利用三比值法对其故障进行判断: (1)C2H2/ C2H4=14.15/65.67=0.27,比值范围的编码为:1; (2)CH4/ H2=14.34/64.28=0.22,比值范围的编码为:0; (3)C2H4/C C2H6=65.67/2.31=28.42,比值范围的编码为:2; 通过三比值计算编码为102,初步判断其故障性质为高能量放电。 1.2在西北电研院专家的指导下,对变压器进行了修前检测、试验。绕组绝缘测试合 格;绕组直流泄漏电流测试合格;各绕组介质损耗测试合格;高压侧110kv套管介质

相关文档
相关文档 最新文档