文档库 最新最全的文档下载
当前位置:文档库 › 关于热水采暖系统常见故障的探讨

关于热水采暖系统常见故障的探讨

关于热水采暖系统常见故障的探讨
关于热水采暖系统常见故障的探讨

关于热水采暖系统常见故障的探讨

【摘要】热水采暖系统常见故障的排除,局部散热器不热,热力失效,回水温度过高,系统回水温度过低,其它故障及排除方法。

【关键词】热水采暖系统;常见故障;排除;东北地区;局部散热器

0.概述及分类

东北地区冬季气候寒冷,每年要有六个月的冬季采暖期。近年来热水采暖以其在技术和经济上的显著优越性得到广大用户的青睐。

目前热水采暖广泛用于工业和民用建筑中。但是由于施工作业人员在热水采暖系统的施工、调整与运行管理方面的经验不足,系统在运行时可能会出现一些故障,影响正常供热。经过多年的现场实践,总结了热水采暖系统几种常见的故障及其排除方法,供大家参考。

采暖系统常用的热媒有水、蒸汽、空气。以热水作为热媒的采暖系统称为热水采暖系统。热水采暖系统的热能利用率高,输送时无效热损失较小,散热设备不易腐蚀,使用周期长,且散热设备表面温度低,符合卫生要求;系统操作方便,运行安全,易于实现供水温度的集中调节,系统蓄热能力高,散热均匀,适于远距离输送。

系统中的水在锅炉中被加热到所需要的温度,并用循环水泵作动力使水沿供水管流入各用户,散热后回水沿水管返回锅炉,水不断地在系统中循环流动。系统在运行过程中的漏水量或被用户消耗的水量由补给水泵把经水处理装置处理后的水从回水管补充到系统内,补水量的多少可通过压力调节阀控制。膨胀水箱设在系统最高处,用以接纳水因受热后膨胀的体积。

热水供暖系统分类:

按系统循环动力的不同,可分为重力(自然)循环系统和机械循环系统。

按供、回水方式的不同,可分为单管系统和双管系统。

按系统管道敷设方式的不同,可分为垂直式和水平式系统。

按热媒温度的不同,可分为低温水供暖系统和高温水供暖系统。

低温水与高温水:在我国习惯认为水温低于100℃的热水为低温水,水温超过100℃的热水称为高温水

室内热水供暖系统大多采用低温水作为热媒。设计供回水温度采用95℃/70℃。

高温水供暖系统一般在生产厂房中应用。设计供回水温度大多采用 120~130℃/70~80℃。

1.局部散热器不热

局部散热器不热的原因大体有以下几种情况:阀门失灵,阀盘脱落在阀座内堵塞了热媒流动通道,这时可打开阀门压盖进行修理,或把失灵阀门更换掉。集气罐存气太多,阻塞管路,也会产生局部散热器不热的情况,这时应打开系统中所设置的放气附件,如集气罐上的排气阀,散热器上的手动放风门等。

管路堵塞,出现这种故障,当送水时间较短时,可用手在管线转弯处与阀门前摸其温度,敲打听声;当送水时间过长,系统较大时,堵塞处前后出现死水段,靠手摸不容易确定堵塞位置,这时可用放水的方法查找,放水点可在不热段管道的中间依次向两端进展。放水时,如来水端热水继续往前延伸,说明堵塞点在此之后;再取余下管段中段进行放水,若发现来水段热水不继续向前延伸,说明堵塞点在第一次放水点与第二次放水点之间。当把堵塞点找出后,段开管子,将管内污物清除或把该管段更换。

采暖系统管道坡度安装的不合理,致使管道出现鼓肚,在其内部产生气塞,堵塞或减小了该管段的流通截面积,从而引起局部不热。这时应调整管段坡度,使其符合设计要求的坡度及坡向。

室内系统的送、回水管道与室外热网的送、回水相互接反,或全部在送(或回)水管上,室内系统不能形成一个循环环路。这时应认真查找,了解外网情况,将接错的管道

润滑系统常见故障诊断与排除

润滑系统常见故障诊断与排除 摘要发动机寿命除设计因素外,润滑系统对汽车发动机的正常工作起着举足轻重的作用。润滑系统主要由油池、机油泵、机油滤清器、阀门装置及铸于发动机体的油道组成。润滑系统具有润滑清洁、散热和密封四大功用。当然,机油系统必须有了机油才能发挥四大作用,因此,机油是润滑系统中的主角。汽车发动机的正常工作需要机油在运动机件之间产生油膜,减少磨擦阻力和动力消耗,并减小机件磨损;循环流动的机油将磨擦脱落的金属细屑带走,使之不能加剧磨损,同时,流动的机油将摩擦产生的热量带走,使运动机件不因温度过高而烧损;粘性的机油还能在活塞环与汽缸壁之间构成油膜,起到密封作用,增强汽缸压力 关键词:润滑系常见故障部位常见故障诊断方法常见故障维修案例

目录 1 引言 (1) 2 发动机润滑系的功用及组成 (1) 2.1润滑系统的功用 (1) 2.2发动机润滑方式 (1) 2.2.1压力润滑 (1) 2.2.2飞溅润滑 (2) 2.2.3润滑脂润滑 (2) 2.3润滑系统的组成及油路 (2) 2.3.1油底壳 (2) 2.3.2机油泵 (2) 2.3.3机油滤清器 (2) 2.3.4机油集滤器 (2) 2.3.5主油道 (3) 2.3.6限压阀 (3) 2.3.7机油泵吸油管 (3) 2.3.8曲轴箱通风装置 (3) 2.4润滑系的主要部件 (4) 2.4.1 机油泵 (4) 2.4.2 机油滤清器 (5) 3 润滑剂 (6) 3.1润滑剂的分类和作用 (6) 3.2润滑剂 (6) 3.2.1机油的功用 (6) 3.2.2机油的使用特性及机油添加剂 (7) 3.3机油的分类 (8) 3.4机油的更换及注意事项 (8) 4 润滑系常见的故障 (9) 4.1 常见故障,机油压力低包括: (9) 4.1.1机油粘度不足 (9) 4.1.2 机油泵吸油不足: (9) 4.2 常见故障,漏油包括: (10) 4.2.1 密封垫损坏 (10)

第三章 热水供暖系统

第三章 热水供暖系统 本章重点 掌握重力、机械循环供热系统的原理 掌握机械循环供热系统不同形式的特点 了解室内热水供暖系统的管路布置和主要设备及附件 本章难点 膨胀水箱的安装 重力、机械循环供热系统管道的敷设 以热水作为热媒的供暖系统,称为热水供暖系统。从卫生条件和节能等考虑,民用建筑应采用热水作为热媒。 热水供暖系统,可按下述方法分类: 1.按系统循环动力的不同,可分为重力(自然)循环系统和机械循环系统。靠水的密度差进行循环的系统,称为重力循环系统;靠机械(水泵)力进行循环的系统,称为机械循环系统。 2.按供、回水方式的不同,可分为单管系统和双管系统。热水经立管或水平供水管顺序流过多组散热器,并顺序地在各散热器中冷却的系统,称为单管系统。热水经供水立管或水平供水管平行地分配给多组散热器,冷却后的回水自每个散热器直接沿回水立管或水平回水管流回热源的系统,称为双管系 统。 4.按热媒温度的不同,可分为低温水供暖系统和高温水供暖系统。 在各个国家,对于高温水与低温水的界限,都有自己的规定,并不统一。 在我国,习惯认为:水温低于或高于100℃的热水,称为低温水,水温超过100℃的热水,称为高温水。 室内热水供暖系统,大多采用低温水作为热媒。设计供、回水温度多采用95℃/70℃(也有采用85℃/60℃)。高温水供暖系统一般宜在生产厂房中应用。设计供、回水温度大多采用120~130℃/70℃~80℃。 第一节 重力(自然)循环热水供暖系统 一、重力循环热水供暖的工作原理及其作用压力 图3—1是重力循环热水供暖系统的工作原理图。在图中假设整个系统只有一个放热中心1(散热器)和一个加热中心2(锅炉),用供水管3和回水管4把锅炉与散热器相连接,在系统的最高处连接一个膨胀水箱5,用它容纳水在受热后膨胀而增加的体积。 在系统工作之前,先将系统中充满冷水。当水在锅炉内被加热后,密度减小,同时受着从散热器流回来密度较大的回水的驱动,使热水沿供水干管上升,流人散热器。在散热器内水被冷却,再沿回水干管流回锅炉。这样形成如图3—1箭头所示的方向循环流动。 由此可见,重力循环热水供暖系统的循环作用压力的大小,取决于水温(水的密度)在循环环路的变化状况。为了简化分析,先不考虑水在沿管路流动时因管壁散热而使水不断冷却的因素,认为在图3—1的循环环路内,水温只在锅炉(加热中心)和散热器(冷却中心)两处发生变化,以此来计算循环作用压力的大小。 如假设图3—1的循环环路最低点的断面A-A 处有一个假想阀门。若突然将阀门关闭,则在断面A-A 两侧受到不同的水柱压力。这两方所受到的水柱压力差就是驱使水在系统内进行循环流动的作用压力。 设P1和P2分别表示A-A 断面右侧和左侧的水柱压力,则: ) (g h h h h h g P ρρρ101++= Pa

电热水器常见十大故障和维修方法大全

电热水器是家庭中不可或缺的电器,在使用过程中经常遇到各种问题,以下是电热水器维护中出现的各种故障的概述,主要是电热水器的常见故障,分析原因及维护方法等,电热水器维修常见故障。 故障1:在热水器的加热过程中,安全阀的小孔中有水滴,这是最常见的现象。滴水的原因:由于电热水器是封闭式储水式电热水器,在加热或保温过程中,热水器内胆的水压大于6Mpa,使单向安全阀溢出并滴水滴。 解决方案:关闭进水阀并将水混合阀旋钮调节至高温,以避免单向安全阀漏水,并使水从淋浴中滴落,如果没有安装混合阀,可以稍微打开热水球阀,可以排出压力,并且可以避免单向安全阀的泄漏。 故障2:热水器中的热水使用时间很短。 原因分析:第一次使用热水器(或部分未使用环境),由于热水器的加热时间短,上层和下层的水温不均匀,导致热水较少。 解决方案:继续使用热水器超过12小时,使热水器内的水温均匀。 故障3:使用热水器时泄漏,这是一个经常要注意的严重错误。

原因分析:1.风压开关调节不当,2.吸嘴的位置不合适,3.硅胶管剥离或开裂导致泄漏和压力损失不能推风膜,4.风压开关出现故障,5.脉冲发生器故障。 解决方案:1.将气压开关调节到合适的位置,2.调整吸嘴,3.插入或更换硅胶管,4.更换空气压力开关,5.更换脉冲发生器。 故障4:加热指示灯亮,但未加热。 原因分析:1.加热管接头接触不良或断开,2.加热管烧坏了。 解决方案:1.检查排除,2.更换加热管。 故障5:加热指示灯熄灭且无法加热。 原因分析:1.温度控制器未正确连接或断开,2.个恒温器吹 解决方案:1.检查排除,2.更换恒温器。 故障6:热水器指示灯未熄灭。 原因分析:1.恒温器的温度传感表面与电热管法兰表面的接触较少,2.温控器坏了。 解决方案:1.重新安装恒温器,使温度传感平面接触,2.更换恒温器。 故障7:使用期间的漏电保护插件自动断电(常规自动跳闸),按复位按钮复位并恢复供电。 原因分析:1.通常由于插座接触不良,温升异常过高,2.雷电,雷击或邻近的电器,漏电等会使接地线瞬间触发漏电保护插头。 解决方案:1.更换高质量插座(可选插头,拉力较大,插头插入后插头咬紧),2.检查漏电保护插头的铜引脚,如果是黑色,请用细砂纸擦拭氧化层,如果销钉变形,请更正它们,三个铜脚应垂直于底面,不能弯曲。 故障八:水不热

5A发动机润滑系统常见故障

5A发动机润滑系统常见故障 09XX班 xx XX 润滑系统常见故障有:机油压力过低、机油压力过高、机油消耗异常和机油变质。 1.机油压力过低: 机油压力表指示压力长时间低于正常标准即为机油压力过低。 (1) 机油压力一直很低 发动机无论在低速或高速、低温或高温情况下,机油压力表始终指示0.1Mpa 以下,并伴有机油压力报警灯闪烁,这就是机油压力过低:其原因应从以下几个方面检查:首先拧下机油尺,看机油盘内机油是否足够,机油是否过稀;其次看机油压力表和感应塞是否失灵,将感应塞导线拆下直接搭铁,此时若机油压力恢复正常(或拆下感应塞,短暂起动发动机)或机油从油道喷出,压力很足,手指按不住,说明感应塞损坏;再用一只好的机油压力表替换试验,若油压正常,说明原油压表损坏;再次检查机体上的工艺油塞有无松动,油管有无破裂,限压阀 有无卡滞,机油滤清 器有无堵塞等(拆下 机油感应塞,短暂启 动发动机,若从道内 喷出的油液中央有气 泡,则说明进油管路 进气);最后检查机油 泵有无严重磨损。 图1

表1 (2) 机油压力突然降至零 发动机工作中,机油压力表指示由正常值突然降至零,并伴有机油压力报警灯闪烁。此时首先应检查机油盘内是否有机油,若无机油,说明机油管折断,裂损或机油盘放油螺塞松脱,导致机油漏失。其次应检查机油压力表及感应塞是否损坏。然后检查机油泵传动轴,传动销是否折断使机油泵停止工作。最后检查机油滤清器是否被异物堵死,连杆轴承净化油腔螺塞是否松脱等,并及时排除。(3) 温度升高后机油压力下降 发动机冷机时机油压力正常,随着机温的升高,机油压力逐渐下降,其主要原因是机温升高后机油粘度下降,泄漏损失增加。应趁热机时检查机油是否变质、粘度是否过低,机油牌号是否正确;检查曲轴主轴承、连杆轴承、凸轮轴轴承间隙是否过大,使机油漏失过多 (4) 机油压力随发动机转速升高而降低 发动机怠速运转时,机油压力表指示正常;提高转速后,油压表指示略升高,然后下降甚至趋于零;转速降低后油压表指示又趋于正常。此时应重点检查机油盘内有无遗留的布块,纸片及絮状杂物,因为发动机怠速运转时,机油泵的吸力小,布块、纸片等物沉于机油盘底部,供油正常;当发动机转速提高后,机油泵

室内采暖系统水压试验及调试

1.适用范围 适用于本建筑工程当中精品B区室内采暖热水温度不大于130℃的采暖系统的水压试验和调试。 2.施工准备 2.1 技术准备 1.熟悉设计图纸,了解掌握本系统水压试验、冲洗,调试标准和要求。校核系统是否与图纸、洽商相符。 2.工程规模大、系统复杂时,应编制调试方案;工程规模小、系统简单可编写技术安全交底。 3.系统调试应邀请建设单位、监理单位及参施单位共同参与,相互配合。 2.2 材料要求 系统水压试验、冲洗、调试时应备全、备足所用的材料,一般应有:铅油、青麻、耐热橡胶垫(板)、麻布、棉纱、石笔、管件、拖布、水桶、铁锨、扫把等。 2.3 主要机具 1.机具:电动试压泵、手动试压泵等。系统大、压力高应用电动试压泵(管线总长超过500m、试验压力大于0.6MPa);系统小、压力低可用手动试压泵(管线总长在500m以内、试验压力在0.6MPa以下)。 2.工具:管钳、扳手、钳子、钢锯、压力表、通信工具等。 2.4 作业条件 1.系统安装项目全部完成。 2.水源、电源、热院满足调试要求。 3.参试单位、人员已通知到位。 4.环境温度应高于5℃。当低于5℃时,室内门、窗、洞口要进行封闭,并达到所要求温度。 3.施工工艺 3.1工艺流程 系统试压→系统冲洗→系统通热测试→系统验收 3.2操作工艺 3.2.1系统试压 (1)系统试压前应进行全面检查,核对已安装好的管道、管什、阀门、紧固件及支架等质量是否符合设计要求及有关技术规范的规定,同时检查管道附件是否齐全、螺栓是否紧固、焊接质量是否合格。 (2)系统试压前应将不宜和管道一起试压的阀门、配件等从管道上拆除。管道上的甩口应临时封堵。不宜连同管道一起试压的设备或高压系统与中、低压系统之间应加装盲板隔离,盲板处应有标记,以便试压后拆除。系统内的阀门应开启,系统的最高点应设置不小于管径DNl5的排气阀,最低点应设置不小于DN25的泄水阀。 (3)试压前应装2块经校验合格的压力表,并应有铅封。压力表的满刻度应为被测压力最大值的1.5~2倍。压力表的精度等级不应低于1.5级,并安装在便干观察的位置。 (4)采暖系统安装完毕,管道保温前应进行水压试验。试验压力应符合设计要求,当设计未注明时,应符合下列规定: 1)蒸汽、热水采暖系统,应以系统顶点工作压力加0.1MPa做水压试验,同时在系统顶点的试验压力不小于O.3MPa。

汽车常见故障及维修方法

1.排气管冒黑烟:故障判定:真故障。原因分析:表明混合气过浓,燃烧不完全。主要原因是汽车发动机超负荷,气缸压力不足,发动机温度过低,化油器调整不当,空气滤芯堵塞,个别气缸不工作及点火过迟等。排除时,应及时检查阻风门是否完全打开,必要时进行检修;熄火后从化油器口看主喷管,若有油注出或滴油,则浮子室油面过高,应调整到规定范围,拧紧或更换主量孔;空气滤清器堵塞,应清洗.疏通或更换。 2.车辆的排气管排出蓝色的烟雾:故障判定:真故障。原因分析:是由于大量机油进入气缸,而又不能完全燃烧所致。拆下火花塞,即可发现严重的积炭现象。需检查机油尺油面是否过高;气缸与活塞间隙是否过大;活塞环是否装反;进气门导管是否磨损或密封圈是否损坏;气缸垫是否烧蚀等,必要时应予以修复。 3.车辆排气管冒白烟,冷车时严重,热车后就不冒白烟了:故障判定:假故障。原因分析:这是因为汽油中含有水分,而发动机过冷,此时进入气缸的燃油未完全燃烧导致雾点或水蒸气产生形成白烟。冬季或雨季当汽车初次发动时,常常可以看到排白烟。这不要紧,一旦发动机温度升高,白烟就会消失。此状况不必检修。 4.发动机噪声大,车辆原地踩加速踏板时,有“隆.隆”异响,发动机舱内有振动感。故障判定:使用类故障。原因分析:举升车辆,可看到发动机的底护板有磕碰痕迹。如果路面有障碍物而强行通过,发动机底护板就要被磕碰。底护板变形后与发动机油底壳距离变近,如果距离太近,当加速时油底壳与底护板相撞就会发出异响并使车身振动。所以,行车中一定要仔细观察路面,不要造成拖底现象发生。处理方法:拆下底护板,压平校正即可。 5.车辆的转向盘总是不正,一会向左,一会向右,飘忽不定:故障判定:真故障。原因分析:这是由于固定在转向机凹槽中的橡胶限位块已完全损坏导致。将新限位块装复后,故障完全消失。 6.每次开启空调时,其出风口有非常难闻的气味,天气潮湿时更加严重:故障判定:维护类故障。原因分析:空调的制冷原理是通过制冷剂迅速蒸发吸热,使流经的空气温度迅速下降。由于蒸发器的温度低,而空气温度高,空气中的水分子颗粒会在蒸发器上凝结成水珠,而空气中的灰尘或衣服.座椅上的小绒毛等物质,容易附着在冷凝器的表面,从而导致发霉,细菌会大量繁殖。这样的空气被人体长期吸入会影响驾驶员及乘车人的身体健康,所以空调系统要定期更换空调滤芯,清洁空气道。 7.下小雨时风窗玻璃刮不干净:故障判定:维护类故障。原因分析:不雨下得很大时使用刮水器感觉不错,可是当下小雨启动刮水器时,就会发现刮水器会在玻璃面上留下擦拭不均的痕迹;有的时候会卡在玻璃上造成视线不良。这种情况表明刮水器片已硬化。刮水器是借电动机的转动能量,靠连接棒转变成一来一往的运动,并将此作用力传达至刮水器臂。不刮水器的橡胶部分硬化时,刮水器便无法与玻璃面紧密贴合,或者刮水器片有了伤痕便会造成擦拭上的不均匀,形成残留污垢。刮水器或刮水器胶片面的更换很简单。但在更换时应注意,

热水采暖系统

本文由along74贡献 doc文档 0、引言设置系统定压装置的目的在于供暖系统能在稳压状态下运行,保证系统内不倒空、不汽化。目前供热系统定压方式主要有膨胀水箱定压,即静水柱定压,补水泵定压,补水泵变频调速定压,气体定压罐定压等。以下对几种定压方式进行分析 1、膨胀水箱定压因其必须设在整个系统的最高点距离锅炉房较远,管理不方便,使高位水箱的应用受到了限制。 2、补水泵定压补水泵连续补水定压的供热系统,其定压装置是由补水箱、补水泵及调节器组成,在系统正常运行时,通过压力调节器作用,使补水泵连续补给的水量与系统泄漏量相适应,从而维持系统动水压曲线的位置,但这种定压方式,一般需连续运行,耗电大。而采用补水泵配稳压罐的方式定压,又使设备变得复杂,且增大了锅炉房的占地面积。 3、稳压罐定压经调查分析,国内生产的稳压罐主要有以下几个问题:①设计方法仍沿用冷水罐的设计方法,大多数的定压罐是冷水罐的变形。②罐与系统的连接只是简单地照搬高位水箱的连接方法,罐及泵系统缺少必要的安全措施。③罐及附属设备的性能检验手段及检测方法不完善,罐体气密性差,一次性充气的罐体根本保证不了一个采暖期静压线不降低。 4、补水泵变频调速定压综合上述几种定压方式的不合理处,采用补水泵变频调速定压,其基本原理是根据供热系统的压力变化,改变电源频率,平滑无级地调整补水泵转速,并与在旁通管上增设电磁阀,进而及时调节补水量,实现系统恒压点压力的恒定。该定压方式的关键设备是变频器,其工作原理是把 50HZ 的交流电转为直流电,再经过变频器把直流电变换为另一种频率的交流电。由于电流频率的改变,从而达到补水泵调速的目的。频率与转速的关系为 n=60f(1-Sn)/P 式中 n 一异步电动机即水泵转速; f 一电源频率,Hz;
Sn 一电机额定转数,即电机定子旋转磁场转速之差,一般为 5%左右; P 一电机的极对数。由上式可看出, P、一定时,当 Sn 电机即水泵转速与输入电流的频率成正比。频率愈高,转速愈快,频率愈低,转速愈慢。由水泵特性可知,水泵流量与频率也成正比,调节频率即调节转速,则可直接调节补水泵。一般变频器的频率,调节范围为 0.5~400Hz 之间,因此转速的变化为 14~11 200r/min 之间。本图给出了补水泵变频调速变压的调节框图,在旁通管增加电磁阀。此时压力给定,由压力传感测出循环泵旁通管上的被调压力值,将其压力信号反馈与给定压力比较,若不等由调节器计算出变频器的输入电流,变频根据输入电源,自动将频率调至其相应值。变频器将频率输出信号传给补水泵进而改变补水泵转速。调节补水量使恒压点压力维持在给定值,当系统压力值低于下限时,补水泵启动进行补水,当压力值超过上限值,电磁阀自动启动泄至补水箱。 5、结束语补水泵变频调速定压的节能效果是明显的,与补水泵连续运行定压相比较,节省补水泵系统上调节阀的节流损耗。对于间歇运行的补水泵定压,因补水泵启动频繁,不但影响补水泵寿命,而且多耗费了电能。水泵在启动时,由于电机的定子、转子的转差大,通常电机的启动电流约为额定电流的 6~7 倍,进而其启动功率约比额定功率大 30%左右。由于变频器可以使补水泵在额定电流下启动,且启动频率不频繁,因此变频调速定压比起间歇运行定压来,省电效果也是明显的。与气体定压罐比较,特别是供热规模较大,定压罐容积较大时,补水泵变频调速定压方式即使在经济上也是占优势的。

供热系统的组成及特点

供热系统的组成及特点 供热、供燃气空调与通风工程刘艳涛305 一、供热系统的组成 供暖系统由热源、热媒输送管道和散热设备组成。 热源:制取具有压力、温度等参数的蒸汽或热水的设备。 热媒输送管道:把热量从热源输送到热用户的管道系统。 散热设备:把热量传送给室内空气的设备。 二、供热系统的分类和特点 供暖系统有很多种不同的分类方法,按照热媒的不同可以分为:热水供暖系统、蒸汽供暖系统、热风采暖系统;按照热源的不同又分为热电厂供暖、区域锅炉房供暖、集中供暖三大类等。 热水供暖系统 水为热媒的供暖系统的优点:其室温比较稳定,卫生条件好;可集中调节水温,便于根据室外温度变化情况调节散热量;系统使用的寿命长,一般可使用25年。 热水为热媒的供暖系统的缺点:采用低温热水作为热媒时,管材与散热器的耗散较多,初期投资较大;当建筑物较高时,系统的静水压力大,散热器容易产生超压现象;水的热惰性大,房间升温、降温速度较慢;热水排放不彻底时,容易发生冻裂事故。 热水供暖系统按其作用压力的不同,可分为重力循环热水供暖系统和机械循环热水供暖系统两种,机械循环热水供暖系统是用管道将锅炉、水泵和用户的散热器连接起来组成一个供暖系统。 在供暖系统中,各个散热器与管道的连接方式称为散热系统的形式。热水供暖系统中散热系统的形式可分为垂直式和水平式两大类。 (1)垂直式 指将垂直位置相同的各个散热器用立管进行连接的方式。它按散热器与立管的连接方式又可分为单管系统和双管系统两种;按供、回水干管的布置位置和供水方向的不同也可分为上供下回、下供下回和下供上回等几种方式。 (2)水平式 指将同一水平位置(同一楼层)的各个散热器用一根水平管道进行连接的方式。它可分为顺序式和跨越式两种方式。顺序式的优点是结构较简单,造价低,但各散热器不能单独调节;跨越式中各散热器可独立调节,但造价较高,且传热系数较低。 水平式系统与垂直式系统相比具有如下优点。 ①构造简单,经济性好。 ②管路简单,无穿过各楼层的立管,施工方便。 ③水平管可以敷设在顶棚或地沟内,便于隐蔽。 ④便于进行分层管理和调节。 但水平式系统的排气方式要比垂直式系统复杂些,它需要在散热器上设置冷风阀分散排气,或在同层散热器上串接一根空气管集中排气。

电热水器常见故障如此处理

相信大家都是非常注重个人卫生的,现在天气渐渐还暖,每日都要洗澡的朋友一定不在少数。而洗澡就必须用到热水器了。 热水器总共也就那么几种:1.太阳能热水器2.电热水器3.燃气热水器。这几种热水器谈不上谁优谁劣,各有其独到之处罢了。不管我们家里选择的是哪种热水器,都少不了日常的维护保养。否则一旦出现任何问题,洗不成澡是小事,还会有发生安全事故的隐患。 所以保养维护热水器刻不容缓,如果您不知道该怎么维护?别急!今天就给大家分享一下燃气热水器的维护方法,大家只需要按照这么几个步骤就能确保热水器正常并且安全的使用。 老式燃气热水器 因为我这里的是国外进口的最老式的燃气热水器,所以为了保证言之有物,就拿这套燃气热水器设备讲解一下。虽然和大家现在常用的热水器不太一样,但大概的原理还是差不多的,大家可以借鉴一下 燃气热水器最常见的损坏原因 不管是哪种热水器都有一个通病,而这个通病取决于外部因素,就是我们的自来水。

当水被抽进热水器的蓄水箱时,污垢、沉淀物和各种矿物质都会沉淀在底部,而这些物质堆积的多少取决于你使用的水的质量。这些额外的“成分”会破坏你的热水器的效率,短时感觉不到,但长远来说会增加能耗,加大使用成本。 而且它不仅仅只是影响热水器的效率那么简单,还会使你的水箱生锈,慢慢的被腐蚀掉,最终只能更换原件,这就非常昂贵了,而且还失去了安全防火墙。 简单的维护方法: 第一步:找出购买时的产品说明书仔细的研读一下,说明书上一定会有明确的标识:禁止私自拆卸。因为这些东西都是比较精密的设备,我们不是专业人士就不要明知故犯啦。 第二步:找到截止阀、压力释放阀和排水口 我这个热水器的水关闭阀门位于热水器的顶部,压力释放阀也同样位于顶部,而排水口则位于设备底部,一般配有螺纹接口,以便于连接排水管。像这些特殊的开关阀门都会有在旁边有标识标签的,大家可以仔细寻找一下。

热水供暖循环系统实验

热水供暖循环系统实验 一、实验目的 1.了解常见的采暖系统形式,掌握系统中各部件的作用及其连接方式 2.认识和了解热水在系统中及散热器内的流动情况和规律 3.通过量调节实验,分析其热力工况 4.通过质调节实验,分析其热力工况 二、实验设备 三、实验内容及步骤 1、量调节 打开“电磁阀1”、“电磁阀2”;将“电动调节阀1”、“电动调节阀2”都置于“开大”状态时,测试“球阀2”的开度分别为大、中、小时的累计水量、瞬时流量、散热器供回水温度、温差(均为热量表的读数)及室温,将测量数据填入表1。由于系统小,累计热量(散热器散热量)无法读出,各表中的散热量均用下式计算得出。又由于系统流量大,而热负荷相对较小,则供回水温差小。 计算公式: Q=G×C×(t g —t h ) (W)(13-1) 式中:Q―散热器的散热量(W) G―流经散热器的热媒流量(K g ) C―热媒的比热(W/K g ·℃)(水的比热为4.186 W/K g ·℃) t g ―散热器的供水温度(℃) t h ―散热器的回水温度(℃) 表1:量调节数据记录表1

注:室温tn可视为散热器表面温度 2、电动调节阀调节 2.1 打开“电磁阀1”、“电磁阀2”; “电动调节阀2”、“球阀2”都置于“开大”状态时,、测试“电动调节阀1”的开度分别为大、中、小时的累计水量、瞬时流量、散热器供回水温度、温差(均为热量表的读数)及室温,将测量数据填入表2。 2.2 打开“电磁阀1”、“电磁阀2”; “电动调节阀1”、“球阀2”都置于“开大”状态时,、测试“电动调节阀2”的开度分别为大、中、小时的累计水量、瞬时流量、散热器供回水温度、温差(均为热量表的读数)及室温,将测量数据填入表3。 表2:量调节数据记录表12 注:室温tn可视为散热器1表面温度 表3:量调节数据记录表2 注:室温tn可视为散热器2表面温度 3、质调节 打开“电磁阀1”、“电磁阀2”;“电动调节阀1”、“电动调节阀2”、“球阀

最新1-1-1-1自然循环热水供暖系统工作原理及系统形式

项目一:室内热水供暖工程施工 模块一:识读、绘制室内热水供暖系统施工图 单元1 热水供暖系统形式 1-1-1-1自然循环热水供暖系统工作原理及系统形式 1.自然循环热水供暖系统的工作原理 图 1-1-1为自然循环热水供暖系统的工作原理图。图中假设系统有一个加热中心(锅炉)和一个冷却中心(散热器),用供、回水管路把散热器和锅炉连接起来。在系统的最高处连接一个膨胀水箱,用来容纳水受热膨胀而增加的体积。 运行前,先将系统内充满水,水在锅炉中被加热后,密度减小,水向上浮升,经供水管道流入散热器。在散热器内热水被冷却,密度增加,水再沿回水管道返回锅炉。 在水的循环流动过程中,供水和回水由于温度差的存在,产生了密度差,系统就是靠供、回水的密度差作为循环动力的。这种系统称为自然(重力)循环热水供暖系统。 图1-1-1 自然循环热水供暖系统工作原理图 1-热水锅炉 2-供水管路 3-膨胀水箱 4-散热器 5-回水管路 2.自然循环热水供暖系统的形式特点 图1-1-2是自然循环热水供暖系统的两种主要形式,左侧立管为双管上供下回式系统;右侧立管为单管上供下回式(顺流式)系统。上供下回式系统的供水干管敷设在所有散热器之上,回水干管敷设在所有散热器之下。

图1-1-2 自然循环热水供暖系统 1-回水立管 2-散热器回水支管 3-膨胀水箱连接管 4-供水干管 5-散热器供水支管 6-供水立管 7-回水干管 8-充水管(接上水管) 9-止回阀 10-泄水管(接下水道) 11-总立管 (1)自然循环双管上供下回式系统,其特点是:各层散热器都并联在供、回水立管上,热水直接流经供水干管、立管进入各层散热器,冷却后的回水经回水立管、干管直接流回锅炉,如果不考虑水在管道中的冷却,则进入各层散热器的水温相同。分析该系统循环作用压力时,因假设锅炉是加热中心,散热器是冷却中心,可以忽略水在管路中流动时管壁散热产生的水冷却,认为水温只是在锅炉和散热器处发生变化。 (2)自然循环单管上供下回式系统,其特点是:热水进入立管后,由上向下顺序流过各层散热器,水温逐层降低,各组散热器串联在立管上。每根立管(包括立管上各组散热器)与锅炉、供回水干管形成一个循环环路,各立管环路是并联关系。 3. 热水供暖系统的排空气问题 无论是自然循环还是机械循环热水供暖系统,都应考虑系统充水时,如果未能将空气完全排净,随着水温的升高或水在流动中压力的降低,水中溶解的空气会逐渐析出,空气会在管道的某些高点处形成气塞,阻碍水的循环流动。空气如果积存于散热器中,散热器就会不热。另外,氧气还会加剧管路系统的腐蚀。所以,热水供暖系统应考虑排空气的问题。 4. 自然循环上供下回式热水供暖系统排空气及供回水干管的坡度设置 在自然循环系统中,水的循环作用压力较小,流速较低,水平干管中水的流速小于0.2m /s,而干管中空气气泡的浮升速度为0.1~0.2 m/ s ,立管中约为0.25 m / s ,一般超过了水的流动速度。此外,自然循环上供下回式热水供暖系统的供水干管应设沿水流方向下降的坡度,坡度值为0.5%~1.0%。散热器支管也应沿水流方向设下降坡度,坡度值为1%,因此空气能够逆着水流方向向高处聚集。自然循环上供下回式热水供暖系统可通过设在供水总 立管最上部的膨胀水箱排空气。

集中润滑系统常见故障的排除方法

集中润滑系统常见故障的排除方法 把润滑部位比较多的部位集中起来供油,并达到精益润滑的方法就叫做集中润滑。集 中润滑系统可以起到降低摩擦阻力,减少表面磨损,降低温度,防止腐蚀,减震密封等作用。 集中润滑系统最常见的故障为润滑点无油脂输出。系统发生故障后的一般检修方向为:泵装置单元——主分配器——二次分配器——润滑点。 对此故障可按如下方法操作处理: 1.处理泵装置单元的故障 泵装置启动后,本体的旋转凸轮机构不运转,则可按以下方法处理: ①拆开泵装置电器插头;②启动泵装置;③测量泵装置输入电压是否在正常电压的1±20%之间;④检查保险是否烧坏;⑤检查连接电缆是否烧坏;⑥如以上测试均正常,则重新设定时间间隔(假定15min);⑦启动泵装置等待15min后,泵装置应能自动启动并关闭; ⑧如仍无反应则须更换泵装置。 2.如泵装置工作正常,则需视具体情况处理。 ①系统堵塞——安全阀处泄油,可由泵、主分配器、二次分配器到润滑点逐步检查处理; ②主油管损坏——主油管漏油,而更换主油管;③主油管堵塞。先从主分配器处拆开主油管,启动泵装置,观测有无润滑剂从拆开处流出,如无流出则需更换主油管;④主分配器故障,先松开主分配器出口连接,检查出口处的链接阀,启动泵装置,观测有无润滑剂从松开处流出,如无流出则需更换主分配器;⑤二次管路堵塞,可参考③处理;⑥二次分配器故障,可参考④处理;⑦至润滑点的供油管损坏,如目视可见的损坏,或扁或拗绞等,需更换供油管; ⑧润滑点无脂供出,检查储脂罐液位是否低于最低限位,如液位过低则需加注规定牌号的润滑剂。 集中润滑系统如能选配得当和正常使用,在机械工作时能定时、定点、定量地进行润滑,将使机械的磨损降至最低,大大减少润滑剂的使用量,在环保和节能的同时,能降低机械的损耗和保养维修时间,提高工作效率,为用户创造更大的经济利益,同时也能提高企业的市场竞争力。例如,VICSEN集中润滑系统采用递进式工作方式,泵设计成可间歇或持续工作,这样可以按照不同的需要来编辑运行程序,一个直联的减速电机驱动泵内凸轮工作,可以同时驱动3个外置泵单元。每个泵单元都配有溢流过压保护阀防止超压损坏。可设置1-200个润滑点。

热水采暖系统实验(学生)

热水采暖系统实验 实验说明书 土木工程系暖通实验室 编制人:王春慧

一、概述 热水采暖系统是由热水锅炉、供热管道、散热设备三个基本部分组成。其工作过程为:先用锅炉将水加热,然后用水泵加压,热水通过加热管道供给在室内均匀安装的散热器,在通过散热器对室内空气进行加温。整个系统为循环系统,冷却后的水重新回到锅炉进行加热,进入下一次循环。 二、实验目的 1、了解常见的采暖系统形式,掌握系统中各部件的作用及其连接方式,巩固课堂学习的知识。 2、认识和了解热水在系统中及散热器内的流动情况和规律。 3、认识和了解空气在系统中存在的情况,认识排除空气的重要性及其排气措施。 三、实验原理 重力自然循环热水供暖系统工作原理如图1所示,系统循环作用压力为: ()g h gh P P P ρρ-=-=?21 机械循环热水采暖系统的作用压头为水泵的压头和自然作用压头的共同作用,如图2所示。 图1 重力自然循环热水供暖系统工作原理 图2 机械循环热水供暖系统工作原理 四、实验装置 B C 2 43 35ⅠⅡ ⅢⅣ Ⅴ 图3 热水采暖系统观测实验装置示意图 1—水箱;2—循环水泵;3—集气罐;4—散热器;5—膨胀水箱 Ⅰ—水平式顺流式系统;Ⅱ—水平式跨越式系统;Ⅲ—垂直式单管跨越式系统; Ⅳ—垂直式单管顺流式系统;Ⅴ—双管系统

五、实验内容和步骤 1、实验前准备工作: 1)、掌握热水采暖系统的分类方法: A、按系统循环动力分 B、按供回水方式不同分 C、按系统管道敷设方式分 D、按热媒水温度分 2)、机械循环热水供暖系统的主要型式及其特点: A、按供、回水干管布置位置不同分:a、上供下回式b、下供下回式c、中供式d、下供上回式(倒流式)e、混合式 B、按供回水方式不同分为:双管和单管系统。 C、按管道敷设方式不同分为:垂直式和水平式。 D、按供回水通过各立管的循环环路的总长度是否相等分为:同程式和异程式。 2、系统的充水与排气 系统工作前,先将水充满给水箱1,然后打开阀门B和C,同时启动水泵2,向系统充水。充水时,不断的开闭集气罐放气阀,让系统中的空气从集气罐3和膨胀水箱5中排出。待充水到一定程度,当集气罐溢管有水流出时,关闭集气罐溢流阀门,水位继续上升,当自来水从膨胀水箱溢流管流出时,停止充水。若水位下降,就再次充水,直到水位在溢流管处为止。 当水位有所下降时,应分析其原因: A、系统内可能仍有空气存在; B、系统、设备、管道及阀门是否有漏水现象。 演示中,应观察: A、在充水过程中,对于下供上回式系统是怎样排气的? B、如不排除系统中存在的空气,对系统的正常运行有何影响? 3、机械循环演示 系统充满水后,启动锅炉,加热系统中的水,打开阀门B,C,热水在水泵的作用下,沿供水干道进入散热器。并通过散热器将热量散放到采暖房间。温度降低了的水从散热器流出,沿回水干道进入水泵加压,流回锅炉再加热。 演示中,应注意观察: A、带跨越管的单管立管中,热水流量的分配情况如何? 4、停止演示运行 A、先拉开电加热器的电闸。 B、再拉开水泵的电闸。 C、打开泄水阀门,使水从系统中排掉。 六、实验报告的编写 实验报告的内容包括实验目的、实验原理、实验步骤并回答下列思考题: 1、膨胀水箱的底为什么比排气设备的底要高? 2、膨胀水箱有几根连接管,各起什么作用?每根连接管上是否可以安装阀门? 3、本演示实验系统中,室内热水采暖系统有几种连接方式,画出各种连接方式的原理图并简述其特点。

电热水器维修常见故障及解决方法

继燃气热水器之后又出现了电热水器,相比较燃气热水器电热水器使用起来更加的方便快捷,没有那么多限制。但是电热水器在使用过程中也会有很多的问题,接下来一起来看一下! 一、电热水器不出水 原因和解决方法: ①自来水停水,检查水路; ②进水阀门未打开,检查水阀; ③进出水管堵塞,清理内胆水垢后可使用; ④水压太低,待压力高于0.1MPa时可正常使用; ⑤混水阀阀芯卡死,调节失效,需更换混水阀; ⑥安全阀卡死,扳开安全阀泄压手柄无水出证明已坏需更换; ⑦内胆无水或水未充满,充满水后即可;

⑧花洒档位处于关的电热水器出水温度低。 二、电热水器水温超过热保护器原因和解决方法 水温超过热保护器设定范围;超温保护器质量问题。失效误动作,检查加热管及温控器无问题则更换超温保护器;热水器温控器坏,直接加热到超温保护器跳闸,需更换温控器;加热管方向安装相反,使水温过高,需重新安装原厂加热管并保证弯曲部位向下;安全阀无防倒流功能,内胆无水干烧造成超温保护器动作,需更换安全阀。加热管与探温管靠近,加热上升速度快触发超温保护器,将两管距离拨开到5-10mm。 三、电热水器漏水安全阀泄水原因分析和解决方法 自来水水压过高,水压超过0.6MPa需加装减压阀;安全阀失效和阀体泄压值太低,需更换安全阀;热水器温控器损坏,直接加热到高温使内胆压力超过设计压力(0.6MPa),需更换温控器;安全阀手柄已扳起,需放回原位;安全阀泄压密封处有杂质密封不严漏水,清洗安全阀。 四、电热水器金属部分带电原因和解决方法 电热水器未接地线且电热管或电器件漏电,要严格加装地线;因其它用户电器漏电到地线上从外部反输入到热水器地线上,需停止使用进行维修;热水器安装螺丝钉打到墙体内部电线上,需加装绝缘管及绝缘接头即可;因输入电线老化造成火线与地线之间漏电,需重新更换电线。热水器内部零件存在漏电,检查维修合格才能使用;特别要注意的是:一旦发现热水器带电,禁止使用,维修合格才能使用。

第三章 热水供暖系统 第一节

济南铁道职业技术学院 教师授课教案 20____/20____学年第____学期课程供热工程 目的要求: 1、掌握重力循环热水供暖系统的工作原理及其作用压力; 2、掌握重力循环热水供暖单、双管系统的作用压力的计算; 3、重力循环热水供暖例题。 旧知复习:作用压力的确定。 重点难点: 重点:重力循环热水供暖单、双管系统的作用压力的计算。 难点:重力循环热水供暖单、双管系统的作用压力的计算。 教学过程:(包括主要教学环节、时间分配) 一、复习(5分钟) 二、新课 1、重力循环热水供暖系统的工作原理及其作用压力(10分钟) 2、重力循环热水供暖单管、双管系统的作用压力的计算(35分钟) 3、例题(35分钟) 三、小结及作业(5分钟) 课后作业: 简述重力循环热水供暖单、双管系统的作用压力的区别。 教学后记: 此处相对较枯燥,注意通过单、双管的比较,加强学生理解。 任课教师教研室主任:

济南铁道职业技术学院授课教案附页 第 页 任课教师 郑枫 教研室主任 张风琴 年 月 日 第三章 热水供暖系统 以热水作为热媒的供暖系统,称为热水供暖系统。从卫生条件和节能等考虑,民用建筑应采用热水作为热媒。 热水供暖系统,可按下述方法分类: 1.按系统循环动力的不同,可分为重力(自然)循环系统和机械循环系统。 2.按供、回水方式的不同,可分为单管系统和双管系统。 3.按热媒温度的不同,可分为低温水供暖系统和高温水供暖系统。 在我国,习惯认为:水温低于或高于100℃的热水,称为低温水,水温超过100℃的热水,称为高温水。 室内热水供暖系统,大多采用低温水作为热媒。 设计供、回水温度多采用95℃/70℃(也有采用85℃/60℃)。 高温水供暖系统一般宜在生产厂房中应用。设计供、回水温度大多采用120~130℃/70℃~80℃。 第一节 重力(自然)循环热水供暖系统 一、重力循环热水供暖的工作原理及其作用压力 图3—1是重力循环热水供暖系统的工作原理图。 重力循环热水供暖系统的循环作用压力的大小, 取决于水温(水的密度)在循环环路的变化状况。 先不考虑水在沿管路流动时因管壁散热而使水不 断冷却的因素。 设P1和P2分别表示A-A 断面右侧和左侧的 水柱压力,则: ) (g h h h h h g P ρρρ101++= Pa ) (g g h h h h g P ρρρ102++= Pa 断面A-A 两侧之差值,即系统的循环作用压力为: ) (g h gh P P P ρρ-=-=?21 Pa 起循环作用的只有散热器中心和锅炉中心之间这段高度内的水柱密度差。 二、重力循环热水供暖系统的主要型式 重力循环热水供暖系统主要分双管和单管两种型式。 左右

史密斯热水器故障有原因及维修方法

家里的史密斯热水器出了问题怎么办,该怎么维修解决这个问题呢,我们一起来看一看热水器怎么维修售后处理。 1、电热水器不出水 原因和解决方法: 自来水停水,检查水路; 进水阀门未打开,检查水阀; 进出水管堵塞,清理内胆水垢后可使用; 水压太低,待压力高于0.1MPa时可正常使用; 混水阀阀芯卡死,调节失效,需更换混水阀; 安全阀卡死,扳开安全阀泄压手柄无水出证明已坏需更换; 内胆无水或水未充满,充满水后即可;

花洒档位处于关的电热水器出水温度低。 2、混水阀手柄转到低温 原因和解决方法:往高温方向调节即可; 3、温控器设置的水温过低 原因和解决方法:将温控温度设定为最高75℃; 4、旋转温控器轴无开关的响声 原因和解决方法:证明温控器坏,已坏需要更换; 5、温度不到75℃就断开 原因和解决方法:温控器探温管与发热体距离太近,更换加热管。 6、未加热到设定温度,提前用水 原因和解决方法:待加热指示熄灭或保温灯亮才使用。 7、混水阀阀芯坏造成冷热水串通 原因和解决方法:需更换混水阀; 8、检测水温不准确 原因和解决方法:温敏探头失效需更换; 9、加热管用万用表测量电阻为无穷大(正常为几十欧) 原因和解决方法:证明加热管已坏需更换; 10、电热水器指示灯不亮 原因和解决方法:未接通电源,接好电源即可;处于保温状态,放水约5分钟左右指示灯转为加热状态即正常;指示灯坏,有正常的热水使用证明指示坏需更换。

11、电热水器水温超过热保护器 原因和解决方法:水温超过热保护器设定范围;超温保护器质量问题。失效误动作,检查加热管及温控器无问题则更换超温保护器;热水器温控器坏,直接加热到超温保护器跳闸,需更换温控器;加热管方向安装相反,使水温过高,需重新安装原厂加热管并保证弯曲部位向下;安全阀无防倒流功能,内胆无水干烧造成超温保护器动作,需更换安全阀。加热管与探温管靠近,加热上升速度快触发超温保护器,将两管距离拨开到5-10mm。 12、电热水器漏水 安全阀泄水原因分析和解决方法:

智能润滑系统常见故障分类

目录 1.文本一直初始化/文本无参数块/CPU无响应----------------------------4 2.反馈继电器微亮----------------------------------------------------------------4 3.系统工作52#润滑点时出现跳闸现象--------------------------------------4 4.监控画面重力和压力无显示或不发生变化-------------------------------4 5. 上位机润滑点显示堵塞,但现场实际正常------------------------------5 6. 一号总线控制器工作时,现场润滑点不工作,使用二号控制器时正常,把二号控制器换到一号,现场仍不工作----------------------------5 7.加油泵无法加油----------------------------------------------------------------5 8.监控通讯不上-------------------------------------------------------------------6 9. 润滑泵自动不能运行--------------------------------------------------------6 10. 加油泵自动不能自动加油-------------------------------------------------6 11. 3000系统中现场不能正常打点-------------------------------------------6 12. 气动阀有关问题-------------------------------------------------------------7 13. 主控柜内L400断路器(现场电磁阀电源)系统工作时经常跳闸---------------------------------------------------------------------------------------7 14. 监控画面上有规律的堵塞点,每隔12个润滑点堵塞---------------------------------------------------------------------------------------7 15. 系统不能自动运行----------------------------------------------------------7 16. 监控上不能启动润滑系统-------------------------------------------------7

热水采暖系统常见故障的排除

热水采暖系统常见故障的排除 摘要:热水采暖系统常见故障的排除,局部散热器不热 ,热力失效,回水温度过高,系统回水温度过低,其它故障及排除方法。 关键词:热水采暖系统常见故障排除东北地区局部散热器热力失效回水温度故障排除 东北地区冬季气候寒冷,每年要有六个月的冬季采暖期。近年来热水采暖以其在技术和经济上的显着优越性得到广大用户的青睐。 目前热水采暖广泛用于工业和民用建筑中。但是由于施工作业人员在热水采暖系统的施工、调整与运行管理方面的经验不足,系统在运行时可能会出现一些故障,影响正常供热。经过多年的现场实践,总结了热水采暖系统几种常见的故障及其排除方法,供大家参考。 一、局部散热器不热 局部散热器不热的原因大体有以下几种情况:阀门失灵,阀盘脱落在阀座内堵塞了热媒流动通道,这时可打开阀门压盖进行修理,或把失灵阀门更换掉。集气罐存气太多,阻塞管路,也会产生局部散热器不热的情况,这时应打开系统中所设置的放气附件,如集气罐上的排气阀,散热器上的手动放风门等。 管路堵塞,出现这种故障,当送水时间较短时,可用手在管线转弯处与阀门前摸其温度,敲打听声;当送水时间过长,系统较大时,堵塞处前后出现死水段,靠手摸不容易确定堵塞位置,这时可用放水的方法查找,放水点可在不热段管道的中间依次向两端进展。放水时,如来水端热水继续往前延伸,说明堵塞点在此之后;再取余下管段中段进行放水,若发现来水段热水不继续向前延伸,说明堵塞点在第一次放水点与第二次放水点之间。当把堵塞点找出后,段开管子,将管内污物清除或把该管段更换。 采暖系统管道坡度安装的不合理,致使管道出现鼓肚,在其内部产生气塞,堵塞或减小了该管段的流通截面积,从而引起局部不热。这时应调整管段坡度,使其符合设计要求的坡度及坡向。 室内系统的送、回水管道与室外热网的送、回水相互接反,或全部在送(或回)水管上,室内系统不能形成一个循环环路。这时应认真查找,了解外网情况,将接错的管道改正过来。 二、热力失效 采用双管上分式采暖系统时,多层建筑上层散热器过热,下层散热器过冷。产生这种垂直热力失调的原因有两种可能。 其一,通过上下层散热器的热媒流量相差较大。排除这种故障的方法是关小上层散热器支管上的阀门,以减少其热媒流量。 其二,支管下端管段被氧化铁皮、水垢等堵塞,增加了该循环系统的阻力,破坏了系统各环路压力损失的平衡。对于这种情况及时清除管段中的污物或更换支立管,减少阻力损失,恢复系统各

相关文档