文档库 最新最全的文档下载
当前位置:文档库 › 茂捷M8914非隔离LED驱动兼容矽力杰SY5824

茂捷M8914非隔离LED驱动兼容矽力杰SY5824

茂捷M8914非隔离LED驱动兼容矽力杰SY5824
茂捷M8914非隔离LED驱动兼容矽力杰SY5824

描述

①M8914是一款应用于LED照明的单级有源功率因数校正的降压型AC-DC恒流控制器,能够实现高功率因数和精准的输出电流。

②M8914内置了功率因数校正模块,通过恒定导通时间工作模式实现了很高的功率因数。准谐振开关模式的应用则减小了开关损耗,同时也降低了电磁干扰。

③M8914集成了多种保护功能,如输入过压保护、LED短路保护和开路保护、芯片过热保护和逐周期限流保护等。完善的保护功能极大的提高了系统的可靠性和安全性。

典型应用图

典型应用图

特征

?内置单级有源功率因数校正功能,PF>0.9

?精准的LED电流控制

?准谐振开关模式减小开关损耗,提高系统效率?输出电流精度±5%

?优异的线电压调整率和负载调整率

?极低的启动电流,典型值15μA

?可靠的LED开路/短路保护功能

?系统自动重启功能

?VCC过压保护/欠压保护

?逐周期限流保护

?芯片过温保护

?SOT-23-6封装

应用领域

适用于中小功率AC/DC离线式开关电源。

?AC-DC非隔离型LED照明

?球泡灯

?射灯

?日光灯管

引脚功能描述

引脚配置图

极限参数

注:如果器件工作条件超出上述各项极限值,可能对器件造成永久性损坏。上述参数仅仅是工作条件的极限值,不建议器件工作在推荐条件以外的情况。器件长时间工作在极限工作条件下,其可靠性及寿命可能受到影响。

芯片框图

应用信息

●描述

M8914是一款集成功率因数校正功能的单级降压型LED驱动芯片,通过专有的恒流控制技术实现了优异的恒流特性,可广泛应用于高性能LED照明系统。有源功率因数校正功能可大大降低对电网的谐波干扰,是一项绿色节能的技术。芯片工作于准谐振模式,可以实现很低的开关损耗,同时降低EMI干扰。

●恒流控制

M8914采用了专有的电流采样机制,通过辅助绕组检测,可以实现高精度输出恒流控制。输出电流的

大小由SEN脚外接电阻设定,计算公式如下:其中VREF是内部参考电压值。

●准谐振模式

M8914工作在准谐振模式,可以实现很低的开关导通损耗。开关MOSFET的漏源电压经由辅助绕组和电阻分压器的转换,可被INV引脚检测到。当电感电流降至零时,系统进入准谐振模式,开关MOSFET的漏源电压自由振荡。当漏源电压降至谷底时,开启开关MOSFET,因此实现了很低的开关导通损耗。

●功率因数校正

恒定导通时间工作模式使得M8914实现了极高的功率因数。在降压模式下,电感峰值电流可由下式计

算:

其中VIN表示正弦波形的输入线电压。由于VOUT,TON和LP是恒定值,故电感峰值电流跟随输入线电压变化,也呈现为一正弦波,其平均值是准正弦波,因此而实现了高功率因数

●多种保护功能

M8914集成了多种保护功能以增强系统的可靠性和安全性,包括输入过压保护、输出短路保护、LED 开路保护、过热保护和逐周期限流等。当异常情况发生时,系统将自动重启。如果异常条件依然存在,系统则反复重启检测,直到异常条件消除,芯片恢复正常工作。

电气参数(Ta=25o C,其余情况会做说明)(如无特殊说明,VIN=12V(注1),TA=25℃)

注1:先逐步增加VCC直到超过VVCC,ON,然后降至12V。

LED驱动电源产品灌胶的常见问题和处理方法

LED驱动电源产品灌胶的常见问题和处理方法 一、双组份灌封胶灌封过程中会出现的问题: 固化后的主剂太软/表面过粘 第一个方法:在60-80℃下快速固化1-2小时; 如果没有进一步的固化发生,可能的原因:混合比例不对、或者是在混合前主剂没有搅拌均匀。 如果主剂或者固化剂和其他的化学物质反应,(例如溶剂、脱膜剂、油脂或者其他未完全固化的主剂),这也会影响固化效果。 固化后只是部分很硬,而还留有很软的部分 如果主剂和固化剂混合后没有被搅拌均匀,则会出现这种情况。 重新做测试,把主剂和固化剂混合均匀,形成均匀的混合物后请将其倒入另外一个杯子后在搅拌一会在注入产品 固化后有气泡 气泡产生的主要原因: 1、搅拌时进入空气,在注入产品以及整个固化过程中空气没有完全被抽掉。现象:很小的气泡。 2、潮气和固化剂的反应产生了气体,现象:很大的气泡。 第一个原因产生气泡的解决方式: 建议在将主剂和固化剂搅拌在一起以后,对其抽真空。 预热要灌封的产品会有助于空气的逸出。 在温度湿度较低房间里固化以使空气有足够的时间逸出。 第二个原因产生气泡的解决方式: 下面有几种可能性是潮气和固化剂反应 a、主剂已经被使用过很多次,每次搅拌的过程中都有潮气混入。也有可能是因为包装的盖子没有盖紧。为了证明到底是什么原因,请按照上述的说明将主剂和固化剂在一个干燥的杯子里混合并将其放入烘箱里(60-80℃)干燥。如果气泡仍然会产生,则说明此时主剂已经变质,请不要再次使用。 b、灌封产品中包含太多的湿气,建议将产品预热后重新进行试验。 c、主剂和固化剂的混合物的表面和周围空气中的湿气反应。如果这样的话,请在干燥的环境中固化,如果产品允许的话,可以放升温后的烘箱里固化。 d、液态的主剂和固化剂混合物可能在固化前接触过其他的化学物质(如溶剂、脱膜剂、清漆、胶水等)。确保这些物质在下次试验前被去除。 二、改变主剂的性能: 固化时间/操作时间 大多数的聚氨酯灌封胶的操作时间是1-45分钟。(在某些情况下最大操作时间可能会有所不同。)不要试图通过加固化剂而改变操作时间。操作时间威孚可以进行调整

MOS管驱动变压器隔离电路分析和应用

MOS管驱动变压器隔离电路分析和应用 今天在研究全桥电路,资料和书上谈到的,大多数基于理想的驱动器(立即充电完成)。这里 一篇幅把MOS管驱动的来龙去脉搞搞清楚。 预计要分几个篇幅: 1.MOS管驱动基础和时间功耗计算 2.MOS管驱动直连驱动电路分析和应用 3.MOS管驱动变压器隔离电路分析和应用 4.MOS管网上搜集到的电路学习和分析 今天主要分析MOS管驱动变压器隔离电路分析和应用和MOS管驱动基础和时间功耗计算。 参考材料: 《Design And Application Guide For High Speed MOSFET Gate Drive Circuits》是一份很好的材料《MOSFET 驱动器与MOSFET 的匹配设计》也可以借鉴。 首先谈一下变压器隔离的MOS管驱动器: 如果驱动高压MOS管,我们需要采用变压器驱动的方式和集成的高边开关。 这两个解决方案都有自己的优点和缺点,适合不同的应用。 集成高边驱动器方案很方便,优点是电路板面积较小,缺点是有很大的导通和关断延迟。 变压器耦合解决方案的优点是延迟非常低,可以在很高的压差下工作。常它需要更多,缺点是需要很多的元件并且对变压器的运行有比较深入的认识。 变压器常见问题和与MOS管驱动相关的问题: 变压器有两个绕组,初级绕组和次级绕组实现了隔离,初级和次级的匝数比变化实现了电压缩放,对于我们的设计一般不太需要调整电压,隔离却是我们最注重的。 理想情况下,变压器是不储存能量的(反激“变压器”其实是耦合电感)。不过实际上变压器还是储存了少量能量在线圈和磁芯的气隙形成的磁场区域,这种能量表现为漏感和磁化电感。对于功率变压器来说,减少漏感可以减少能量损耗,以提高效率。MOS管驱动器变压器的平均功率很小,但是在开通和关闭的时候传递了很高的电流,为了减少延迟保持漏感较低仍然是必须的。 法拉第定律规定,变压器绕组的平均功率必须为零。即使是很小的直流分量可能会剩磁,最终导致磁芯饱和。这条规则对于单端信号控制的变压器耦合电路的设计有着重大影响。 磁芯饱和限制了我们绕组的伏秒数。我们设计变压器必须考虑最坏情况和瞬时的最大的伏秒数。(在运行状态下,最坏情况和瞬时的,最大占空比和最大电压输入同时发生的情况),唯一我们确定的是变压器有一个稳定的电源电压。 对于单端应用的功率变压器来说,很大一部分开关周期需要保留来保证磁芯的正确复位(正激变换器)。复位时间大小限制电路运行的占空比。不过由于采用交流耦合实现了双向磁化,即使对于单端

LED驱动电源方案全攻略

LED驱动电源方案全攻略 一、什么是LED ? LED(Light Emitting Diode),又称发光二极管,它们利用固体半导体芯片作为发光材料,当两端加上正向电压,半导体中的载流子发生复合,放出过剩的能量而引起光子发射产生可见光。 二、LED有哪些优点? ★ 高效节能一千小时仅耗几度电(普通60W白炽灯十七小时耗1度电,普通10W节能灯一百小时耗1度电) ★ 超长寿命半导体芯片发光,无灯丝,无玻璃泡,不怕震动,不易破碎,使用寿命可达五万小时(普通白炽灯使用寿命仅有一千小时,普通节能灯使用寿命也只有八千小时)★ 光线健康光线中不含紫外线和红外线,不产生辐射(普通灯光线中含有紫外线和红外线) ★ 绿色环保不含汞和氙等有害元素,利于回收和利用,而且不会产生电磁干扰(普通灯管中含有汞和铅等元素,节能灯中的电子镇流器会产生电磁干扰) ★ 保护视力直流驱动,无频闪(普通灯都是交流驱动,就必然产生频闪) ★ 光效率高,发热小:90%的电能转化为可见光(普通白炽灯80%的电能转化为热能,仅有20%电能转化为光能) ★ 安全系数高所需电压、电流较小,发热较小,不产生安全隐患,可用于矿场等危险场所 ★ 市场潜力大低压、直流供电,电池、太阳能供电即可,可用于边远山区及野外照明等缺电、少电场所。 三、权威预测 半导体照明将在未来5-10年内取代现有传统光源。 “未来白光LED将更加便宜,市场总体容量将快速增长。”许志鹏乐观地指出,据美国能源部预测,2010年前后,美国将有55%的白炽灯和荧光灯被LED替代,可能形成一个500亿美元的大产业。而日本提出,LED将在今年大规模替代传统白炽灯。日、美、欧、韩等国均已正式启动LED照明战略计划。 美国能源部预测,到2010年前后,美国将有55%的白炽灯和荧光灯将被嵌在芯片上的发光体---半导体灯替代。日本计划到2008年用这种半导体灯替代50%的传统照明灯具。科学家测量发现,在同样亮度下,LED的电能消耗仅为白炽灯的1/10,寿命则是白炽灯的 100倍。由于LED具有节能、环保、寿命长、体积小等优点,专家们称其为人类照明史上继白炽灯和荧光灯之后的又一次飞跃。根据美国能源部(DOE)的预计,传统照明器件的彻底更新换代将在2010年开始启动,然而许多LED供应商都希望将这个启动时间再提前一到两年。 四、继澳大利亚欧盟欲让白炽灯两年内“下课” 2007年3月9日,在英国伦敦街头,成串的彩灯闪烁。刚刚结束的欧盟首脑会议通过了一系列旨在提高能效的措施。9日结束的欧盟春季首脑会议已经达成协议,两年内欧洲各国将逐步用节能荧光灯取代能耗高的老式白炽灯泡,以减少温室气体排放。在这之前,澳大利亚已率先通过停止使用白炽光灯泡法令。

隔离非隔离三种常用LED驱动电源详解

三种常用LED驱动电源详解 时间:2014-5-30 LED电源有很多种类,各类电源的质量、价格差异非常大,这也是影响产品质量及价格的重要因素之一。LED驱动电源通常可以分为三大类,一是开关恒流源,二是线性IC电源,三是阻容降压电源。 1、开关恒流源 采用变压器将高压变为低压,并进行整流滤波,以便输出稳定的低压直流电。开关恒流源又分隔离式电源和非隔离式电源,隔离是指输出高低电压隔离,安全性非常高,所以对外壳绝缘性要求不高。非隔离安全性稍差,但成本也相对低,传统节能灯就是采用非隔离电源,采用绝缘塑料外壳防护。开关电源的安全性相对较高(一般是输出低压),性能稳定,缺点是电路复杂、价格较高。开关电源技术成熟,性能稳定,是目前LED照明的主流电源。 图1:开关恒流隔离式日光灯管电源

图2:开关恒流隔离式电源原理图 图3:开关恒流非隔离式球泡灯电源 图4:开关恒流非隔离式电源原理图 2、线性IC电源 采用一个IC或多个IC来分配电压,电子元器件种类少,功率因数、电源效率非常高,不需要电解电容,寿命长,成本低。缺点是输出高压非隔离,有频闪,要求外壳做好防触电隔离保护。市面上宣称无(去)电解电容,超长寿命的,均是采用线性IC电源。IC驱电源具有高可靠性,高效率低成本优势,是未来理想的LED驱动电源。

图5:线性IC电源 图6:线性IC电源原理图 3、阻容降压电源 采用一个电容通过其充放电来提供驱动电流,电路简单,成本低,但性能差,稳定性差,在电网电压波动时及容易烧坏LED,同时输出高压非隔离,要求绝缘防护外壳。功率因数低,寿命短,一般只适于经济型小功率产品(5W以内)。功率高的产品,输出电流大,电容不能提供大电流,否则容易烧坏,另外国家对高功率灯具的功率因数有要求,即7W以上的功率因数要求大于0.7,但是阻容降压电源远远达不到(一般在0.2-0.3之间),所以高功率产品不宜采用阻容降压电源。市场上,要求不高的低端型的产品,几乎全部是采用阻容降压电源,另外,一些高功率的便宜的低端产品,也是采用阻容降压电源。 图7:阻容降压电源

液晶电视电源板常见的故障判断和检修方法

液晶电视电源板常见的故障判断和检修方法 液晶电视的电源板在整机上故障率是相当高的,也是我们修理液晶电视的重点和难点之一,容易给人以迷惑。他的相当一部分能量供给灯板驱动电路(根据发光源不同分为高压板和LED灯板两类)和主板上,一旦电视出现不开机、黑屏、纹波干扰、不定时关机等现象时,我们往往搞不清楚故障是出在电源板、主板、灯管(条)还是灯驱动板上,给维修造成很多弯路。借此根据本人多年来维修经验,结合众多网友维修过程中遇到的典型的事例,抛砖引玉,用简单易解的方法,来分析一下电源板的故障原因和排除技巧,解开液晶电源并不“神秘” 的面纱。 下面以TCL-PWL37C电源电路图纸为例,简单介绍一下液晶电视电源的工作原理(修过CRT彩电电源的师傅应该都知道,液晶电视的电源跟CRT大部分地方都是差不多的,仅仅多了个PFC电路而已)。 1:待机电路。 接通电源后,电源输出插座P3的③、④脚就应有+ 5V电压输出,给主板CPU 电路供电。另外,在热地一侧,副开关电源变压器T2的④-⑤绕组还会输出一组电压,整流滤波后输出+ 20V,供给主电源的PFC振荡电路和PWM S荡电路。(见图2)如果输出电压不稳定,则检查以IC9 (TL431)为中心组成的稳压控制电路。正常工作时,TL431的①脚电压为2.5V,如果该脚电压异常,则说明TL431 损坏或其外围元件有问题。 故障现象1:无+ 5V电压输出。 分析检修:检查待机电源电路,发现IC1的⑤-⑧脚电压为0V,经查限流电阻RB 13端头焊接部分已脱焊。建议将RB1 RB2 RB13这3只限流电阻换成功率为1W或 2W勺同阻值电阻,以免再次损坏。 故障现象2: + 5V电压在3V左右波动。 分析检修:空载试机,+ 5V电压仍较低,这说明故障在待机电源部分。检测输出电压电路中的稳压二极管DB4(6.8V)和DB5(20V ),发现DB5击穿,换新后故

LED驱动电源的检测经验

LED驱动电源的检测经验 1、检测方法:由于LED驱动电源是恒流控制,理论上我们将其看做是恒流源,从电学理论上知道,恒流源不能开路,再加上电子负载机的特点(前端通电后才能够加载电流),因此,不能使用常见的电子负载机测试。(电子负载机上得到的现象是:数字跳变,会误判驱动电源故障) 2、制作负载: a、购买3个200欧姆100W的线绕可调电阻,前1个电阻的可调端(接线后面用鳄鱼夹,以方便调节电阻个数)接在后1电阻的前端,如此3个电阻串联,然后再串联1个大功率1W的LED并联组(6个1W的LED并联),前面的电阻的前端与LED的后端的2个分别引线,按照LED的+、—作为负载的-、+极;(6个并联的1W LED可以通过的电流将达到2A,至少不会因为电源的故障而引起烧毁LED灯板) b、将此组合作为LED电源的负载接在LED驱动电源的对应输出引脚,其间串联1个电流表; c、用万用表的二极管档分别测试交流输入端、整流后的+、-端是否有短路,没有,则可以通电; d、在此负载2端接上万用表的对应+、-表笔,万用表置于大于LED灯板串联数的总电压(LED串联数*LED的电压降,通常是3.3V)的档位,调整电阻个数及接入电路的电阻的可调端,使得到的电压等于成品LED板串联的总电压; e、从电流表上读出的电流数,就是你的驱动电源在此LED串联数条件下的输出电流; f、如果担心电流表的内阻影响驱动电源的输出电流,那么可以选几个精密金属膜电阻并联,得到1欧姆以下的电阻(用电桥测量得到其准确的阻值),串联在线路中,通电后用万用表测量此电阻两端的电压,通过计算得到整个电路的输出电流。 3、仪器 从LED驱动电源设计、检测的角度,至少应该具有以下三种设备: a、可调交流电源,品牌如Chroma,如果因为成本问题,可以选购大陆生产的;

光耦隔离(驱动)电路-v1.0..

光耦隔离(驱动)电路 (V1.0) 一、本文件的内容及适用范围 本文详细分析了非线性光耦的结构、重要参数,并以此为依据讲解了光耦的应用设计原则及隔离(驱动)电路的设计步骤与方法,最后对单片集成数字隔离器做了简单介绍。适用于作为艾诺公司开发工程师新项目硬件开发过程、产品设计修改过程、产品问题分析过程、工程师培训的指导性模块与参考文件。 本文中的“光耦”指非线性光耦。本文中的过程与方法不能完全应用于线性光耦。 二、光耦 光电耦合器optical coupler/optocoupler,简称光耦。是设计上输入与输出之间用来电气隔离并消除干扰的器件。因线性光耦特有其特点及设计方法,本文在此仅单独讨论在公司产品上广泛应用非线性光耦。 2.1 光耦在公司仪表上的主要应用 根据光耦的类型在公司仪表上主要有以下几个方面的应用: 1、数字信号隔离:非线性光耦,如6N137对高速数字信号如SPI、UART等接口的隔离。 2、模拟信号隔离传递:线性光耦。隔离&驱动:普通输出型,如TLP521对IO信号的隔离;达林顿输出型主要用于需要大驱动电流的场合,如继电器的驱动和隔离。 2.2 公司主要应用的主要非线性光耦类别、型号及参数特点 主要类别: 1、通用型:TLP521、PC817等。 2、数字逻辑输出型(高速、带输出控制脚):6N137及其变种HCPL06系列等。 3、达林顿输出型:4N30、4N33等。 4、推挽输出型(MOS、IGBT驱动专用):TLP250、HCPL316等 艾诺公司截止到2010年12月常用光耦型号统计及分类见表格《艾诺光耦201012.XLS》。 2.4 光耦基础知识 1、光耦结构及原理示意 光耦的主要构成部分:LED(电->光)、光电管(光->电)、电流放大(Hfe)部分。

提高LED驱动电源效率的8个方法

No.1 Big-bit 电源供应器网 https://www.wendangku.net/doc/6a440853.html,/news/193599.html 提高LED驱动电源效率的8个方法 【大比特导读】一般来说工程师经常用优化电子变压器参数设计来提高LED 驱动电源的效率和减少振铃带来的涡流损耗。但是除了这样还有没有相关的技巧 呢?现在跟大家分享提高LED驱动电源效率的八种技巧希望能够帮到大家。 一般来说工程师经常用优化电子变压器参数设计来提高LED驱动电源的效率和减少振 铃带来的涡流损耗。但是除了这样还有没有相关的技巧呢?现在跟大家分享提高LED驱动电 源效率的八种技巧希望能够帮到大家。 1.主电流回路PCB尽量短。LAYPCB的经验,及布局,这个没什么,快速的方法就是多 看大厂的作品。 2.优化变压器参数设计,减少振铃带来的涡流损耗。这个比较难,先要把电磁基础知识 掌握,设计合理的变压器,最要紧的是耐心,哪怕是想到能提高0.5%的效率,也要去尝试。 3.合理选用开关器件。这个就是成本和性能的平衡了,什么样的客户要求,用什么样的 器件,但得合理。如果要效率,毫无疑问COOL MOS ,低VF输出二极管。 4.输入EMI部分优化设计如果过安规,这部分考究得比较多,主要就是经验了。 5.选择高效率的拓补结构这个是方案选型的开始,例如PWM和QR PFM,当前提客户提 出效率要求,就要评估选什么样的拓补。 6.选择好的电解电容很多人忽略了这个,电解的损耗很大,陈永真老师有个文章中就有 详细的解说。 7.启动部分功耗设计有效率的前提下,就要考虑,目前很多芯片都有HV启动脚,启动 电流也越做越低,这点就是要对新型器件多了解,当然了,还有外加电路无损启动等,我认 为不适合LED驱动。 8.我们可以看见芯片辅助供电优化这点在ST的L6562D应用文档中有指出15V为最佳, 但LED一般又为宽电压输出,所以我的选择是加一级线性稳压,使芯片工作在15V来降低损 耗。

开关电源非隔离高低压混合布板方式

开关电源非隔离高低压混合布板方式变频器的研发,这是一款低成本紧凑式小功率变频器,因为低成本而且紧凑式,所以单片机没有采用光耦隔离而 是直接驱动,此外因为低成本紧凑要求,采用双面板,并 且按键,指示灯,数码管都跟高压区交织混合在一起。 因为以前没有做变频器的经验,所以采购了市场上的同类产品作为参考,恢复了电路图并且基于对方的控制时序,样机很快就出来了,测试也没有发现什么问题,感觉难度 不大,比较顺利,于是我也就没怎么管,让同事直接负责。 去年年底亿曼那边反馈,长期测试下发现按键偶尔会乱跳,比如按“+”键,结果“-”键也会起作用,而电路设计中不应该出现这个问题,考虑到当时我为了简化设计,去掉了 一些电容,于是想着这个问题可能是因为去掉的电容引起的,所以开年之后调整了电路设计,在按键这儿加了滤波 电容,让按键的硬件设计足够稳定,之前是采用软件滤波 来实现。此外局部改进了单片机的供电设计,原来的辅助 电源310VDC通过开关电源(VIPERA12A)转到15VDC,15VDC再通过开关电源(MC34063)转到3.3VDC,我把后级15VDC转3.3VDC改成了更低成本更可靠的AMS1117,提高可靠性。因为开关电源存在上电冲击的可能,改成模 拟电源可靠性可以提高。此外为了解决高温带来的小电解 电容失效,改用瓷片电容替换小电解电容。

本来期望这个版本会比较好的,板子回来焊接调试好交给亿曼测试,很快亿曼反馈按键问题还是存在,这个问题不仅没解决,反而更频繁了,这一下引起我的重视,因为马上要下批量订单了,这些看起来无关痛痒的乌云,往往会酿成大祸。但是当时的第一反应应该是软件设计存在bug,让负责软件的同事好好分析一下。 因为有多个变频器项目在运行,其中有一个箱式的变频器,面板上有数码管和按键,它跟功率板分离的,两者通过较长的排线连接,一般的设计方式是在面板上放一颗stm8这类的单片机,两者通讯连接,而我们考虑到低成本,也为了简化设计,不想在面板上加单片机,但这样因为较长的引线,会出现较强的干扰进入功率板的单片机中。于是专门跟硬件设计人员讲解这类强干扰PCB的设计方式,尤其强调如何抗干扰。 这个时候,负责软件的同事找不出按键问题,于是把问题矛头引向了硬件,恰好硬件人员听了我的抗干扰设计原理,想到原来的板子按键中有两颗滤波电容的位置就放在高压区内,于是怀疑是否是这个电容引起的,参考我给的方案,把这两颗电容移入单片机所在的地平面内,靠近单片机,这个按键乱的问题就消失了,之后长期测试都没有发现,于是把这个结果告诉我,我过来看了一下,确实是PCB布线不规范,按键线被高频高压干扰了导致的问题。

LED显示屏整屏与单元板维修方法

LED 显示屏整屏与单元板维修方法 宏龙 一、LED显示产品发展历程: LED诞生于1923年,罗塞夫(lossen . o. w)在研究半导体sic时发现掺有杂质的p-n 结,通电后会有光发射出来,由此研制出了发光二极管(led :light emitting diode),但之后LED的应用一直不受重视。随着电子工业的快速发展,在60年代,显示技术得到迅速发展,人们研究出pdp 激光显示等离子显示板、LED 液晶显示器、发光二极管led 、等多种显示技术。由于半导体的制作和加工工艺逐步成熟和完善,发光二极管已日趋在固体显示器中占主导地位。LED之所以受到广泛重视并得到迅速发展,是因为它本身有很多优点。例如:亮度高、工作电压低、功耗小、易于集成、驱动简单、寿命长、耐冲击且性能稳定,其发展前景极为广阔。目前正朝着更高亮度、更高耐气候性和发光密度、发光均匀性、全色化发展。随着发展,人们需要—种大屏幕的显示设备,于是有了投影仪,但是其亮度无法在自然光下使用,于是出现了LED显示器(屏),它具有视角大、亮度高、色彩艳丽的特点。 二、LED大屏幕的发展呈现如下几个发展阶段: 1、第一代:单色LED显示屏 2、以单红色为基色,显示文字及简单图案为主,主要用于通知、通告及客流引导系统。 3、第二代:双基色多灰度显示屏 4、以红色及黄绿色为基色,因没有蓝色,只能称其为伪彩色,可以显示多灰度图像及视频,目前在国广泛应用于电信,银行,税务,医院,政府机构等场合,主要显示标语,公益广告及形象宣传信息。 5、第三代:全彩色(full color) 多灰度显示屏 6、以红色,蓝色及黄绿色为基色,可以显示较为真实的图像,目前正在逐渐替代上一代产品。

几种隔离LED驱动电源方案[附电路图]

几种隔离LED驱动电源方案[附电路图] 在全球能源短缺、环保要求不断提高的背景下,世界各国均大力发展绿色节能照明。LED照明作为一种革命性的节能照明技术,正在飞速发展。然而,LED驱动电源的要求也在不断提高。高效率、高功率因数、安全隔离、符合EMI标准、高电流控制精度、高可靠性、体积小、成本低等正成为LED驱动电源的关键评价指标。 LED驱动电源的具体要求 LED是低压发光器件,具有长寿命、高光效、安全环保、方便使用等优点。对于市电交流输入电源驱动,隔离输出是基于安全规范的要求。LED驱动电源的效率越高,则越能发挥LED高光效,节能的优势。同时高开关工作频率,高效率使得整个LED驱动电源容易安装在设计紧凑的LED灯具中。高恒流精度保证了大批量使用LED照明时的亮度和光色一致性。 10W以下功率LED灯杯应用方案 目前10W以下功率LED应用广泛,众多一体式产品面世,即LED驱动电源与LED灯整合在一个灯具中,方便了用户直接使用。典型的灯具规格有GU10、E27、PAR30等。针对这一应用,我们设计了如下方案(见图1) 图1:基于AP3766的LED驱动电路原理图 该方案特点如下: 1. 基于最新的LED专用驱动芯片AP3766,采用原边控制方式,无须光耦和副边电流控制电路,实现隔离恒流输出,电路结构简单。通过电阻R5检测原边电流,控制原边电流峰值恒定,同时控制开关占空比,保持输出二极管D1的导通时间和整个开关周期时间比例恒定,实现了输出电流的恒定。 2. AP3766采用专有的“亚微安启动电流”技术,仅需0.6μA的启动电流,因此降低了启动电阻R1和R2上的功耗,提高了系统效率。典型5W应用效率大于80%,空载功耗小于30mW。 3. AP3766采用恒流收紧技术实现垂直的恒流特性,恒流精度高。 4. 电路元件数量少,AP3766采用SOT-23-5封装,体积小,整个电路可以安装在常用规格灯杯中。 5. 安全可靠,隔离输出,具有输出开路保护、过压保护及短路保护功能。 6. 功率开关管采用三极管,省去了高压场效应管,系统成本低。 图2为该方案的5W应用电路样机实物照片。图3是基于AP3766的5W LED驱动装置实物照片。图4为基于AP3766的5W LED驱动电路满载效率随交流输入电压变化曲线。图5为基于AP3766的5W LED驱动电路满载输出IV特性曲线。 10~60W功率LED路灯、LED直管灯应用方案 IEC国际电工委员会对照明灯具提出明确的谐波要求,即IEC61000-3-2标准。因此对于较大功率LED照明应用,采用功率因数校正(PFC)控制技术成为必需。对于60W以下应用,有高性价比单级PFC控制方案,该方案电路原理图。 图6:基于AP166+AP4313的LED驱动电路原理图 该方案特点有: 1.单级PFC方案,只用一级反激式电路拓扑,同时实现功率因数校正和隔离恒流输出。元件数量少、体积小、性价比高。 2.高功率因数,采用有源功率因数校正控制芯片AP1661,功率因数PF>0.9,满足IEC61000-3-2谐波标准。

LED大屏幕故障维修及解决方法

LED大屏幕故障维修及解决方法: A.整板不亮 1、检查供电电源与信号线是否连接 2、检查测试卡是否以识别接口,测试卡红灯闪动则没有识别,检查灯板是否与测试卡同电源地,或灯板接口有信号与地短路导致无法识别接口(智能测试卡) 3、检测74HC245有无虚焊短路,245上对应的使能(EN)信号输入输出脚是否虚焊或短路到其它线路 注:主要检查电源与使能(EN)信号 B.在点斜扫描时,规律性的隔行不亮显示画面重叠 1、检查A、B、C、D信号输入口到245之间是否有断线或虚焊、短路 2、检测245对应的 A、B、C、D输出端与138之间是否断路或虚焊、短路3、检测A、B、C、D各信号之间是否短路或某信号与地短路。注:主要检测ABCD行信号。 C.全亮时有一行或几行不亮 1、检测138到4953之间的线路是否断路或虚焊、短路。 D.在行扫描时,两行或几行(一般是2的倍数,有规律性的)同时点亮 1、检测A、B、C、D各信号之间是否短路 2、检测4953输出端是否与其它输出端短路E.全亮时有单点或多点(无规律的)不亮 1、找到该模块对应的控制脚测量是否与本行短路 2、更换模块或单灯 F.全亮时有一列或几列不亮 1、在模块上找到控制该列的引脚,测是否与驱动IC(74HC595/TB62726、、、)输出端连接G.有单点或单列高亮,或整行高亮,并且不受控 1、检查该列是否与电源地短路。 2、检测该行是否与电源正极短路。 3、更换其驱动IC H.显示混乱,但输出到下一块板的信号正常 1、检测245对应的STB锁存输出端与驱动IC的锁存端是否连接或信号被短路到其它线路。I.显示混乱,输出不正常1 检测时钟CLK锁存STB信号是否短路。 2、检测245的时钟CLK是否有输入输出。 3、检测时钟信号是否短路到其它线路。注:主要检测时钟与锁存信号 J.显示缺色 1、检测245的该颜色的数据端是否有输入输出。 2、检测该颜色的数据信号是否短路到其它线路。 3、检测该颜色的驱动IC之间的级连数据口是否有断路或短路、虚焊。注:可使用电压检测法较容易找到问题,检测数据口的电压与正常的是否不同,确定故障区域 K.输出有问题 1、检测输出接口到信号输出IC的线路是否连接或短路。 2、检测输出口的时钟锁存信号是否正常。 3、检测最后一个驱动IC之间的级连输出数据口是否与输出接口的数据口连接或是否短路。 4、输出的信号是否有相互短路的或有短路到地的。 5、检查输出的排线是否良好。

光耦隔离驱动电路

光耦隔离和驱动电路如下图所示:

2008-09-01,17:02:33 资料邮件 回复引用回 编辑删除 2008-09-01,17:资料邮件回复引用回 编辑删除

编辑删除2008-09-01,17:资料邮件回复引用回 编辑删除2008-09-01,17:资料邮件回复引用回 编辑删除2008-09-01,17:资料邮件回复引用回 编辑删除2008-09-01,17:资料邮件回复引用回

编辑删除2008-09-01,17:21:1资料邮件回复引用回 编辑删除2008-09-01,17:资料邮件回复引用回 编辑删除2008-09-01,17:资料邮件回复引用回 2008-09-01,17:资料邮件回复引用回 编辑删除

编辑删除2008-09-01,19:资料邮件回复引用回 ↑↑↑↑↑↑↑↑↑↑↑↑ 抱歉本贴的回复数太多,为了减轻网络流量,只显示帖子正文的前后各10个回复。本贴的正文内容中间隐藏了14个回复。你需要点击此处才能查看全部内容。 对为你带来的访问不便表示歉意。不过我们仍会坚持即使没有登录,仍能共享我们网站的所有资料。你没有登录后就能消除这个访问上的不便(可增加到显示60个回复)。 如果你是新用户请先注册。注册是免费的,并且手续简单只需要填写用户名与口令。 ↓↓↓↓↓↓↓↓↓↓↓↓ 2003 星城织梦 编辑删除2011-03-01,22:1资料邮件回复引用回

编辑删除2011-03-01,22:2资料邮件回复引用回 编辑删除2011-03-02,08:资料邮件回复引用回 2011-03-02,08:资料邮件回复引用回编辑删除

LED驱动电源技术

1. LED为什么需要高品质驱动电源? LED由于不含有毒物质、环保、寿命长、光电效率高等众多优点,LED芯片设计生产和制造工艺已相当成熟,整个LED照明系统的损坏主要是LED驱动器的损坏;低品质LED驱动电源由于保护不完善,恒流精度低电流波动大将成LED芯片的损坏;因此LED驱动电源是LED灯具的关键所在,它就好比一个人的心脏,要制造高品质的、用于照明的LED 灯具必须选用高品质的LED电源驱动器,才能够符合LED照明系统的恶劣工作环境和高昂维修成本的要求. 2. LED驱动器品质问题根源在哪里? 一是非职业电源公司设计制造(要求太散,量太小);二是没有按照LED灯具的恶劣工作环境设计 a) -35 度到 70度环境温度 b) 防水设计不到位 c) 防雷设计不到位 3. 如何保证LED驱动器的品质和可靠性? 1)规范的专业设计流程控制 技术预研、可行性评估、初步设计、详细设计、工程样机、小批试产。 2)合理的元器件设计裕量 3)高品质元件的选择 电解电容, IC,功率半导体、磁性元件等。 4)严格的品质验证和测试程序 应力分析、EVT、SVT、DVT等测试和MTBF的计算与实验验证。 4. LED驱动电源为什么需要高效率? 高效率是LED照明系统整体的节能要求,是低温升、长寿命、高可靠的基础与保证。 1)高效率、低损耗、低温升 如一台输出100W的LED驱动电源,当效率达95%时,其损耗是5.2W,当效率只有85%时,其损耗达17.6W,后者是前者的 3.4倍,实验表明在同等条件下前者比后者温度低10~15℃。 2)降低LED灯的工作温度及延缓光衰 LED芯片温度的升高将导致发光器件性能的变化与电光转换效率

型非隔离负电压DCDC开关电源的设计word文档

0 引言 随着电子技术的飞速发展,现代电子测量装置往往需要负电源为其内部的集成电路芯片与传感器供电。如集成运算放大器、电压比较器、霍尔传感器等。 负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。目前,电子测量装置的负电源通常采用抗干扰能力强,效率高的开关电源供电方式。以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。因此,对非隔离负电压开关电源的研究具有很高的实用价值。 传统的非隔离负电压开关电源的电路拓扑有以下两种,如图1、图2所示。图3是其滤波输出电容的充电电流波形。由图3可见,采用图2结构的可获得输出纹波更小的负电压电源,并且在相同电感峰值电流的情况下其带负载能力更强。由于图2的开关器件要接在电源的负极,这会使得其控制电路会比图1来得复杂,因此在市场也没有实现图2电路结构(类似于线性稳压电源调节芯片7915功能)的负电压开关电源控制芯片。 为了弥补现有非隔离负电压开关电源技术的不足,以获得一种带负载能力强、输出纹波小的非隔离负电压开关电源,本文提出一种采用Boost开关电源控制芯片LT1935及分立元件实现了图2所示原理的基于峰值电流控制的新型非隔离负电压DC/DC开关电源。 图1 传统的非隔离负电压开关电源电路结构1

图2 传统的非隔离负电压开关电源电路结构2 图3 两种开关电源滤波电容的充电电流波形 1 工作原理分析 本文设计的非隔离负电压DC/DC开关电源如图4所示,负电源工作在连续电流模式。当电源控制器LT1935内部的功率三极管导通时,直流电源给输出电感L1和输出电容C1充电。当电源控制器LT1935内部的功率三极管关断时,输出电感L1中的电流改由通过肖特基二极管VD1提供的低阻抗回路继续给输出电容C1充电直至下一个周期电源控制器LT1935内部的功率三极管再次导通。可见电容C1在输出电感L1储存能量和释放能量的过程中均获得充电,从而减小了输出纹波电压。同时,在CCM条件下,输出电流在LT1935

(仅供参考)LED电源维修指导

1947系列LED电视电源板维修指南 一. 总体介绍: 本LED开关电源是采用电源部分与LED驱动部分二合一的方案。由交流100V~240V电压输入,电源部分有3路输出,外加LED驱动电源。 启动时,由100V-240V交流电压输入,首先将待机电源启动,5V输出给CPU供电,由CPU根据整机设定情况发出ON/OFF(PS-ON)开机指令给电源电路,通过反馈回路将主电接通,100V-240V 交流电压经整流输出,通过PFC电路将整流后的电压升到380V左右,通过LLC电路,经变压器转换输出12V和LED驱动电源(LED点亮时约200V到210V)。同时,主板将根据情况输出SW信号和BRI信号,电源板接到这两个信号后,LED驱动开始工作,背光点亮。 电源结构框架如下图所示:

二. 各部分分解说明 1.待机电源部分 待机电源部分主控电源管理芯片采用的STR-6059H,内置650V的MOS,变压器为T901, STR-6059H为准谐振控制芯片,其启动过程为:交流100V~240V输入电压经整流桥整流后,经变压器T901副边输出端输出电压20V进入N831(STR-6059H)的5脚(Vcc)端,外接47uF的旁路电容,用于储存启动电压,当Vcc电平达到芯片启动电平时,N831开始工作。(以上元器件及其位号请参考原理图) 当待机5V(5V_S)无正常输出时,首先用示波器检测STR-6059H的Vcc供电是否正常,如Vcc供电出现锯齿波,请检测开关电源是否开路。 本待机部分产生待机5V(5V_S)电压,当主板发过来STB为高电平时,5V_S通过光耦N833来打通主电路,即只有待机电压正常工作,其它电路才能工作。 STR-6259H的各个引脚功能如下: 管 符号名称功能描述 脚 1S/O C P S/O C P端子M O S F E T S o u r c e/过电流保护 2B R B R端子B r o w n I n/O u t保护输入检测 3G N D G r o u n d端子G r o u n d 4F B/O L P反馈端子定电压控制/过负载保护信号输入 5VCC 电源端子控制电路电源电压输入 6——N C D/S T D/S T端子M O S F E T D r a i n/启动电流输入7 8 STR-6259H具有过压保护、过流保护、以及过热关断等保护电路。 2.PFC部分 PFC(Power Factor Correction)即功率因数校正,主要用来表征电子产品对电能的利用效率。功率因数越高,说明电能的利用效率越高。该部分的作用为能够是输入电流跟随输入电压的变换。从电路上讲为,整流桥后大的滤波电解的电压将不再随着输入电压的变化而变化,而是一个恒定的值。 PFC部分主控部分采用安森美公司的NCP33262,NCP33262临界模式PFC控制器,

LED中驱动电源隔离与非隔离区别(精)

目前在一般的 led 照明市场上,存在非隔离设计和隔离型驱动电源之分。 非隔离设计仅限于双绝缘产品,例如灯泡的替代产品,其中 LED 和整个产品都集成并密封在非导电塑料中,因此,最终用户并没有任何触电的危险。二级产品都是隔离型的,价格相对比较昂贵, 但在用户可以接触到 LED 和输出接线的地方 (通常在LED 照明和路灯照明应用的情况下 ,这种产品必不可少。 带隔离变压器或者电气隔离的 led 驱动电源意味着 LED 可以直接用手接触而不会触电。而无隔离变压器的 LED 驱动电源虽仍可以借助防护外壳实现部分机械绝缘,但此时的 LED 在工作时并不能直接接触。绝缘型灯泡在今后将成为主流。 物理设计决定着驱动器是隔离式还是非隔离式。安全规则通常要求使用两个独立的隔离层。设计师可以选择两种物理隔离层,即塑料散光罩和玻璃护罩, 并使用非隔离式电源。如果物理隔离成本太高、存在机械困难或者吸收太多光,就必须在电源中解决电气隔离问题。隔离式电源通常要比同等功率水平的非隔离式电源大一些。照明灯设计师必须在他们所设计的每款产品中进行大量的成本及设计优化工作。 由于适用于不同的应用, 是采用隔离的绝缘变压器还是采用隔离的防护灯罩外壳, 设计者在不同的角度考虑永远会有不同的见解。通常, 他们会从多方面去分析, 例如成本与制造工艺、效率和体积、绝缘可靠性和安全规范的要求,等等。带变压器的驱动成本较高,但也相应让 led 灯具变得更加实用,能够满足终端用户偶然接触LED 的需要。当白炽灯玻璃外壳很容易被损坏时,一个 E27型号的普通灯泡可被替换成为 LED 灯。此外,在工业区或者是办公设备应用中的灯具并不需要接触到终端用户,如路灯和商场照明,这时的 LED 灯也确实需要隔离变压器。作为一个让最终用户能安全使用的产品, 一定会考虑绝缘与隔离的可靠性。作为完整的产品,产品表面使用者能接触到的部分一定要经过隔离,不能让人触电。而从产品整个系统而言, 隔离是不可避免的, 区别只是设置隔离的位置不同。有些设计者采用隔离的变压器设计, 因此他们可以简化散热和灯罩的设计。如果用非隔离的驱动设计, 在灯壳等

LED驱动电源测试方法_图文(精)

分类项目测试方法所需设备备注输入电压 输入电流 输出电压 输出电流 输出功率 功率因数 效率输出功率和输入功率的比值电量测试仪、万用表,直流电子负载 参考标准 待机功耗 LED驱动电源空载时的功耗电量测试仪序号 1 2 3 4 5 输出电压 范围、 输出电流

万用表,电子负载 恒流精度将驱动电源(带负载接上调压 器,将调压器接上电量测试仪,将 电量测试仪接上电源。在标称工作 范围内调节电压进行测试,在设定 电压值稳定2分钟,用万用表测试 输出电流值 调压器、电量测试仪,万用表,电子负载 输入电压调整率参考标准 调压器、电量测试 仪,万用表,电子 负载 参考标准 电 在所有其他影响量保持不变时,由于输入电压的变化所引起恒流驱动器输出电流(或恒压驱动器输出电压的相对变化量。一级:≤±1%;二级:≤±3%。 测试要求 输入电

压范围 电源的输入电压范围为(220±44V、频率范围为(50±3Hz;分别在稳定2分钟后,测出并记录输出电流的值。电压/V频率/Hz 50 输出电压规格可由制造商和客户根据实际要求自行定义 220 176 176 264 调压器、电量测试 仪 将驱动电源(带负载接上调压 器,将调压器接上电量测试仪,将 电量测试仪接上电源。按以上电压 值进行测试,分别再稳定2分钟, 电源应能在标称工作范围内工作 若电源为恒压源,输入电压在正常工作范围时,电源的恒 压精度应±5%之内;若电源为恒流源,输入电压在正常工 作范围时,电源的恒流精度应在±5%之内.

一级:≤±5%;二级:≤±10% 依据公司设计要求(生产厂家规格书依据公司设计要求(生产厂家规格书47 53 47 依据公司设计要求(生产厂家规格书依据公司设计要求(生产厂家规格书53 264 LED驱动电源测试规范 电量测试仪、万用 表,直流电子负载 给电量测试仪接好额定电压,将驱动电源输入端接上电量测试仪输出端,将电子负载接到电源输出端, 在电源输出端将电流表和电子负载串联,接通电源,记录数据。 依据公司设计要求(生产厂家规格书

20170502-开关电源中的变压器隔离驱动电路(一)

开关电源中的变压器隔离驱动电路(一) 普高(杭州)科技开发有限公司 张兴柱 博士 图1是非常常用的隔离驱动电路,其原边类似于正激变换器中的接法,第三绕组c N 和 (gs V 图1: 隔离驱动电路#1 二极管c D 串联用来对原边激磁电感的去磁,一般情况下,可选择p c N N =,且将c N 和p N 双股并绕。副边绕组s N 与二极管2D 、三极管2Q 及3R 、4R 来恢复原边驱动信号的波形,并实现隔离,其中调节4R 的大小,可以调节隔离驱动信号的驱动能力,2Q 与3R 的作用是保证MOSFET S1在断开瞬间,其门源电荷上电压的快速放电,以便提高 S1的关断速度。5R 与1ZD 则是用来保护S1免受损坏的两个元件,加5R 后,可避免在控制电路还没有工作,功率级已经加电时因S1的DG 电容和GS 电容所引起的 S1之误导通及相应的损坏,其阻值可选为5K~50K ;加ZD2是用来保证各种动态下S1的GS 电压不会超过其规定的最大值,以避免S1的门源损坏,其稳压值可取18V 左右。原边的Q1既可用MOSFET ,也可用三极管,电阻1R 和2R 的选择比较容易,在Q1用MOSFET 时,1R 可取几十到数百殴姆,2R 可取几千殴姆。 上述隔离驱动电路在p c N N =时,能隔离的驱动信号,其最大占空比要小于0.5,否则其变压器会因为伏秒不平衡而饱和。所以这种隔离驱动电路多用在二极管去磁双正激变换器和对称驱动半桥变换器中。如前面所说的,隔离驱动变压器的设计可先按原则选好铁芯的材料和铁芯的形状及尺寸,然后按下面的公式计算匝数: 8_max 10×?×= s c s cc p f BA V D N (匝) 其中:r B B B ?=?max ,sat B B

工程师详解非隔离式开关电源PCB布局设计技巧

工程师详解非隔离式开关电源PCB布局设计技巧 一个良好的布局设计可优化效率,减缓热应力,并尽量减小走线与元件之间的噪声与作用。这一切都源于设计人员对电源中电流传导路径以及信号流的理解。 当一块原型电源板首次加电时,最好的情况是它不仅能工作,而且还安静、发热低。然而,这种情况并不多见。 开关电源的一个常见问题是“不稳定”的开关波形。有些时候,波形抖动处于声波段,磁性元件会产生出音频噪声。如果问题出在印刷电路板的布局上,要找出原因可能会很困难。因此,开关电源设计初期的正确PCB布局就非常关键。 电源设计者要很好地理解技术细节,以及最终产品的功能需求。因此,从电路板设计项目一开始,电源设计者应就关键性电源布局,与PCB布局设计人员展开密切合作。 一个好的布局设计可优化电源效率,减缓热应力;更重要的是,它最大限度地减小了噪声,以及走线与元件之间的相互作用。为实现这些目标,设计者必须了解开关电源内部的电流传导路径以及信号流。要实现非隔离开关电源的正确布局设计,务必牢记以下这些设计要素。 布局规划 对一块大电路板上的嵌入dc/dc电源,要获得最佳的电压调节、负载瞬态响应和系统效率,就要使电源输出靠近负载器件,尽量减少PCB走线上的互连阻抗和传导压降。确保有良好的空气流,限制热应力;如果能采用强制气冷措施,则要将电源靠近风扇位置。 另外,大型无源元件(如电感和电解电容)均不得阻挡气流通过低矮的表面封装半导体元件,如功率MOSFET或PWM控制器。为防止开关噪声干扰到系统中的模拟信号,应尽可能避免在电源下方布放敏感信号线;否则,就需要在电源层和小信号层之间放置一个内部接地层,用做屏蔽。 关键是要在系统早期设计和规划阶段,就筹划好电源的位置,以及对电路板空间的需求。有时设计者会无视这种忠告,而把关注点放在大型系统板上那些更“重要”或“让人兴奋”的电路。电源管理被看作事后工作,随便把电源放在电路板上的多余空间上,这种做法对高效率而可靠的电源设计十分不利。 对于多层板,很好的方法是在大电流的功率元件层与敏感的小信号走线层之间布放直流地或直流输入/输出电压层。地层或直流电压层提供了屏蔽小信号走线的交流地,使其免受高噪声功率走线和功率元件的干扰。 作为一般规则,多层PCB板的接地层或直流电压层均不应被分隔开。如果这种分隔不可避免,就要尽量减少这些层上走线的数量和长度,并且走线的布放要与大电流保持相同的方向,使影响最小化。

相关文档
相关文档 最新文档