文档库 最新最全的文档下载
当前位置:文档库 › DCDC转换器工作原理及用途

DCDC转换器工作原理及用途

1 车载DCDC转换器产品简介

1.1 JN-S系列电气全隔离 DCDC直流转换器

1.1.1 JN-S系列转换器主要技术指标及客户

1.1.2 JN-S系列转换器其他主要参数及功能

1.1.3 JN-S系列转换器的其他技术参数1.2 传统燃油车车身电气布置

1.3 传统燃油车电源系统构成

1.4 纯电动汽车的电气构成

1.5 高压使能的DCDC转换器的接线方式

1.6 低压使能的DCDC转换器的接线方式

2 车载DCDC 转换器的工作原理 2.1 DCDC转换器的拓扑结构2.2 峰值电流模式控制环路2.

3 双管正激变换器工作波形 2.

4 双管正激变换器的特点 2.

5 UC2845芯片功能介绍

2.6 开关电源的几种过载保护模式

2.5.1 UC2845内部构造

2.5.2 供电电压VCC和基准电压VREF 2.5.3 振荡器

2.5.4 开关频率与振荡器频率关系2.5.5 电流检测端

2.6.1 输出恒流式限制2.6.2 折返输出电流限制2.6.3 其他过载保护类型

1.1 JN-S 系列 电气全隔离 DCDC 直流转换器

JN-S 系列全隔离转换器是我公司专门为电动轿车用电系统而专门设计生产的, 输入与输出完全电气隔离, 可长时间满载运行、保护功能全. 内置电子开关, 直接钥匙开关. 内部采用硅胶灌封防水抗震, 保证跟随车辆在任何恶劣的环境中使用。

1 车载DCDC 转换器产品简

1.1.1 JN-S系列转换器主要技术指标及客户

规格型号额定值工作范围输出

类型

额定输出电压

输出最大

电流限制

客户控制方式

JN-S-1250QD48V/500W37.5-65.0 VDC双路12.5±0.2 VDC50±2A潍坊瑞驰高压使能JN-S-1250QD72V/500W56.5-97.5 VDC双路12.5±0.2 VDC50±2A潍坊瑞驰高压使能

JN-S-1245L72V/500W56.5-97.5 VDC单路13.8±0.2 VDC45±2A 淮安敏实

重庆潍柴

陆地方舟

低压使能

JN-S-1230QD60V/300W47.0-81.0 VDC双路12.5±0.2 VDC37±2A 潍坊瑞驰

潍坊雷丁

高压使能

JN-S-1230S60V/300W47.0-81.0 VDC单路12.5±0.2 VDC37±2A潍坊雷丁高压使能

1.1.2 JN-S系列转换器其他主要参数及功能

基本功能

1、输入、输出完

2、最大电流限制

3、输出短路保护

4、输入接反保护

5、过流保护

全隔离

6、过温保护:内部温度超过85℃时关闭输出,在低于80℃ 自动恢复工作;

7、电子开关:内置,直接用钥匙开关控制;

8、高压侧、低压侧控制(任选一);

9、选配功能:输入过压、欠压保护;输出过压、欠压保护;

10、自然散热、全电子导热密封胶灌注、防水、抗震(防护等级:IP66)

1.1.3 JN-S系列转换器的其他技术参数(以JN-S-1250QD 72V/500W为例)

主输出参数

输入电压范围空载输出电压满载输出电压额定输出功率最大输出电流

56.5-97.5 VDC 12.5±0.2 VDC12.1±0.2 VDC500 W50±2 A

辅助输出参数

空载输出电压满载输出电压额定输出功率最大输出电流12.5±0.2 VDC≥12.2 VDC180 W≥15 A

1、满载效率:≥85%

2、纹波系数:≤1%

3、峰值功率:600W,≥6min

4、噪声:<60dB

5、工作温度:-30℃ - +60℃;存储温度:-40℃ - +70℃;

6、抗振等级:符合SAEJ1378要求;

7、耐电压性能:输入对外壳:1500VAC(2100VDC)/3s,漏电流≤5mA;

输出对外壳:500VAC(700VDC)/3s,漏电流≤5mA;

输入对输出:1500VAC(2100VDC)/3s,漏电流≤5mA;

8、绝缘电阻:输入对输出在500V/3s时测试,阻抗≥50MΩ;

9、重量:<3Kg

1.2 传统燃油车车身电气布置

左图为传统燃油车车身

电气布置图。图中列出大部

分的车身用电设备。

常规的用电设备有:照

明设备、门锁电动机、窗电

动机、仪表盘、收音机等;

1.3 传统燃油车电源系统构成

车身接地 传统燃油车电源系统由发电机、调节器、蓄电池、起动机构成。其中发电机为主电源,发电机正常工作时,由发电机向全车用电设备供电,同时给蓄电池充电。调节器的作用是使发电机的输出电压保持恒定。蓄电池为可逆的直流电源(既可以充电,又可以放电)。在汽车上使用最广泛的是起动用铅蓄电池,它与发动机并联,向用电设备供电 。当用电设备同时接入较多,发电机超载时,协助发电机供电;当蓄电池存电不足,而发电机负载又较少时,它可将发电机的电能转变为化学能储存起来。

因此它在汽车上占有重要位置。汽车用电器都是按照一定的直流电压设计的,汽油机常用12V,柴油机常用24V 。

1.4 纯电动汽车的电气构成

纯电动汽车,顾名思义

是以动力电池组电能为动力

的汽车,除了动力电池组、

电机、电机控制器等之外,

全车电气与传统燃油车无明

显区别。

DCDC转换器就是将动力

电池组高电压转换为恒定

12V或者14V、24V低电压,

既能给全车电器供电,又能

给辅助蓄电池充电的设备。

DCDC转换器在纯电动汽

车上的功能就相当于发电机

和调节器在传统燃油车上的

功能。

1.5 高压使能的DCDC转换器的接线方式

全隔离输入端高压控制转换器的接线图。DCDC转换器

输入端

输出端

动力电池

-+0.75mm 2 黄线:使能信号1.5mm 2 红线:输入正极1.5mm 2 黑线:输入负极

保险丝

4mm 2 蓝线12V+

4mm 2 绿线12V-

继电器

钥匙开关

大灯和其它12V用电设备

开关

负载

2.5mm 2 红线12V+接口线材颜色电压输入正极

1.5mm 2

红色

高压72VDC或者60VDC 使能信号

0.75mm 2黄色高压72VDC或者60VDC

输入负极 1.5mm 2黑色接口线材颜色电压主输出正极4mm 2蓝色12VDC+辅助输出正极

2.5mm 2红色12VDC+输出端负极

4mm 2

绿色

12VDC-

①在非隔离汽车电气系统中,可按照虚线X的接法。②当输入正负之间有电时,辅助输出一直有电;③仅当钥匙开关打开后,主输出才有电,否则主输

出无电;

④负载1:一般为门锁电机和双闪报警灯;

1.6 低压使能的DCDC转换器的接线方式

全隔离输出端低压控制转换器的接线图。

接口线材颜色电压输入正极 1.5mm 2红色高压

72VDC或者60VDC

输入负极

1.5mm 2黑色接口线材颜色电压主输出正极4mm 2蓝色12VDC+使能信号0.75mm 2黄色12VDC+输出端负极

4mm 2

绿色

12VDC-

①在非隔离汽车电气系统中,可按照虚线X的接法。

②仅当输入正负之间有电时,输出端无输出电压;

③只有当钥匙开关打开后,输出才有电,否则输出无电;

④车身用电设备主要由12V辅助电池供电,DCDC负

责给辅助电池充电,以及当辅助电池能量不足时,由DCDC提供部分能量;

DCDC转换器

输入端

输出端

动力电池

-+1.5mm 2 红线:输入正极1.5mm 2 黑线:输入负极

保险丝

4mm 2 蓝线12V+4mm 2 绿线12V-

大灯和其它12V用电设备

开关

0.75mm 2 黄线12V+

12V辅助电池

+

-钥匙开关

的工作原理

2 车载DCDC转换器

本章主要讲述UC2845电流型控制器的功能,并阐述双管正激变换

器的工作原理及波形,同时讲述了开关电源常用的几种过载保护模式。

2.1 DCDC转换器的拓扑结构

双管正激变换器拓扑结构

2.2 峰值电流模式控制环路

峰值电流模式控制环路 从左图可以看到两个反馈环:一个是包含输出电压采样信号(误差放大器)的电压外环;另一个是由接受初级峰值电流采样信号的PWM比较器,以及检测电流的放大器构成的电流内环。

电流模式的优点:

①内环电流环响应速度更快,应对负载的突然变化,响应更快;

②电流模式检测每个周期的电流脉冲,对输入网电压变化会立即做出反应,与传统电压模式相比,无需等待输出变化反馈到误差放大器时才发生。

③多个电流模式电源可并联工作,且可实现均流;

④改善负载电流调整率;

2.3 双管正激变换器工作波形

(A)=双管正激变换器拓扑结构图;(B)=MOSFET Q1驱动波形;(C)=MOSFET Q2驱动波形;

(D)=变压器原边Np绕组的电压波形;(E)=变压器原边Np绕组的电流波形;

(F)=MOSFET Q1和Q2 源极和漏极电压波形;

Vdc

2.4 双管正激变换器的特点

1、MOSFET 同时导通,每个MOSFET承受一倍直流输入电压,不会出现漏感尖峰,漏感尖

峰始终被钳位在Vin;

2、没有漏感能量,开关管导通时,存储于漏感中的所有能量不是消耗于电阻元件或功率

开关管内,而是在开关管关断时通过续流二极管D1,D2回馈给Vin;

3、占空比最大0.5,开关管关断时,Np上的反向电压与导通时的正向电压相等;

4、若最大导通时间不超过半周期的80%,使下半周期开始前有20%的余量,则磁芯总能成

功复位,因此不需要复位回路;选择足够大的次级匝数,使Vin最小时次级电压峰值与最大占空比0.4的乘积等于所需要的电压,就可以成功复位。

5、输出功率更高;

2.5 UC2845芯片功能介绍

引脚号引脚符号功能

1COMP 补偿端,当该脚电压被拉至0V时,

PWM波形关闭输出2VFB 反馈电压输入端,当该脚大于2.5V

时,PWM波形关闭输出3Isense 峰值电流检测端,当该脚电压超过1.0V时,PWM波形关闭输出;4RT/CT 振荡器电阻和电容端,上拉电阻RT 至VREF,下拉电容CT至GND,构成

RC振荡回路;

5GND 地

6OUTPUT PWM波形输出,图腾柱输出7VCC 供电,大于8.4V启动工作,低于

7.6V停止工作

8

VREF

芯片基准电压输出,5V

2.5.1 UC2845内部构造

2.5.2 供电电压VCC和基准电压VREF

芯片内部有一个欠压保护UVLO电路,当输入电压VCC超过

上限Von时,基准电源工作,一方面给内部电路供电,同时

在8脚输出基准电压VREF=5V,芯片工作时耗电约为15mA。

当输入电压VCC小于下限Voff时,基准电压VREF=0V,内

部供电切除,输入仅流过备用电流,且小于1mA.

输入电压VCC最高值不应超过34V,由内部稳压管限幅。

电液转换器原理与调试

1 电液转换器原理与调试 电液转换器工作原理:(见图) 当信号电流I 为零时, 芯棒M 与滑阀O 处于左端极限位置, 压力油腔P 与控制油压A 之间节流口关闭。A 腔经阀芯中的内孔与回油腔相通,所以A 腔处于卸压状态。 当信号电流(I=4~20mA )增加时,芯棒M 在磁场作用力下,或比例地产生一个向右作用力F ,推动滑阀O 向右移动,使控制油腔A 与回油腔T 的流通面积减小,与压力油腔P 的流通面积增大,根据流量平衡原理,控制油压A 升高,随着油压A 的升高,与A 油腔相通的N 腔压力也升高。当产生的油压力f 与F 相抵消时,滑阀O 达到平衡,控制油压A 稳定。A 腔油压值即是成比例地对应输入信号的相应值。 当信号电流减小时,芯棒M 在磁场作用力下,产生一个向左作用力F 。这时,由于与A 油腔相通的N 腔油压力大于芯棒作用力,滑阀O 向左移动,使得控制油腔A 与回油腔T 的流通面积增大,与压力油腔P 的流通面积减小,控制油压A 降低。同时,N 腔油压亦降低,芯棒上的磁场力与油压力相等,滑阀达到平衡,控制油压A 稳定。 在手动工作状态,旋动手轮,经传动杆K 推动芯棒M 移动,即能调到所要求的控制油压A 。 一般对应4-20MA 控制电流输出的二次脉冲油压A 为0.15-0.45Mpa ,在这一段范围内控制特性的线形度较高。 电液转换器调试过程: 开 始 期 (允许范围20~30VDC) 电液转换器油温 和油压达到要求 带手轮形式的,将手轮转到最左面 根据设计检查电 和油压的连接 将空气从电磁阀 和液压件中排出 提供和测量进油压力(最大40bar) 供 电 源

2 否在最小和最大信号变化 时,输出电压是否改变 增加信号输出压力是否增加 是 否 是 提供系统最低的 模拟信号 测量输出压力 提 供 电 源 提供系统最高的模拟信号 利用电液转换器上电位器X1调整所需要的最高压力 提供系统最低 的模拟信号 利用电液转换器上电位器 X0调整所需要的最低压力 结 束

∑-△模数转换器的原理及应用

∑-△模数转换器的原理及应用 张中平 (东南大学微电子机械系统教育部重点实验室,南京210096) 摘要:∑-△模数转换器由于造价低、精度高、性能稳定及使用方便等特点,越来越广泛地使用在一些高精度仪器仪表和测量设备中,介绍该转换器的基本原理,并重点举例介绍AD7708芯片的应用,该芯片是16 bit模数转换器,与24 bit AD7718引脚相同,可直接升级。 关键词:模数转换器;寄存器;串行口 我们通常使用的模数转换器(ADC)大多为积分型和逐次逼近型,积分型转换效果不够好,转换过程中带来的误差比较大;逐次逼近型转换效果较好但制作成本较高,尤其是高位数转换,转换位数越多,精度越高,制作成本就越高。而∑-△ADC可以以相对逐次逼近型简单的电路结构,而得到低成本,高位数及高精度的转换效果∑-△ADC大多设计为16或24 bit转换精度。近几年来,在相关的高精度仪器制作领域该转换器得到了越来越广泛的应用[1]。 1 ∑-△ADC的基本工作原理简介 ∑-△模数转换器的工作原理简单的讲,就是将模数转换过后的数字量再做一次窄带低通滤波处理。当模拟量进入转换器后,先在调制器中做求积处理,并将模拟量转为数字量,在这个过程中会产生一定的量化噪声,这种噪声将影响到输出结果,因此,采用将转换过的数字量以较低的频率一位一位地传送到输出端,同时在这之间加一级低通滤波器的方法,就可将量化噪声过滤掉,从而得到一组精确的数字量[1,2]。 2 AD7708/AD7718,∑-△ADC的应用 AD7708/AD7718是美国ADI公司若干种∑ΔADC中的一种。其中AD7708为16 bit转换精度,AD7718为24 bit转换精度,同为28条引脚,而且相同引脚功能相同,可以互换。为方便起见,下面只介绍其中一种,也是我们工作中用过的AD7708。 2.1AD7708的工作原理 同其它智能化器件一样,AD7708也可以用软件来调节其所具有的功能,即通过微控制器MCU编程向AD7708的相应寄存器填写适当的参数。AD7708芯片中共有11个寄存器, 当模式寄存器(Mode Regis-ter)的最高位后,其工作方框图[2]如图1所示。

voith电液转换器使用说明书

VOITH 电液转换器使用说明书型号:DSG-BXX113 翻译:研发中心孙云超

目录 1.技术数据 (1) 2.安全指示 (3) 2.1 提示和标志的定义 2.2 正确使用 2.3 重要提示 2.4 担保 3.功能描述 (6) 3.1 设计 3.2 操作特点 4.包装、储存、运输 (7) 5.安装 (8) 5.1 组装 5.2 液压连接 5.3 电器连接 6. 试运行 (10) 6.1 运行检测 6.2 参数设定 7.操作 (11) 7.1 用手动旋钮操作 7.2 用设定信号操作 7.3 故障检修和排除 8. 维护和检修 (13) 9. 停机 (13) 10. 具有接线图的外部管线图 (14) 11. 附件 (15)

1.技术数据: 周围环境: 储存温度-40 (90) 工作环境温度-20 (85) 保护IP65 to EN 60529 适合于在工业空间内部安装 电气数据: 电压:24 VCD ±15% 电流:大约0.7A(对DSG-B05…DSG-B10型) 大约1A(对DSG-B30型) 最大3A 时间t ? 1 Sec 输入设置:0/4…20mA 输入阻抗大约25欧姆,具有抑制电路。 液压参数: 最小进口油压P in min: 1.5bar+最大输出P A max (对B05…B10型) 5bar+最大输出油压P A max (对B30型) 最大进口油压P in max :见表 压力流体:不易燃烧的原油或压力油油粘度:根据DIN51519,ISO VG32…ISO VG48 油温:+10℃ (70) 油纯度:根据NAS1638为7级 根据ISO4406为-/16/13级 泄漏量:当进口油压P in=10bar 时≤3 l/min (对DSG-B05… DSG-B10 ) 当进口油压P in=40bar 时≤5 l/min(对DSG-B30)

∑-△模数转换器工作原理

∑-△ADC工作原理 越来越多的应用,例如过程控制、称重等,都需要高分辨率、高集成度和低价格的ADC、新型∑-△转换技术恰好可以满足这些要求。然而,很多设计者对于这种转换技术并不十分了解,因而更愿意选用传统的逐次比较ADC。∑-△转换器中的模拟部分非常简单(类似于一个1bit ADC),而数字部分要复杂得多,按照功能可划分为数字滤波和抽取单元。由于更接近于一个数字器件,∑-△ADC的制造成本非常低廉。 一、∑-△ADC工作原理 要理解∑-△ADC的工作原理,首先应对以下概念有所了解:过采样、噪声成形、数字滤波和抽取。 1.过采样 首先,考虑一个传统ADC的频域传输特性。输入一个正弦信号,然后以频率fs采样-按照Nyquist 定理,采样频率至少两倍于输入信号。从FFT分析结果可以看到,一个单音和一系列频率分布于DC到fs /2间的随机噪声。这就是所谓的量化噪声,主要是由于有限的ADC分辨率而造成的。单音信号的幅度和所有频率噪声的RMS幅度之和的比值就是信号噪声比(SNR)。对于一个Nbit ADC,SNR可由公式:SNR=6.02N+1.76dB得到。为了改善SNR和更为精确地再现输入信号,对于传统ADC来讲,必须增加位数。 如果将采样频率提高一个过采样系数k,即采样频率为Kfs,再来讨论同样的问题。FFT分析显示噪声基线降低了,SNR值未变,但噪声能量分散到一个更宽的频率范围。∑-△转换器正是利用了这一原理,具体方法是紧接着1bit ADC之后进行数字滤波。大部分噪声被数字滤波器滤掉,这样,RMS噪声就降低了,从而一个低分辨率ADC, ∑-△转换器也可获得宽动态范围。 那么,简单的过采样和滤波是如何改善SNR的呢?一个1bit ADC的SNR为7.78dB(6.02+1.76),每4倍过采样将使SNR增加6dB,SNR每增加6dB等效于分辨率增加1bit。这样,采用1bit ADC进行64倍过采样就能获得4bit分辨率;而要获得16bit分辨率就必须进行415倍过采样,这是不切实际的。∑-△转换器采用噪声成形技术消除了这种局限,每4倍过采样系数可增加高于6dB的信噪比。 2.噪声成形 通过图1所示的一阶∑-△调制器的工作原理,可以理解噪声成形的工作机制。 图1 ∑-△调制器 ∑-△调制器包含1个差分放大器、1个积分器、1个比较器以及1个由1bit DAC(1个简单的开关,可以将差分放人器的反相输入接到正或负参考电压)构成的反馈环。反馈DAC的作用是使积分器的平均输出电压接近于比较器的参考电平。调制器输出中“1”的密度将正比于输入信号,如果输入电压上升,比较器必须产生更多数量的“1”,反之亦然。积分器用来对误差电压求和,对于输入信号表现为一个低通滤波器,而对于量化噪声则表现为高通滤波。这样,大部分量化噪声就被推向更高的频段。和前面的简单过采样相比,总的噪声功率没有改变,但噪声的分布发生了变化. 现在,如果对噪声成型后的∑-△调制器输出进行数字滤波,将有可能移走比简单过采样中更多的噪声。这种调制器(一阶)在每两倍的过采样率下可提供9dB的SNR改善。

模数转换器原理

模数(A/D)转换器工作原理A/D转换器(Analog-to-Digital Converter)又叫模/数转换器,即是将模拟信号(电压或是电流的形式)转换成数字信号。这种数字信号可让仪表,计算机外设接口或是微处理机来加以操作或胜作使用。 A/D 转换器 (ADC)的型式有很多种,方式的不同会影响测量后的精准度。 A/D 转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D 转换芯片。 A/D 转换器按分辨率分为4 位、6 位、8 位、10 位、14 位、16 位和BCD码的31/2 位、51/2 位等。按照转换速度可分为超高速(转换时间=330ns),次超高速(330~3.3μS),高速(转换时间3.3~333μS),低速(转换时间>330μS)等。 A/D 转换器按照转换原理可分为直接A/D 转换器和间接A/D 转换器。所谓直接A/D 转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型A/D 转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化A/D 芯片采用逐次逼近型者多;间接A/D 转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。其中积分型A/D 转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单纯A/D 转换功能,使用十分方便。 ADC 经常用于通讯、数字相机、仪器和测量以及计算机系统中,可方便数字讯号处理和信息的储存。大多数情况下,ADC 的功能会与数字电路整合在同一芯片上,但部份设备仍需使用独立的ADC。行动电话是数字芯片中整合ADC 功能的例子,而具有更高要求的蜂巢式基地台则需依赖独立的ADC 以提供最佳性能。 ADC 具备一些特性,包括: 1. 模拟输入,可以是单信道或多信道模拟输入; 2. 参考输入电压,该电压可由外部提供,也可以在ADC 内部产生; 3. 频率输入,通常由外部提供,用于确定ADC 的转换速率; 4. 电源输入,通常有模拟和数字电源接脚; 5. 数字输出,ADC 可以提供平行或串行的数字输出。在输出位数越多(分辨率越好)以及转换时间越快的要求下,其制造成本与单价就越贵。 一个完整的A/D转换过程中,必须包括取样、保持、量化与编码等几部分电路。 AD转换器需注意的项目: 取样与保持 量化与编码

3、电液转换器

与505/505E配套使用的电液转换器为两种:VOITH和CPC 1、VOITH 1 - 控制磁性调节阀体P in -进口油压 2 –动力传输杆P A -输出信号油压 3 - ×0和×1电位计 4 - 手动操作旋钮T1-回油 5 - 电气接线T2 -回油 6 - 控制壳体F Mag -磁力 7 - 带阻尼活塞的控制活塞F Hyd-液压力 8 –端盖F Fed-弹簧力 9 –控制弹簧

手动操作旋钮的功能: 通过手动操作旋钮来控制电液转换器的磁铁,依靠这个旋钮,能设定一个可调的弹簧力以替代磁力F Mag。弹簧力通过电枢和传输杆控制活塞,液压力F Hyd与输出信号压力P A成正比,但作用力方向与弹簧力相反,这样输出压力的调节不需要电气就可实现。 用手动旋钮操作时,由电液转换器控制的液压元件的行程位移不受控制,其输出发生变化是由于输出信号压力的增加。 只有把弹性挡圈从手动操作旋钮上移开时才能手动操作。 完成手动操作以后,顺时针转动计数器,使手动操作旋钮回到原来位置,再把弹性档圈推到原来位置。 作用方向:顺时针旋转输出压力增加。 电位计的作用: ×0-在电位计×0 的帮助下,可以调节最小的输出压力P A min ,当设定值为4mA时。电位计顺时针旋转,压力增加。 ×1-在电位计×1 的帮助下,可以调节最大的输出压力P A max ,当设定值为20mA时。电位计顺时针旋转,压力增加。 电位计×1先于×0 调整。电位计×1的调节将影响×0的调整。4~20mA对应油压为0.15MPa~0.45MPa VOITH接线

CPC 压力输出大小(LEVEL) 此调整量改变压力的输出大小,调整它对各个点都起作用,顺时针调整将增大压力输出。 压力范围(RANGE) 此调整量改变压力输出的范围,即压力曲线的斜率,顺时针调整将增大压力输出曲线的斜率。

模数转换器工作原理、类型及主要技术指标

模数转换器工作原理、类型及主要技术指标 模数转换器(Analog to Digital Converter,简称A/D转换器,或ADC),通常是将模拟信号转变为数字信号。作为模拟电路中重要的元器件,本文将会介绍模数转换器的原理、分类及技术指标等基础知识。 ADC的发展随着电子技术的迅速发展以及计算机在自动检测和自动控制系统中的广泛应用,利用数字系统处理模拟信号的情况变得更加普遍。数字电子计算机所处理和传送的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,模拟量经传感器转换成电信号的模拟量后,需经模/数转换变成数字信号才可输入到数字系统中进行处理和控制,因而作为把模拟电量转换成数字量输出的接口电路-A/D转换器是现实世界中模拟信号向数字信号的桥梁,是电子技术发展的关键和瓶所在。 自电子管A/D转换器面世以来,经历了分立半导体、集成电路数据转换器的发展历程。在集成技术中,又发展了模块、混合和单片机集成数据转换器技术。在这一历程中,工艺制作技术都得到了很大改进。单片集成电路的工艺技术主要有双极工艺、CMOS工艺以及双极和CMOS相结合的BiCMOS工艺。模块、混合和单片集成转换器齐头发展,互相发挥优势,互相弥补不足,开发了适用不同应用要求的A/D和D/A转换器。近年来转换器产品已达数千种。 ADC原理D/A转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出。 模数转换一般要经过采样、保持和量化、编码这几个步骤。 ADC的主要类型目前有多种类型的ADC,有传统的并行、逐次逼近型、积分型ADC,也有近年来新发展起来的-型和流水线型ADC,多种类型的ADC各有其优缺点并能满足不同的具体应用要求。低功耗、高速、高分辨率是新型的ADC的发展方向,同时ADC的这一发展方向将适应现代数字电子技术的发展。 并行比较ADC 并行比较ADC是现今速度最快的模/数转换器,采样速率在1GSPS以上,通常称为闪烁

模数转换器ADC应用原理

AD0809应用原理--很全面的资料 1. 0809的芯片说明: ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的C MOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。 (1)ADC0809的内部逻辑结构 由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。 (2).引脚结构 IN0-IN7:8条模拟量输入通道

ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。 地址输入和控制线:4条 ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。通道选择表如下表所示。 C B A 选择的通道 000IN0 001IN1 010IN2 011IN3 100IN4 101IN5 110IN6 111IN7 数字量输出及控制线:11条 ST为转换启动信号。当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A /D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输出转换得到的数据;OE =0,输出数据线呈高阻状态。D7-D0为数字量输出线。 CLK为时钟输入信号线。因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ, VREF(+),VREF(-)为参考电压输入。 2.ADC0809应用说明 (1).ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。(2).初始化时,使ST和OE信号全为低电平。 (3).送要转换的哪一通道的地址到A,B,C端口上。 (4).在ST端给出一个至少有100ns宽的正脉冲信号。 (5).是否转换完毕,我们根据EOC信号来判断。 (6).当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了。 3.实验任务

模数转换器综述_ADC

模数转换器ADC_综述 随着数字技术,特别是计算机技术的飞速发展普及,在现代控制、通讯及检测领域中,对信号的处理广泛采用了数字计算机技术。由于系统的实际处理对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别和处理这些信号,必须首先将这些模拟信号转换成数字信号。这样,就需要一种能将模拟信号转换为数字信号的电路,即模数转换电路(Analog to Digital Converter, ADC)。 模数转换过程 模数转换包括采样、保持、量化和编码四个过程。采样就是将一个连续变化的信号x(t)转换成时间上离散的采样信号x(n)。根据Nyquist-Shannon theorem采样定理,采样频率至少要大于或等于模拟信号最高频率的两倍,才可以无失真地重建恢复原始信号x(t)。通常采样脉冲的宽度是很短的,故采样输出是截断的窄脉冲。要将一个采样输出信号数字化,需要将采样输出所得的瞬时模拟信号保持一段时间,这就是保持过程。图1即为采样过程。 图1采样过程 量化是将连续幅度的抽样信号转换成离散时间、离散幅度的数字信号,数字信号最低有效位中的1表示的数量大小,就等于量化单位Q,如图2所示。把量化的数值用二进制代码表示,称为编码,见图3。这个二进制代码就是ADC转换的输出信号。 量化的主要问题就是量化误差。既然模拟电压是连续的,那么它就不一定能被Q整除,因而不可避免的会引入误差,我们把这种误差称为量化误差。在把模拟信号划分为不同的量化等级时,用不同的划分方法可以得到不同的量化误差。 图2采样过程

图3编码过程 要提高ADC的精度,可以通过提高采样间隔Ts和分辨率Q来实现。实际中,输入模拟信号的频率由于存在无限次谐波,因此要在采样前加入抗混叠滤波器,该滤波器与采样频率的关系一般为:f s≈ (3…5)*f filter。图4描述了这一过程。 图4加入抗混叠滤波器 模数转换技术是现实各种模拟信号通向数字世界的桥梁,作为将模拟信号转换成数字信号的模数转换技术主要有以下几种。 分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。∑-Δ型ADC主应用于高精度数据采集特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量领域。此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面。下面对各种类型的ADC作简要介绍。 并行比较型 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash型。由于转换速率极高,转换需要很多个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。其原理如图5所示。

逐次逼近型模数转换器基本原理

逐次逼近型模数转换器基本原理 逐次逼近型模数转换器一般由顺序脉冲发生器、逐次逼近寄存器、数模转换器和电压比较器等几部分组成,其原理框图如图11-3所示。 图11-3 逐次逼近型模数转换器的原理框图 转换开始前先将所有寄存器清零。开始转换以后,时钟脉冲首先将寄存器最高位置成1,使输出数字为100…0。这个数码被数模转换器转换成相应的模拟电 压,送到比较器中与进行比较。若>,说明数字过大了,故将最高位的 1清除;若<,说明数字还不够大,应将最高位的1保留。然后,再按同 样的方式将次高位置成1,并且经过比较以后确定这个1是否应该保留。这样逐位比较下去,一直到最低位为止。比较完毕后,寄存器中的状态就是所要求的数字量输出。 可见逐次逼近转换过程与用天平称量一个未知质量的物体时的操作过程一样,只不过使用的砝码质量一个比一个小一半。 能实现图11-3所示方案的电路很多。图11-4所示电路是其中的一种,这是 一个四位逐次逼近型模数转换器。图中四个JK触发器~组成四位逐次逼 近寄存器;5个D触发器~接成环形移位寄存器(又称为顺序脉冲发生器), 它们和门~一起构成控制逻辑电路。 图11-4 四位逐次逼近型模数转换器

现分析电路的转换过程。为了分析方便,设D/A转换器的参考电压为=+8 V,输入的模拟电压为=4.52 V。 转换开始前,先将逐次逼近寄存器的四个触发器~清零,并把环形计数器的状态置为00001。 第1个时钟脉冲C的上升沿到来时,环形计数器右移一位,其状态变为10000。 由于,均为0,于是触发器被置1,和被置0。 所以,这时加到D/A转换器输入端的代码为1000,D/A转换器的输出电压为 和在比较器中比较,由于<,所以比较器的输出电压为。 第2个时钟脉冲C的上升沿到来时,环形计数器又右移一位,其状态变为 01000。这时由于,,均为0,于是触发器的1保留。 与此同时,的高电平将触发器置1。所以,这时加到D/A转换器输入端的 代码为1100,D/A转换器的输出电压为 和在比较器中比较,由于>,所以比较器的输出电压为。 第3个时钟脉冲C的上升沿到来时,环形计数器又右移一位,其状态变为 00100。这时由于,,均为0,于是触发器的1保留, 而被置0。与此同时,的高电平将置1。所以,这时加到D/A转换器输入端的代码为1010,D/A转换器的输出电压为 和在比较器中比较,由于>,所以比较器的输出电压为。 第4个时钟脉冲C的上升沿到来时,环形计数器又右移一位,其状态变为00010。 这时由于,,均为0,于是触发器、的状态保持不变, 而触发器被置0。与此同时,的高电平将触发器置1。所以,这时加到

505E配套电液转换器

这就是505E配套使用的电液转换器的结构图

一、工作原理:CSV9,CSV9H电液转换器的电流-位移转换部分是由磁钢、导磁罩、内外导磁板、动圈及弹簧所组成的动圈式力马达,液压伺服放大部分是由控制阀芯、随动活塞所组成的具有直接位置反馈的三通道滑阀控制差动缸(详见图一)。动圈与控制阀芯为刚性连接。安装方式为板式连接。当控制电流流过处在磁隙固定磁场中的动圈绕组时产生电磁力,此电磁力克服弹簧力后推动动圈与控制阀芯产生与控制电流成比例的位移。当压力油自P口进入电液转换器,并经过控制阀芯与随动活塞间的上下可变节流口,再经过T口回油。此时油压直接作用于随动活塞下腔,使之产生一个始终向上的推力。而上下节流口间的控制油压,则作用在随动活塞的上腔,使之产生一个向下的推力。此时如果无控制电流流过动圈,即控制阀芯静止不动。由于此时上下节流口的过流面积设计成相等,因而上腔的控制油压刚好等于下腔油压的一半。又由于随动活塞上腔面积设计是下腔面积的两倍,因此作用在随动活塞两端的液压推力相等,所以随动活塞自动稳定在这一平衡位置。当向动圈输入正向控制电流时,电磁力使动圈与控制阀芯向下移动,此时上节流口关小,下节流口开大,随动活塞上腔的压力升高,从而推动活塞下移。当活塞位移达到控制阀芯的位移量时,上、下节流口过流面积重又恢复相等,随动活塞两端的液压推力恢复相等,随动活塞便自动稳定在这一新的

平衡位置。当向动圈输入反向电流时,动圈与控制阀芯向上移动,下节流口关小,上节流口开大,压力油经T 口回油,从而使随动活塞上腔油压降低,活塞随之向上运动,直至达到新的平衡位置。由于控制阀芯与随动活塞间的节流口精确配合,因此CSV9电液转换器的零耗流量与压力漂移都很小,负载刚度则很大。又由于是差动缸结构,CSV9电液转换器还具有液压应急功能。在紧急情况下,只要通过二位四通换向阀把P、T两口换向,或在P、T口同时通入压力油,随动活塞就会立即下推到低。

模数转换器基本原理及应用

Σ-Δ模数转换器基本原理及应用 一、Σ-Δ ADC基本原理 Σ-Δ ADC以很低的采样分辨率(1位)和很高的采样速率将模拟信号数字化, 通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率, 然后对ADC输出进行采样抽取处理以降低有效采样速率。Σ-ΔADC的电路结构是由非常简单的模拟电路(一个比较器、一个开关、一个或几个积分器及模拟求和电路)和十分复杂的数字信号处理电路构成。要了解Σ-ΔADC的工作原理, 必须熟悉过采样、噪声整形、数字滤波和采样抽 取等基本概念 1.过采样 ADC是一种数字输出与模拟输入成正比的电路, 图1给出了理想3位单极性ADC的转换特性, 横坐标是输入电压U IN 的相对值, 纵坐标是经过采样量化的数字输出量, 以二进制000~111表示。理想ADC第一位的变迁发生在相当于1/2LSB的模拟电压值上, 以后每隔1LSB都发生一次变迁, 直至距离满度的1 1/2 LSB。因为ADC的模拟量输入可以是任何值, 但数字输出是量化的, 所以实际的模拟输入与数字输出之间存在±1/2LSB的量化误差。在交流采样应用中, 这种量化误差会产生量化噪声。 图1 理想3位ADC转换特性 如果对理想ADC加一恒定直流输入电压, 那么多次采样得到的数字输出值总是相同的, 而且分辨率受量化误差的限制。如果在这个直流输入信号上叠加一个交流信号, 并用比这交流信号频率高得多的采样频率进行采样, 此时得到的数字输出值将是变化的, 用这些采样结果的平均值表示ADC的转换结果便能得到比用同样ADC高得多的采样分辨率, 这种方法称作过采样(oversampling)。如果模拟输入电压本身就是交流信号, 则不必另叠加一个交流信号。采用过采样方法(采样频率远高于输入信号频率)也同样可提高ADC的分辨率。 由于过采样的采样速率高于输入信号最高频率的许多倍, 这有利于简化抗混叠滤波器的设计, 提高信噪比并改善动态范围。可以用频域分析方法来讨论过采样问题。由于直流信号转换具有的量化误差达1/2LSB, 所以数据采样系统具有量化噪声。一个理想的常规N位ADC的采样量化噪声有效值为q/12,均匀分布在奈奎斯特频带直流至fs/2范围内, 如图2所示。其中q为LSB的权重, fs为采样速率, 模拟低通滤波器将滤除fs/2以上的噪声。如果用Kfs的采样速率对输入信号进行采样(K

模数转换器

设计题目:模数转换器 系别:应用电子与通信技术系 班级:0992221 学生姓名:刘明慧 指导教师:刘洋 成绩: 2012年3月21日

目录 第1章绪论 (1) 1.1选题目的 (1) 1.2 设计要求 (1) 1.3 设计题目 (1) 1.4 设计指标 (1) 第2章电路结构及工作原理 (2) 2.1 整机电路方框图 (2) 2.2 整机原理图 (2) 2.3 工作原理 (3) 第3章单元电路设计及器件选择 (4) 3.1 单元电路设计 (4) 3.1.1电压比较单元 (4) 3.1.2 寄存器单元 (4) 3.1.3 优先编码器单元 (5) 3.2 器件选择 (5) 3.2.1 电压比较器的选择 (5) 3.2.2 寄存器的选择 (6) 3.2.3 优先编码器的选择 (7) 第4章电路的组装与调试 (8) 4.1 电路的组装 (8) 4.2 整机的布线原则 (8) 4.3 电子元器件的插装 (8) 4.3.1 元器件分类 (8) 4.3.2 元器件引脚成型 (8) 4.3.3 插件顺序 (8) 4.4 电子元器件的焊接 (8) 4.5 电路的调试 (9) 4.5.1 故障分析及解决办法 (9) 4.6 实验数据 (9) 4.7 误差分析 (10) 结论 (11) 收获和体会 (12) 致谢 (13) 参考文献 (14) 附录 (15)

课程设计任务书 2012年3月21日

第1章绪论 1.1 选题目的 随着数字电子技术的迅猛发展,各种数字设备几经渗透了国民经济的所有领域。计算机只能对数字信号进行处理,处理的结果还是数字量,然而计算机在用于生产过程自动控制时,其所要处理的变量往往是连续变化的物理量,如温度、压力、速度等都是模拟量,这些非电的模拟量先要经过传感器变成电压或电流等电的模拟量,然后在转化为数字量,才能送入计算机进行处理。这就需要一种能在模拟信号与数字信号之间起桥梁作用的电路,把它们称为模数转换电路。能将模拟信号转换成数字信号的电路,称为模数转换器。 1.2 设计要求 模拟量转换为数字量,模拟量输入数字量输出。 1.3 设计题目 四位并行比较型模数转换器 1.4 设计指标 输入电压模拟量,输出用发光二极管显示相应的变化。

电液调节系统原理及应用

电液调节系统原理及应用电液调节系统原理及应用 葸国隆

摘要 本文就汽轮机数字电液控制系统的组成、控制功能及其实现做了说明,并介绍常见项目实施过程出现的部分故障及处理方法;同时对EH油系统、电液伺服阀、ETS系统也做了介绍。 关键词:数字电液汽轮机转速电液伺服阀汽轮机保护 Abstract This text did the introduction to the Digital Electric Hydraulic steam turbine Control System, control function and implementation, and introduced the error and fault appears in the common item implementation process and the method;Also did introduction to the EH oil system, the electricity liquid servovalve and ETS system at the same time. Keywords: DEH STEAM TURBINE SPEED SERVOVALVE ETS

目录 前言........................................................................... 3 第一章DEH概述 .............................................................. 4 1.1DEH的发展经历.......................................................... 4 1.1.1 MHC .......................................................................... 4 1.1.2 EHC .......................................................................... 4 1.1.3 DEH .......................................................................... 51.2DEH系统的组成.......................................................... 61.3DEH的控制方案.......................................................... 81.4ETS ................................................................... 101.5TSI ................................................................... 12 第二章液压执行机构........................................................ 13 2.1DEH的硬件组成各部分功能.............................................. 13 2.1.1 DEH常用的电液转换器........................................................ 14 2.1.2 LVDT ....................................................................... 15第三章油系统.............................................................. 16 3.1低压透平油系统........................................................ 163.2供油装置的主要部件.................................................... 173.3自容式电液执行器...................................................... 183.4汽轮机的自动保护系统.................................................. 19 第四章DEH调试 ............................................................ 20 4.1LVDT .................................................................. 20 4.1.1 LVDT的安装调试............................................................. 204.2拉阀试验.............................................................. 224.3汽轮机冲转............................................................ 24 总结......................................................................... 26

AD模数转换器

A/D模数转换器 一、实验目的 (一) 熟悉A/D转换器的工作原理。 (二) 掌握A/D转换集成芯片ADC0809的性能及其使用方法。 二、知识要点 A/D模数转换器是一种将模拟电压转换成数字量的转换器,本实验用逐次逼近式A/D转换集成片,其 V相原理如图16-1所示。它是将一个待转换的模拟信号Vi与一个“推测”的数字信号经D/A转换成 I 比较,根据“推测”信号是大于还是小于输入信号,即比较器输出“0”或“1”来决定减小还是增大“推测”信号,然后再进行比较,以便模拟输入信号逐渐逼近。“推测”信号是从二进制的最高位起,依次置“1”,逐位比较,直到最后一位。D/A的数字输入即对应输入模拟量,为A/D的输出,图16-1为逐次逼近式A/D转换器。

ADC0809是8位A/D 转换器,它的转换方法为逐次逼近法。其引脚为28脚,管脚排列如图16-2所示,各管脚功能如下: 1~5脚,26~28脚,0IN ~7IN ;几个模拟量输入端。 6脚,START :启动A/D 转换,当START 为高电平时,开始A/D 转换。 7脚,EOC :转换结束信号。当A/D 转换完毕之后,发出一个正脉冲,表示A/D 转换结束,此信号可用做A/D 转换是否结束的检测信号或中断申请信号(加个反相器)。 8、14、15、17~21脚,7D ~0D :数字量输出端。 9脚,OE :输出数据允许。 10脚,CLOCK :外部时钟脉冲输入端,改变外接R 、C 可改变时钟频率。 11脚,CC V :电源电压+5V 。 12脚,()REF V +=+5V 。16脚,()REF V ?=0V 。参与电压端子,用来提供D/A 转换器权电阻的标准电平。 13脚,GND :接地端。 22脚,ALE :地址锁存信号,高电平有效。当ALE 为高电平时,允许C 、B 、A 所示的通道被选中,并把该通道的模拟量接入A/D 转换器。 23~25脚,C 、B 、A :通道地址输入端,C 、B 、A 为二进制数,C 为最高位,A 为最低位,CBA 从000~111分别选中通道0IN ~7IN 。 ADC0809可以进行八路A/D 转换,并且这种器件使用时无需进行调零和满量程调整,转换精度和速度属中高档,所以一般控制场合采用这些ADC0809是比较理想的。 三、实验内容及步骤 (一)用ADC0809设计一模数转换电路,输入信号由+5V 与1K Ω电位器衰减提供,输出接至显示器。当地址信号为000时,通过测量完成表16-1。 表16-1 (二)当改变0IN 端的输入信号大小,使0D ~7D 全为“1”时,测量这时的输入转换电压值为多少?

电液转换器工作原理

电液转换器工作原理

一、工作原理: CSV9,CSV9H电液转换器的电流-位移转换部分是由磁钢、导磁罩、内外导磁板、动圈及弹簧所组成的动圈式力马达,液压伺服放大部分是由控制阀芯、随动活塞所组成的具有直接位置反馈的三通道滑阀控制差动缸(详见图一)。动圈与控制阀芯为刚性连接。安装方式为板式连接。 当控制电流流过处在磁隙固定磁场中的动圈绕组时产生电磁力,此电磁力克服弹簧力后推动动圈与控制阀芯产生与控制电流成比例的位移。 当压力油自P口进入电液转换器,并经过控制阀芯与随动活塞间的上下可变节流口,再经过T口回油。此时油压直接作用于随动活塞下腔,使之产生一个始终向上的推力。而上下节流口间的控制油压,则作用在随动活塞的上腔,使之产生一个向下的推力。此时如果无控制电流流过动圈,即控制阀芯静止不动。由于此时上下节流口的过流面积设计成相等,因而上腔的控制油压刚好等于下腔油压的一半。又由于随动活塞上腔面积设计是下腔面积的两倍,因此作用在随动活塞两端的液压推力相等,所以随动活塞自动稳定在这一平衡位置。 当向动圈输入正向控制电流时,电磁力使动圈与控制阀芯向下移动,此时上节流口关小,下节流口开大,随动活塞上腔的压力升高,从而推动活塞下移。当活塞位移达到控制阀芯的位移量时,上、下节流口过流面积重又恢复相等,随动活塞两端的液压推力恢复相等,随动活塞便自动稳定在这一新的平衡位置。 当向动圈输入反向电流时,动圈与控制阀芯向上移动,下节流口关小,上节流口开大,压力油经T 口回油,从而使随动活塞上腔油压降低,活塞随之向上运动,直至达到新的平衡位置。由于控制阀芯与随动活塞间的节流口精确配合,因此CSV9电液转换器的零耗流量与压力漂移都很小,负载刚度则很大。又由于是差动缸结构,CSV9电液转换器还具有液压应急功能。在紧急情况下,只要通过二位四通换向阀把P、T两口换向,或在P、T口同时通入压力油,随动活塞就会立即下推到低。

模数和数模转换器类型及原理介绍

QQ:460209698 模数模数//数模数模转换转换转换器器类型及原理类型及原理简介简介简介 (AD 详解详解((连载连载之之一)) https://www.wendangku.net/doc/608953116.html,/open_hard/blog/item/1cc0a8f36f633f53342acccd.html AD:模数转换,将模拟信号转换为数字信号,便于数字设备处理。 DA:数模转换,将数字信号转换为模拟信号,与外部世界接口。 具体可以看看下面的资料,了解一下工作原理: 1. 1. AD AD 转换器的分类 下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型逐次逼近型逐次逼近型、并行并行比较型比较型//串并行型串并行型((流水线型流水线型))、∑∑-Δ调制型 调制型、电容阵列逐次比较型及压频变换型。【【重点理解重点理解加粗的加粗的加粗的三种三种三种】】 1)积分型(如TLC7135) AD 连载之二-----双积分型 AD 转换器 积分型AD 工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率, 但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD 转换器大多采用积分型,现在逐次比较型已逐步成为主流。 2)逐次比较型(如TLC0831) AD 连载之三-----逐次逼近 AD 转换器的工作原理 逐次比较型AD 由一个比较器和DA 转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA 转换器输出进行比较,经n 次比较而输出 数字值。其电路规模属于中等,其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 3)并行比较型/串并行比较型(如TLC5510) AD 连载之四-----并行比较型A/D 转换器 并行比较型AD 采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n 位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD 转换器等速度特别高的领域。 串并行比较型AD 结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD 转换器配合DA 转换器组成,用两次比较实行转换,所以称为 Half flash(半快速)型。还有分成三步或多步实现AD 转换的叫做分级 (Multistep/Subrangling)型AD,而从转换时序角度又可称为又可称为 又可称为流水线(Pipelined)型AD,现代的分级型AD 中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD 速度比逐次比较型高,电路规模比并行型小。 7)流水线型A/D 转换器(串并行比较型,特例) (先理解理解并行并行并行比较比较 比较型型A D 转换转换器器原理原理!!!!) 为兼顾高速率和高精度的要求,流水线结构的A/D 转换器应运而生。这种A/D 转换器如图11-6所示,它结合了串行和闪烁[Flash]型ADC 的特点,采用基于

相关文档
相关文档 最新文档