文档库 最新最全的文档下载
当前位置:文档库 › 基于MATLAB的8-PSK的调制与仿真报告

基于MATLAB的8-PSK的调制与仿真报告

基于MATLAB的8-PSK的调制与仿真报告
基于MATLAB的8-PSK的调制与仿真报告

摘要

在数字信号的调制方式中8PSK是目前最常用的一种数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。调制技术是通信领域里非常重要的环节,一种好的调制技术不仅可以节约频谱资源而且可以提供好的通信性能。8PSK调制是一种具有较高频带利用率和良好的抗噪声性能的制方式,在数字移动通信中已经得到了广泛的应用。次设计在理解8PSK调制解调原理的基础上应用MATLAB语言来完成仿真,仿真8-PSK载波调制信号在AWGN 信道下的误码率和误比特率性能,并与理论值相比较。设符号周期为1s,载波频率为10Hz,每个符号周期内采样100个点。在仿真的基础上分析比较了各种调制方法的性能,并通过比较仿真模型与理论计算的性能证明了仿真模型的可行性。

1.设计内容及要求

仿真8-PSK载波调制信号在AWGN信道下的误码率和误比特率性能,并与理论值相比较。假设符号周期为1s,载波频率为10Hz,每个符号周期内采样100个点并利用M文件仿真。

2.相关理论知识的论述分析在八相调相中,把载波相位的一个周期0-2π等分成8种相位,已调波相邻相位之差为2π/8=π/4。二进制信码的三比码组成一个八进制码元,并与一个已调波的相位对应。所以在调制时必须将二进制的基带串行码流经过串/并变换,变为三比特码元,然后进行调相。三比特码元的组合不同,对应的已调波的相位就不同。

3.系统原理及分析将载波信号经过8-psk调制,根据符号功率算出平均功率,加入白噪声后解调得到误比特率,误符号率,再与理论值进行比较。八进制移相键控(8PSK)调制。由于8PSK将GMSK的信号空间从2扩展到8,因此每个符号可以包括的信息是原来的4倍。8PSK的符号率保持在271kbps,每个时隙可以得到69.2kbps的总速率,并且仍然能够完成GSM频谱屏蔽。对于高速传输,为了提高频带利用率,多采用多进制调制方法,在一个波形周期(0,TS)内发送多个二进制符号。频带利用率能成倍增加。8PSK,载波有(0,π/4,π/2,3π/4,π,5π/4 ,3π/2,7π/4 )八种不同的初相,可以在一个波形周期(0,TS)内发送3个二进制符(000,001,010,011,100,101,110,111)。频带利用率能达到6b/S/HZ。由于8PSK信号幅度不是恒定的,因此,被调制信号将不再保持恒定幅度,它必须能够从任何起点到达任何相位位置。

4.设计与仿真

4.1 MATLAB软件的介绍

MATLAB 软件是美国Math works 公司的产品,MATLAB 是英文

MATrix LABoratory(矩阵实验室)的缩写。

MATLAB软件系列产品是一套高效强大的工程技术数值运算和系统仿真软件,广泛应用于当今的航空航天、汽车制造、半导体制造、电子通信、医学研究、财经研究和高等教育等领域,被誉为“巨人肩膀上的工具”。研发人员借MATLAB

软件能迅速测试设想构想,综合评测系统性能,快速设计更好方案来确保更高技术要求。同时MATLAB也是国家教委重点提倡的一种计算工具。MATLAB主要由C 语言编写而成,采用LAPACK 为底层支持软件包。MATLAB的编程非常简单,它有着比其他任何计算机高级语言更高的编程效率、更好的代码可读性和移植性,以致被誉为“第四代”计算机语言,MATLAB是所有MathWorks公司产品的数值分析和图形基础环境。此外MATLAB 还拥有强大的2D和3D甚至动态图形的绘制功能,这样用户可以更直观、更迅速的进行多种算法的比较,从中找出最好的方案。从通信系统分析与设计、滤波器设计、信号处理、小波分析、神经网络到控制系统、模糊控制等方面来看,MATLAB提供了大量的面向专业领域的工具箱。通过工具箱,以往需要复杂编程的算法开发任务往往只需一个函数就能实现,而且工具箱是开放的可扩展集,用户可以查看或修改其中的算法,甚至开发自己的算法。

目前,MATLAB已经广泛地应用于工程设计的各个领域,如电子、通信等领域;它已成为国际上最流行的计算机仿真软件设计工具。现在的MATLAB不再仅仅是一个矩阵实验室,而是一种实用的、功能强大的、不断更新的高级计算机编程语言。现在从电子通信、自动控制图形分析处理到航天工业、汽车工业,甚至是财务工程。MATLAB都凭借其强大的功能获得了极大的用武之地。

广大学生可以使用MATLAB来帮助进行信号处理、通信原理、线性系统、自动控制等课程的学习;科研工作者可以使用MATLAB进行理论研究和算法开发;工程师可以使用MATLAB进行系统级的设计与仿真.

4.2 仿真程序

clear all;

close all;

n=10000; %每种信噪比下发送符号数, T=1; %符号周期

fs=100; %每个符号的采样点数

ts=1/fs; %采样时间间隔

t=0:ts:T-ts; %时间矢量

fc=10; %载波频率

c=sqrt(2/T)*exp(j*2*pi*fc*t); %载波信号,sqrt平方根计算subplot(231);

plot(c,'b');

title('载波信号')

c1=sqrt(2/T)*cos(2*pi*fc*t); %同相载波

c2=-sqrt(2/T)*sin(2*pi*fc*t); %正交载波

M=8; %8—PSK

graycode=[0 1 2 3 6 7 4 5 ]; %编规则graycode格雷码 SNR=0:15; %信噪比

snr1=10.^(SNR/10); %信噪比转换为线性值

msg=randint(1,n,M); %生成消息序列

subplot(232);

plot(msg);

axis([0, 10, 0, 10]);

title('基带信号')

msg1=graycode(msg+1); %绝对码表示为相对码,幅值相位表示msgmod=pskmod(msg1,M).'; %基带8—PSK调制

subplot(233);

plot(msgmod,'y');

title('基带调制')

tx=real(msgmod*c);%载波调制

subplot(234);

plot(tx);

axis([0, 10, -4,4]);

title('载波调制')

tx1=reshape(tx.',1,length(msgmod)*length(c)); %调整矩阵行数列数spow=norm(tx1).^2/n; %求每个符号的平均功率 for indx=1:length(SNR)

sigma=sqrt(spow/(2*snr1(indx))); %根据符号功率求噪声功率

rx=tx1+sigma*randn(1,length(tx1)); %加入高斯白噪声

rx1=reshape(rx,length(c),length(msgmod));

r1=(c1*rx1)/length(c1); %相关运算

r2=(c2*rx1)/length(c2);

r=r1+j*r2;

y=pskdemod(r,M); %8PSK解调

decmsg=graycode(y+1);

[err,ber(indx)]=biterr(msg,decmsg,log2(M)); %误比特率

[err,ser(indx)]=symerr(msg,decmsg); %误符号率

end

subplot(235);

plot(r,'m');

title('加噪声后的已调信号');

subplot(236);

plot(y);

axis([0, 10, 0, 10]);

title('8psk解调');

figure(2)

ser1=2*qfunc(sqrt(2*snr1)*sin(pi/M)); %理论误符号率 ber1=1/log2(M)*ser1; %理论误比特率semilogy(SNR,ber,'-ko',SNR,ser,'-r*',SNR,ser1,SNR,ber1,'-b.'); title('8-Psk载波调制信号在AWGN信道下的性能')

xlabel('Es/No');ylabel('误比特率和误符号率')

legend('误比特率','误符号率','理论误符号率','理论误比特率')

4.3仿真结果

-2

02

-2-101

2载波信号05

10

05

10

基带信号

-1

01

-1-0.5

00.5

1基带调制

5

10-4-202

4载波调制-2

2

-2-101

2加噪声后的已调信号0510

05

108psk 解调

5

1015

10-4

10

-3

10

-2

10

-1

10

8-Psk 载波调制信号在AWGN 信道下的性能

Es/No

误比特率和误符号率

5.仿真调试中出现的错误及原因和排除方法程序设计过程中的地

55行老是提示出现错误,具体处理如下:经过仔细排查是

semilogy(SNR,ber,'-ko',SNR,ser,'-r*',SNR,ser1,SNR,ber1,'-b.');中的

ber开始我们弄成了ber1,没有与上面出现的ber对应,所以出现仿真结果不能顺利得出。

6.总结

在通信和信息传输系统、工业自动化或电子工程技术中,调制和解调应用最为广泛。本设计研究了8PSK的调制和解调原理,以及利用MATLAB对其调制和解调进行了编程和编译仿真,得到的结论和理论上是一致的。简单而且快捷。同时利用MATLAB中的8PSK的通信系统进行了仿真研究了其传输的特性。而调制和解调的基本原理是利用信号与系统的频域分析和傅里叶变换的基本性质,将信号的频谱进行搬移,使之满足一定需要,从而完成信号的传输或处理。本课程设计主要介绍基于Matlab对8PSK进制的调制仿真实现,通过用MAT LAB仿真

8-PSK载波调制信号在AWGN信道下的误码率和误比特率性能,并和理论值进行了比较。通过这次课程设计,培养了我综合运用所学知识,发现、提出、分析和解决实际问题、锻炼实践的能力,是对我们以后的实际工作能力的具体训练和一个考察过程。在这次课程设计中,我能够比较系统的了解数字信号的载波传输,尤其是多进制相移监控8PSK。把理论和实践相结合。在做设计的过程中难免总会出现各种问题,通过查阅资料,自学其中的相关知识,无形间提高了我们的动手,动脑能力,通过课程设计让我知道了,我们平时所学的知识如果不加以实践的话等于纸上谈兵。课程设计主要是我们理论知识的延伸,它的目的主要是要在设计中发现问题,并且自己要能找到解决问题的方案,形成一种独立的意识。我们还能从设计中检验我们所学的理论知识到底有多少,巩固们已经学会的,不断学习我们所遗漏的新知识,把这门课学的扎实。

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

基于Matlab的FM仿真实现

摘要 本次设计主要是以Matlab为基础平台,对FM信号进行仿真。介绍了FM信号,及其调制和解调的基本原理,并设计M文件,分析在混入噪声环境下的波形失真,以及分析FM的抗噪声性能。本设计的主要目的是对Matlab的熟悉和对模拟通信理论的更深化理解。 关键词:Matlab;FM;噪声

前言 (2) 1 设计基础 (3) 1.1 Matlab及M文件的简介 (3) 1.2模拟调制概述 (4) 1.2.1模拟调制系统各个环节分析 (5) 1.2.2 模拟调制的意义 (6) 2 FM基本原理与实现 (7) 2.1 FM的基本原理 (7) 2.1.1调制 (7) 2.1.2解调 (8) 2.2 FM的实现 (8) 2.2.1 FM调制的实现 (8) 2.2.2 FM解调的实现 (9) 2.3 调频系统的抗噪声性能 (10) 2.3.1 高斯白噪声信道特性 (10) 3 FM的仿真实现与分析 (14) 3.1 未加噪声的FM解调实现 (14) 3.2 叠加噪声时的 FM解调 (16) 总结 (20) 致谢 (21) 参考文献 (22) 附录 (23)

通信按照传统的理解就是信息的传输。在当今高度信息化的社会,信息和通信已成为现代社会的命脉。信息作为一种资源,只有通过广泛传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。而通信作为传输信息的手段或方式,与传感技术、计算机技术相融合,已成为21世纪国际社会和世界经济发展的强大动力。可以预见,未来的通信对人们的生活方式和社会的发展将会产生更加重大和意义深远的影响。 在通信系统中,从消息变换过来的原始信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这种信号直接在信道中进行传输,则会严重影响信息传送的有效性和可靠性,因此这种信号在许多信道中均是不适宜直接进行传输的。在通信系统的发射端通常需要有调制过程,将调制信号的频谱搬移到所希望的位置上,使之转换成适于信道传输或便于信道多路复用的已调信号;而在接收端则需要有解调过程,以恢复原来有用的信号。调制解调方式常常决定了一个通信系统的性能。随着数字化波形测量技术和计算机技术的发展,可以使用数字化方法实现调制与解调过程。 调制在通信系统中具有重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输可靠性有着很大的影响。调制方式往往决定了一个通信系统的性能。调制技术是指把基带信号变换成传输信号的技术。基带信号是原始的电信号,一般是指基本的信号波形,在数字通信中则指相应的电脉冲。在无线遥测遥控系统和无线电技术中调制就是用基带信号控制高频载波的参数(振幅、频率和相位),使这些参数随基带信号变化。用来控制高频载波参数的基带信号称为调制信号。未调制的高频电振荡称为载波(可以是正弦波,也可以是非正弦波,如方波、脉冲序列等)。被调制信号调制过的高频电振荡称为已调波或已调信号。已调信号通过信道传送到接收端,在接收端经解调后恢复成原始基带信号。

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

基于MATLAB的模拟调制系统仿真与测试(AM调制)

闽江学院 《通信原理设计报告》 题目:基于MATLAB的模拟调制系统仿真与测试学院:计算机科学系 专业:12通信工程 组长:曾锴(3121102220) 组员:薛兰兰(3121102236) 项施旭(3121102222) 施敏(3121102121) 杨帆(3121102106) 冯铭坚(3121102230) 叶少群(3121102203) 张浩(3121102226) 指导教师:余根坚 日期:2014年12月29日——2015年1月4日

摘要在通信技术的发展中,通信系统的仿真是一个重点技术,通过调制能够将信号转化成适用于无线信道传输的信号。 在模拟调制系统中最常用最重要的调制方式是用正弦波作为载波的幅度调制和角度调制。在幅度调制中,文中以调幅、双边带和单边带调制为研究对象,从原理等方面阐述并进行仿真分析;在角度调制中,以常用的调频和调相为研究对象,说明其调制原理,并进行仿真分析。利用MATLAB下的Simulink工具箱对模拟调制系统进行仿真,并对仿真结果进行时域及频域分析,比较各个调制方式的优缺点,从而更深入地掌握模拟调制系统的相关知识,通过研究发现调制方式的选取通常决定了一个通信系统的性能。 关键词模拟调制;仿真;Simulink 目录 第一章绪论 (1) 1.1 引言 (1) 1.2 关键技术 (1) 1.3 研究目的及意义 (2) 1.4 本文工作及内容安排 (2) 第二章模拟调制原理 (3) 2.1 幅度调制原理 (3) 2.1.1 AM调制 (4) 第三章基于Simulink的模拟调制系统仿真与分析 (6) 3.1 Simulink工具箱简介 (6) 3.2 幅度调制解调仿真与分析 (8) 3.2.1 AM调制解调仿真及分析 (8) 第四章总结 (12) 4.1 代码 (13) 4.2 总结 (14)

MATLAB仿真实验报告

MATLAB 仿真实验报告 课题名称:MATLAB 仿真——图像处理 学院:机电与信息工程学院 专业:电子信息科学与技术 年级班级:2012级电子二班 一、实验目的 1、掌握MATLAB处理图像的相关操作,熟悉相关的函数以及基本的MATLAB语句。 2、掌握对多维图像处理的相关技能,理解多维图像的相关性质 3、熟悉Help 命令的使用,掌握对相关函数的查找,了解Demos下的MATLAB自带的原函数文件。 4、熟练掌握部分绘图函数的应用,能够处理多维图像。 二、实验条件

MATLAB调试环境以及相关图像处理的基本MATLAB语句,会使用Help命令进行相关函数查找 三、实验内容 1、nddemo.m函数文件的相关介绍 Manipulating Multidimensional Arrays MATLAB supports arrays with more than two dimensions. Multidimensional arrays can be numeric, character, cell, or structure arrays. Multidimensional arrays can be used to represent multivariate data. MATLAB provides a number of functions that directly support multidimensional arrays. Contents : ●Creating multi-dimensional arrays 创建多维数组 ●Finding the dimensions寻找尺寸 ●Accessing elements 访问元素 ●Manipulating multi-dimensional arrays操纵多维数组 ●Selecting 2D matrices from multi-dimensional arrays从多维数组中选择二维矩 阵 (1)、Creating multi-dimensional arrays Multidimensional arrays in MATLAB are created the same way as two-dimensional arrays. For example, first define the 3 by 3 matrix, and then add a third dimension. The CAT function is a useful tool for building multidimensional arrays. B = cat(DIM,A1,A2,...) builds a multidimensional array by concatenating(联系起来)A1, A2 ... along the dimension DIM. Calls to CAT can be nested(嵌套). (2)、Finding the dimensions SIZE and NDIMS return the size and number of dimensions of matrices. (3)、Accessing elements To access a single element of a multidimensional array, use integer subscripts(整数下标). (4)、Manipulating multi-dimensional arrays

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

基于MATLAB的模拟信号频率调制(FM)与解调分析

课程设计任务书 学生姓名:杨刚专业班级:电信1302 指导教师:工作单位:武汉理工大学 题目:信号分析处理课程设计 -基于MATLAB的模拟信号频率调制(FM)与解调分析 初始条件: 1.Matlab6.5以上版本软件; 2.先修课程:通信原理等; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、利用MATLAB中的simulink工具箱中的模块进行模拟频率(FM)调制与解调,观 察波形变化 2、画出程序设计框图,编写程序代码,上机运行调试程序,记录实验结果(含计算结 果和图表等),并对实验结果进行分析和总结; 3、课程设计说明书按学校统一规范来撰写,具体包括: ⑴目录;⑵理论分析; ⑶程序设计;⑷程序运行结果及图表分析和总结; ⑸课程设计的心得体会(至少800字,必须手写。); ⑹参考文献(不少于5篇)。 时间安排: 周一、周二查阅资料,了解设计内容; 周三、周四程序设计,上机调试程序; 周五、整理实验结果,撰写课程设计说明书。 指导教师签名: 2013 年 7月 2 日 系主任(或责任教师)签名: 2013年 7月 2日

目录 1 Simulink简介 (1) 1.1 Matlab简介······················································错误!未定义书签。 1.2 Simulink介绍 ···················································错误!未定义书签。 2 原理分析 ·····························································错误!未定义书签。 2.1通信系统 ·························································错误!未定义书签。 2.1.1通信系统的一般模型 ···································错误!未定义书签。 2.1.2 模拟通信系统 (3) 2.2 FM调制与解调原理···········································错误!未定义书签。 3 基于Matlab方案设计 (6) 3.1 Matlab代码 (6) 3.2 Matlab仿真 (8) 4 基于Simulink方案设计 (12) 4.1 使用Simulink建模和仿真的过程 (12) 4.1.1 Simulink模块库简介 (12) 4.1.2 调制解调模块库简介 (13) 4.2 FM调制与解调电路及仿真 (14) 4.3 仿真结果分析 (17) 5 心得体会 ·····························································错误!未定义书签。 6 参考文献 (20) 本科生课程设计评定表

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

控制理论实验报告MATLAB仿真实验解析

实验报告 课程名称:控制理论(乙) 指导老师:林峰 成绩:__________________ 实验名称:MATLAB 仿真实验 实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验九 控制系统的时域分析 一、 实验目的: 1.用计算机辅助分析的办法,掌握系统的时域分析方法。 2.熟悉Simulink 仿真环境。 二、实验原理及方法: 系统仿真实质上就是对系统模型的求解,对控制系统来说,一般模型可转化成某个微分方程或差分方程表示,因此在仿真过程中,一般以某种数值算法从初态出发,逐步计算系统的响应,最后绘制出系统的响应曲线,进而可分析系统的性能。控制系统最常用的时域分析方法是,当输入信号为单位阶跃和单位冲激函数时,求出系统的输出响应,分别称为单位阶跃响应和单位冲激响应。在MATLAB 中,提供了求取连续系统的单位阶跃响应函数step ,单位冲激响应函数impulse ,零输入响应函数initial 等等。 二、实验内容: 二阶系统,其状态方程模型为 ? 1x -0.5572 -0.7814 1x 1 = + u ? 2x 0.7814 0 2x 0 1x y = [1.9691 6.4493] +[0] u 2x 四、实验要求: 1.编制MATLAB 程序,画出单位阶跃响应曲线、冲击响应曲线、系统的零输入响应、斜坡输入响应; (1)画出系统的单位阶跃响应曲线; A=[-0.5572 -0.7814;0.7814 0 ]; B=[1;0];

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

实验一 模拟通信的MATLAB仿真

实验一 模拟通信的MATLAB 仿真 姓名:左立刚 学号:031040522 简要说明: 实验报告注意包括AM ,DSB ,SSB ,VSB ,FM 五种调制与解调方式的实验原理,程序流程图,程序运行波形图,simulink 仿真模型及波形,心得体会,最后在附录中给出了m 语言的源程序代码。 一.实验原理 1.幅度调制(AM ) 幅度调制(AM )是指用调制信号去控制高频载波的幅度,使其随调制信号呈线性变化的过程。AM 信号的数学模型如图3-1所示。 图2-1 AM 信号的数学模型 为了分析问题的方便,令 δ =0, 1.1 AM 信号的时域和频域表达式 ()t S AM =[A 0 +m ()t ]cos t c ω (2-1) ()t S AM =A 0 π[()()ωωωωδC C ++-]+()()[]ωωωωc c M M ++-2 1 (2-2)

AM 信号的带宽 2 =B AM f H (2-3) 式中, f H 为调制信号的最高频率。 2.1.3 AM 信号的功率P AM 与调制效率 η AM P AM =()222 2 t m A +=P P m c + (2-4) 式中,P C =2 A 为不携带信息的载波功率;()2 2 t m P m =为携带信息的边带 功率。 ()() t t m A m P P AM C AM 2 2 2+= = η (2-5) AM 调制的优点是可用包络检波法解调,不需要本地同步载波信号,设备简单。AM 调制的最大缺点是调制效率低。 2.2、双边带调制(DSB ) 如果将在AM 信号中载波抑制,只需在图3-1中将直流 A 0 去掉,即可输出 抑制载波双边带信号。 2.2.1 DSB 信号的时域和频域表达式 ()()t t m t c DSB S ωcos = (2-6) ()()()[]ωωωωωC C DSB M M S ++-=2 1 (2-7) DSB 信号的带宽 f B B H AM DSB 2 == (2-8)

本科毕业设计__基于matlab的通信系统仿真报告

创新实践报告
报 告 题 目: 学 院 名 称: 姓 名:
基于 matlab 的通信系统仿真 信息工程学院 余盛泽 11042232 温 靖
班 级 学 号: 指 导 老 师:
二 O 一四年十月十五日

目录
一、引言 ....................................................................................................................... 3 二、仿真分析与测试 ................................................................................................... 4
2.1 随机信号的生成................................................................................................................ 4 2.2 信道编译码......................................................................................................................... 4 2.2.1 卷积码的原理 ......................................................................................................... 4 2.2.2 译码原理................................................................................................................. 5 2.3 调制与解调........................................................................................................................ 5 2.3.1 BPSK 的调制原理 ................................................................................................... 5 2.3.2 BPSK 解调原理 ....................................................................................................... 6 2.3.3 QPSK 调制与解调................................................................................................... 7 2.4 信道..................................................................................................................................... 8 2.4.1 加性高斯白噪声信道 ............................................................................................. 8 2.4.2 瑞利信道................................................................................................................. 8 2.5 多径合并............................................................................................................................. 8 2.5.1 MRC 方式 ................................................................................................................ 8 2.5.2 EGC 方式................................................................................................................. 9 2.6 采样判决............................................................................................................................. 9 2.7 理论值与仿真结果的对比 ................................................................................................. 9
三、系统仿真分析 ..................................................................................................... 11
3.1 有信道编码和无信道编码的的性能比较 ....................................................................... 11 3.1.1 信道编码的仿真 .................................................................................................... 11 3.1.2 有信道编码和无信道编码的比较 ........................................................................ 12 3.2 BPSK 与 QPSK 调制方式对通信系统性能的比较 ........................................................ 13 3.2.1 调制过程的仿真 .................................................................................................... 13 3.2.2 不同调制方式的误码率分析 ................................................................................ 14 3.3 高斯信道和瑞利衰落信道下的比较 ............................................................................... 15 3.3.1 信道加噪仿真 ........................................................................................................ 15 3.3.2 不同信道下的误码分析 ........................................................................................ 15 3.4 不同合并方式下的对比 ................................................................................................... 16 3.4.1 MRC 不同信噪比下的误码分析 .......................................................................... 16 3.4.2 EGC 不同信噪比下的误码分析 ........................................................................... 16 3.4.3 MRC、EGC 分别在 2 根、4 根天线下的对比 ................................................... 17 3.5 理论数据与仿真数据的区别 ........................................................................................... 17
四、设计小结 ............................................................................................................. 19 参考文献 ..................................................................................................................... 20

MATLAB仿真实验报告

MATLA仿真实验报告 学院:计算机与信息学院 课程:—随机信号分析 姓名: 学号: 班级: 指导老师: 实验一

题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序, 求最大值,最小值,均值和方差,并于理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示 G仁random( 'Normal' ,0,4,1,1024); y=max(G1) x=mi n(G1) m=mea n(G1) d=var(G1) plot(G1);

实验二 题目:编写一个产生协方差函数为CC)=4e":的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma A2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,RxxO, 'b.' ,m*Ts,Rxx, 'r');

periodogram(y,[],N,1/Ts); 文件旧硯化)插入(1〕 ZMCD 克闻〔D ]窗口曲) Frequency (Hz) 50 100 150 200 250 300 350 400 450 500 NH---.HP)&UO 二 balj/ 」- □歹

相关文档
相关文档 最新文档