文档库 最新最全的文档下载
当前位置:文档库 › 水洗砂中絮凝剂对混凝土质量的影响分析

水洗砂中絮凝剂对混凝土质量的影响分析

水洗砂中絮凝剂对混凝土质量的影响分析
水洗砂中絮凝剂对混凝土质量的影响分析

水洗砂中絮凝剂对混凝土质量的影响分析

0.引言

近年来,随着建筑业的蓬勃发展,机制砂的大规模使用,使得絮凝剂在水洗机制砂中的应用也得到了飞速的发展。砂石生产企业使用絮凝剂是因为机制砂大多为破碎石砂或山砂,它含有不同种类和数量的泥与粉,需要采用水洗除掉其中大部分的泥与粉,以免影响混凝土的使用。环保要求洗砂的水需净化处理,不能乱排放,因絮凝剂能使水溶液中的溶质、胶体或者悬浮物颗粒产生絮状沉淀,从而起到净化水质的作用,因此目前砂石生产企业广泛使用絮凝剂对洗砂水进行净化、过滤水质,再次回收利用。但砂石生产企业只考虑了洗砂水的排放符合环保要求,却未考虑回收利用的洗砂水中含有大量的絮凝剂会带入机制砂中,对混凝土产生不利影响。

水洗砂带入的絮凝剂对混凝土质量将产生怎样的不利影响呢?本文作者对这个问题进行了系统的实验研究分析,得出了比较明确的结论,提出了使用絮凝剂的建议。为政府主管部门加强砂石行业质量管理,规范砂石行业使用絮凝剂提供决策依据。

1.试验原材料和仪器

1.1 水泥

所用水泥为红狮P.O.42.5水泥,水泥性能指标检测结果如表1所示。

1.2 砂石

细砂(S1):Mx=1.4~1.8,含泥量3%;建德环城;机制砂(S2):Mx=2.4~2.8,含泥量2%;建德环城。

小石(G1):5~10mm, 石粉含量1%;建德环城;大石(G2):5~31.5mm,石粉含量1%;建德环城。

1.3 外加剂

外加剂选用科之杰新材料集团浙江有限公司生产的聚羧酸泵送剂,其匀质性指标和混凝土性能指标检测结果如表2和表3所示。

1.4 絮凝剂

本实验选用了目前砂石行业比较普遍使用的几种絮凝剂,分别是1200 万分子量的阴离子型聚丙烯酰胺(PAM1)、分子量1800 万的阴离子型聚丙烯酰胺(PAM2)、非离子型聚丙烯酰胺(PAM3)、阳离子型聚丙烯酰胺(PAM4)和聚合氯化铝(PAC)。实验之前,根据实验方案,将这些絮凝剂配制成不同的浓度。氯化铝因会带入氯离子严重影响混凝土质量,不列入研究范畴。

1.5 红外光谱仪

PES pectrum Two,扫描范围4000~400cm-1,扫描次数32次,光谱分辨率4cm-1。

2.试验方案

2.1 水洗砂中絮凝剂的检测

在实验前,利用红外光谱仪对某种絮凝剂和砂的冲洗水进行分析,分析结果如图1、图2。图1为某种絮凝剂的红外光谱图,3433cm-1、2925cm-1附近为烷基(-C-H)的伸缩振动吸收峰,1634cm-1为羰基(-C=C-CO-O-)的伸缩振动吸收峰,1110cm-1为醚键(-C-O-C)的伸缩振动吸收峰,判断该絮凝剂为含有羰基、醚基的有机物。图2为某机制砂洗后水烘干红外光谱图,可以看出,图2与图1比较相似,出峰位置基本吻合,表明砂的冲洗水中含有该类絮凝剂。因此,利用红外光谱仪对水洗砂中是否残留絮凝剂进行检测是可行的。

图1 某絮凝剂红外光谱图

图2某机制砂洗后水烘干红外光谱图

2.2 混凝土试验配合比

试验选用C30混凝土配合比,试验前,模拟实际生产,将絮凝剂与砂搅拌均匀再进行混凝土试验,试验用混凝土配合比见表4。

3.试验结果与分析

3.1 不同种类絮凝剂的试验结果

本文作者对不同种类絮凝剂对水泥净浆流动度的影响和不同种类不同浓度絮凝剂对混凝土性能的影响进行了试验研究,试验结果如表5、表6所示。

3.1.1 不同种类絮凝剂对水泥净浆流动度的影响

从表5的试验数据可知,掺入0.5‰浓度的5种絮凝剂,与基准相比,水泥净浆流动度均不同程度减小,其中PAM2对水泥净浆流动度的影响最大,其次为PAM1,PAC对水泥净浆流动度的影响最小,PAM3和PAM4对水泥净浆流动度的影响相当。

3.1.2 不同种类絮凝剂对混凝土流动性的影响

课题研究了不同种类不同浓度的絮凝剂对混凝土坍落度和扩展度的影响,初始坍落度、1h坍落度和初始扩展度、1h扩展度柱状分析图如图3、图4。

图3 不同种类絮凝剂对混凝土坍落度的影响

图4 不同种类絮凝剂对混凝土扩展度的影响

由表6和图3、图4可看出,外加剂掺量保持不变,絮凝剂加入后混凝土初始流动度均有一定程度的降低。具体分析结果如下:

(1)掺入不同浓度的PAM1混凝土初始流动度和1h流动度均小于基准混凝土,且随着PAM1浓度增大,混凝土1h流动度损失也越大;浓度为1.0‰时,1h混凝土已无流动性;

影响混凝土强度的主要因素

影响混凝土强度的主要因素 1.影响混凝土强度的因素很多,从内因来说主要有水泥强度、水灰比和骨料质量。 水泥强度和水灰比: 混凝土的强度主要来自水泥石以及与骨料之间的粘结强度。水泥强度越高,则水泥石自身强度及与骨料的粘结强度就越高,混凝土强度也越高。试验证明,混凝土与水泥强度成正比关系。水泥完全水化的理论需水量约为水泥重的23%左右,但实际拌制混凝土时,为获得良好的和易性,水灰比大约在0.40--0.65之间,多余水分蒸发后,在混凝土内部留下孔隙,且水灰比越大,留下的孔隙越大,使有效承压面积减少,混凝土强度也就越小。另一方面,多余水分在混凝土内的迁移过程中遇到粗骨料时,由于受到粗骨料的阻碍,水分往往在其底部积聚,形成水泡,极大地削弱砂浆与骨料的粘结强度,使混凝土强度下降。因此,在水泥强度和其他条件相同的情况下,水灰比越小,混凝土强度越高,水灰比越大,混凝土强度越低。但水灰比太小,混凝土过于干稠,使得不能保证振捣均匀密实,强度反而降低。试验证明,在相同的情况下,混凝土的强度( Mpa)与水灰比呈有规律的曲线关系,而与灰水比则成线性关系。 2 影响强度的其它因素

为了使混凝土能达到预定的强度,还必须在施工中搅拌均匀、捣固密实,养护良好并使之达到规定的龄期。 (一)施工条件的影响:施工条件是确保混凝土结构均匀密实、硬化正常、达到设计要求强度的基本条件。在施工过程中必须把拌合物搅拌均匀,浇注后必须捣固密实,且经良好的养护才能使混凝土硬化后达到预定的强度。采用机械搅拌比人工搅拌的拌合物更均匀,同时采用机械捣固的混凝土更密实,因此机械捣固可适用于更低水灰比的拌合物;能获得更高的强度。改进施工工艺性能也能提高混凝土强度,如采用分次投料搅拌工艺、高速搅拌机搅拌、高频或多频振捣器振捣、二次振捣工艺都会有效的提高混凝土的强度。 (二)养护条件的影响:为了获得质量良好的混凝土,混凝土成型后必须在一定的养护条件下(包括养护温度)进行养护,目的是保证水泥水化的正常进行,以达到预定的强度和其他性能。周围环境湿度是保证水泥正常水化、混凝土顺利成型的一个重要条件。在适当的湿度下,水泥能正常水化,使混凝土强度充分发展。如果湿度不足,混凝土表面会发生失水干燥现象,迫使内部水分向表面迁移,造成混凝土结构疏松、干裂,不但降低强度,而且还将影响混凝土的耐久性能。环境温度对水泥水化作用的影响是显著的。养护温度高,可以加快水泥水化速度,混凝土早期强度高;反之,混凝土在低温下强度发展相应迟缓,尤其温度在冰点以下

含气量对混凝土的影响利弊 李党义

含气量对混凝土的影响利弊 李曦,李党义 (湖南中建五局混凝土有限公司湖南长沙410000) 【摘要】含气量对混凝土性能的影响是多面而又复杂的,含气量对混凝土的和易性、抗折强度、耐磨性能、抗冻性能、抗渗透性能、热传导性能、自身变形等性能有明显的影响,适宜的含气量有利于增强混凝土的综合性能。然而,含气量也会在一定程度上造成混凝土强度的损失,合理适宜的含气量才能使混凝土的综合性能得到有效改善。 【关键词】混凝土含气量;性能;影响 Influence of Air Content on the pros and cons of Concrete Abstract :Air content on the properties of concrete is multi-faceted and complex. The air content has a significant impact on the concrete's workability, flexural strength, wear resistance, frost resistance, anti-permeability, thermal conductivity, its deformation properties. Appropriate air content enhances the overall performance of concrete. However, the air content can also result in the loss of concrete strength. The overall performance of the concrete can only be effectively improved when the appropriate amounts of air is introduced. Key words:concrete air content; performance; affect 在混凝土中添加引气剂,可以调节混凝土中的含气量,从而有效改善混凝土的和易性,增强抗折强度,加强混凝土路面的耐磨性、抗冻性和抗渗透性等性能,有利于延长道路寿命,降低维护力度,具有重要的现实意义。然而,引气剂的掺入,不可避免地会带来一定的反面影响,造成混凝土强度的损失。因此,研究含

混凝土强度等级对照表

混凝土强度等级对照表 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为150mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标准》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),用fcu 表示。 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级。 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30M Pa≤fcu<35MPa 影响混凝土强度等级的因素主要与水泥等级和水灰比、骨料、龄期、

养护温度和湿度等有关。 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥质量和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石高。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。

影响混凝土强度的主要因素

影响混凝土强度的主要因素 硬化后的混凝土在未受到外力作用之前,由于水泥水化造成的化学收缩和物理收缩引起砂浆体积的变化,在粗骨料与砂浆界面上产生了分布极不均匀的拉应力,从而导致界面上形成了许多微细的裂缝。另外,还因为混凝土成型后的泌水作用,某些上升的水分为粗骨料颗粒所阻止,因而聚集于粗骨料的下缘,混凝土硬化后就成为界面裂缝。当混凝土受力时,这些预存的界面裂缝会逐渐扩大、延长并汇合连通起来,形成可见的裂缝,致使混凝土结构丧失连续性而遭到完全破坏。强度试验也证实,正常配比的混凝土破坏主要是骨料与水泥石的粘结界面发生破坏。所以,混凝土的强度主要取决于水泥石强度及其与骨料的粘结强度。而粘结强度又与水泥强度等级、水灰比及骨料的性质有密切关系,此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1)水灰比 水泥强度等级和水灰比是决定混凝土强度最主要的因素。也是决定性因素。 水泥是混凝土中的活性组成,在水灰比不变时,水泥强度等级愈高,则硬化水泥石的强度愈大,对骨料的胶结力就愈强,配制成的混凝土强度也就愈高。如常用的塑性混凝土,其水灰比均在0.4~0.8之间。当混凝土硬化后,多余的水分就残留在混凝土中或蒸发后形成气孔或通道,大大减小了混凝土抵抗荷载的有效断面,而且可能在孔隙周围引起应力集中。因此,在水泥强度等级相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度也愈高。但是,如果水灰比过小,拌合物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,将导致混凝土强度严重下降。参见图3—1。 图3—1混凝土强度与水灰比的关系 a)强度与水灰比的关系 b)强度与灰水比的关系 2)骨料的影响 当骨料级配良好、砂率适当时,由于组成了坚强密实的骨架,有利于混凝土强度的提高。如果混凝土骨料中有害杂质较多,品质低,级配不好时,会降低混凝土的强度。 由于碎石表面粗糙有棱角,提高了骨料与水泥砂浆之间的机械啮合力和粘结力,所以在原材料、坍落度相同的条件下,用碎石拌制的混凝土比用卵石拌制的混凝土的强度要高。 骨料的强度影响混凝土的强度。一般骨料强度越高,所配制的混凝土强度越高,这在低水灰比和配制高强度混凝土时, 特别明显。骨料粒形以三维长度相等或相近的球形或立方体

浅析影响混凝土强度的几个主要因素

浅析影响混凝土强度的几个主要因素 本钢建设公司混凝土分公司梅晓东 [摘要]:混凝土强度的控制对保证工程质量有着重要的作用。影响混凝土强度的因素颇多,本文主要从用水量、砂率、原材料等方面分析其对强度的影响,以便科学、合理的控制混凝土工程质量。 [关键词]:混凝土强度用水量砂率原材料 混凝土作为目前使用最广泛的结构材料之一,它的质量直接关系到工程的质量、使用寿命以及人民的生命、财产的安全。我国正处于基础设施建设的高峰期,如果在生产过程中对混凝土质量不够重视,将会导致沉重的代价。混凝土生产供应是一个连续过程,供应到现场的混凝土又是一种半成品,不能够马上由后续检验工作完全证实是否合格,而就要被立即浇筑使用的产品。生产过程中众多方面的影响因素均会使生产出的混凝土质量产生变异。为了切实、有效地改善试验配合比、提高混凝土强度质量,笔者对一些影响因素进行分析、研究,以供参考。 1、用水量对混凝土强度的影响 在完全密实的情况下,普通混凝土的强度主要取决于其内部起胶结作用的水泥石质量,而水泥石的质量又取决于所采用的水泥特性和水灰比。 当水泥用量一定时,用水量小则水灰比小。水灰比过小会使混凝土干涩,成型质量难以保证,混凝土成品中会出现孔洞(蜂窝)较多,麻面等现象。这不但影响美观,还会降低混凝土的密实度和强度,使工程的耐久性变差。 在生产中,假设混凝土试验室配合比为: 水泥:砂:石子:水=1:1.51:2.83:0.46 现场测定砂的含水率为3%,则每机一次下料量为: 水泥:100kg 砂:100×1.51×(1+3%)=155.5kg 石子:283kg 水:100×0.46-100×1.51×3%=41.5kg 如果此水泥的实际强度为47MPa,粗骨料采用碎石(表面特征新系数A=0.46,B=0.52),按此配合比配制的混凝土其28天可达到的强度R为: R=A·fce·(C/W-B)=0.46×47×〔100/(100×0.46)-0.52〕=35.8MPa 情形一:若因误差而多加1kg的水,则水灰比(W/C)' 为: (W/C)'=(100×0.46+1)/100=0.47 这样配制的混凝土28天可达到的强度R'为: R'=0.46×47×〔100/(100×0.47)-0.52〕=34.8MPa 由于多加1kg水而引起的强度损失为: R-R'=35.8-34.8=1MPa 由此可见,用水量的变化对混凝土强度的影响是很大的,因此出场的混凝土必须制止随意加水。 情形二:若在施工中遇到下雨,雨后测得砂含水率为7%,石子含水率为3%,此时每机一次下料应为: 水泥:100kg 石子:100×2.83×(1+3%)=291.49kg 砂:100×1.51×(1+7%)=161.57kg 水:100×0.46-100×1.51×7%-100×2.83×3%=26.94kg 按此配合比显然是科学的,保证了水灰比为0.46,混凝土28天强度可达到设计要求(仍为

(赵国藩)尺寸效应

混凝土作为一种脆性工程材料表现出了明显的尺寸效应(size Effect)。准确地说,它的混凝土尺寸效应现象表现在两个方面:一是试件尺寸对确定参数的影响,二是在进行数值模拟时,数值计算得到的结果显著的依赖于有限元网格尺寸大小。例如混凝土梁的弯曲强度随梁高度的增加而降低。L’Herrnite的研究则表明,由三点弯曲梁测得的混凝土平均抗拉强度随试件体积的增加而降低。Kadlecek等指出,由三点弯曲梁和四点弯曲梁试验、计算所得的混凝土平均抗拉强度与直接拉伸试件所得混凝土抗拉强度值有显著差别。Bazant等对混凝土缺口梁的试验研究表明,名义抗拉强度和抗剪强度对试件尺寸有明显的依赖性。上述研究实质上表明:1.由弹性分析或极限分析反映的水泥基复合材料的抗拉强度是试件体积和结构内部应力场的函数。这种试件尺寸效应与结构内部原始缺陷有一定的关系。也就是说材料内部的原始缺陷数量是材料体积的函数,原始缺陷在结构中的拓朴分布必定与施加于这些微缺陷的应力场有关。文献[17]的研究指出:这种试件尺寸效应可以用初始损伤发展的概率方法来分析。2.由混凝土缺口试件测得的混凝土断裂韧度有明显的尺寸效应,试件的破坏往往是断裂过程区中微裂缝发展的结果。断裂过程区的大小往往与材料中骨料粒径大小有直接关系,对于混凝土I型断裂而言,断裂过程区的宽度是最大骨料粒径D max的3倍,而其长度约是D max的5至6倍。然而断裂过程区的体积并不随结构的尺寸变化。因而对尺寸较小的试件来说,在断裂过程区和结构的其余部分之间进行的应力和能量重分布是非常重要的。而对于大试件来说,由于断裂过程区的大小与试件尺寸相比可忽略不计,其损伤可视为集中在裂缝尖端的一个相对小的区域。这种试件尺寸效应与结构破坏前的损伤发展有关而与材料中原始缺陷无关。上述两个方面实则指出了两种类型的试件尺寸效应现象,一种与结构的原始缺陷的数量和分布有关,一种与结构在应力作用下的损伤发展有关。对于有缺口试件而言,预制切口可视为结构内部的最大原始缺陷。 对混凝土这种典型的非均质材料来说,对其力学行为的模拟往往有两种方法:一种是视混凝土为均质材料,采用连续介质力学方法。定义局部应变和应力,利用一种适当的方法来分析当材料受荷时,应力和应变的变化。另一种是不再认为混凝土为均质材料,而认为其组份是随机分布,运用概率的方法来研究混凝土的力学行为,这就是通常所说的随机方法(Stochastic Approach)。已有许多学者运用这种随机方法建立了许多混凝土分析模型。

影响混凝土质量的主要因素

影响混凝土质量的主要因素 摘要:在我国的土建工程施工中,掌握影响混凝土质量的主要因素,切实控制施工质量,对促进我国混凝土施工技术等具有重要意义。本文对施工中影响混凝土的施工质量的因素进行了探讨有足够的重视。关键词:土建工程混凝土质量控制 2008年以来,随着国家对实体经济刺激政策的逐步落地生根,我国的基础设施建设和固定资产投资进入一个高速发展的阶段。混凝土作为基础设施建设的主要建筑材料,其质量好坏,直接影响结构物的安全和造价。因此在施工中必须对混凝土的施工质量有足够的重视和有效地控制。 1.混凝土的强度及影响因素 混凝土是由水泥、水、细骨料、化学外加剂、矿物质等材料按照一定比例配合而成,经过均匀拌制,振捣密实成型及养护硬化而成的人工石材。混凝土质量的关键指标之一是抗压强度,混凝土抗压强度与混凝土用水水泥的强度成正比。当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。所以混凝土施工必须核对、选好水泥标号。 影响混凝土抗压强度的主要因素是水泥强度和水灰比,因此要提高混凝土的质量,关键是控制好水泥和混凝土的水灰比两个主要环节。另外,粗骨料对混凝土强度也有一定影响,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度

比卵石强。因此我们一般对混凝土的粗骨料控制在3.2cm左右,细骨料品种对混凝土强度影响程度比粗骨料小,所以混凝土公式内没有反映砂种柔效,但砂的质量对混凝土质量也有一定的影响。因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。由于施工现场砂石质量变化相对较大,因此现场施工人员必须保证砂石的质量要求,并根据现场砂含水率及时调整水灰比,以保证混凝土配合比,不能把实验配比与施工配比混为一谈。混凝土强度只有在温度、湿度条件下才能保证正常发展,应按施工规范的规定予在养护、气温高低对混凝土强度发展有一定的影响。冬季要保温防冻害,夏季要防暴晒脱水。 2.混凝土标号与混凝土平均强度及其标准差的关系 混凝土标号是根据混凝土标准强度总体分布的平均值减去1.645倍标准值确定的。这样可以保证混凝土确定均有95%的保证率,低于该标准值的概率不大于5%,充分保证了建筑物的安全,从此推定,抽样检查的几组试件的混凝土平均确定一定大于等于混凝土设计标号。通过公式计算可以看出,施工人员不但要使混凝土平均确定大于混凝土标号,更重要的是千方百计的减少混凝土确定的变异性,即要尽量使混凝土标准差降到较低值,这样,既保证了工程质量,也降低了工程造价。 3.混凝土质量控制的有效措施 3.1原材料的质量要保证 混凝土是由水泥、水、细骨料、化学外加剂、矿物质混合材料,

混凝土坍落度影响因素的试验研究

混凝土坍落度影响因素的试验研究 邓初首,夏勇。 【摘要】研究了在用水量一定时,砂率、水灰比、粉煤灰对混凝土坍落度的影响,并分析了粗集料最大粒径对坍落度的影响。结果表明:砂率有一个最佳值,此值下坍落度最大;不同水灰比的混凝土拌合物,通过适当增减砂率,可保持坍落度基本不变;与基准混凝土(不掺粉煤灰)相比,内掺II级粉煤灰的混凝土坍落度增大,内掺III级粉煤灰的混凝土坍落度减小。 【关键词】砂率;水灰比;粉煤灰;坍落度 0前言 混凝土一个重要技术指标是拌合物的和易性,和易性(又称工作性)是指混凝土拌合物易于施工操作(拌和、运输、浇筑和捣实)并能获得质量均匀、成型密实的性能。它包括三方面含义:流动性、粘聚性和保水性。流动性是指混凝土拌合物在自重或施工机械振捣的作用下,能产生流动,并均匀密实地填满模板的性能。对于大量使用的塑性混凝土来说,其拌合物流动性用坍落度表征。 如何准确快速地配制出坍落度符合要求的混凝土?这就需要了解引起坍落度变动的影响因素。不容置疑,用水量是决定坍落度的主要因素。本文着重研究了在固定单位用水量的情况下,砂率、水灰比和粉煤灰掺合料对混凝土坍落度的影响,并分析了粗集料最大粒径的影响。 1 试验用原材料和试验方法 1.1 水泥海螺牌P.O3 2.5级水泥。 1.2 粗集料 马鞍山市葛羊山产石灰岩质人工碎石,最大粒径分别取25mm、40mm两种规格。 1.3细集料 江砂(中砂),细度模数2.6。 1.4粉煤灰 经检验,选用马鞍山二电厂提供的II级和III级粉煤灰,检验结果如表l所示。 注:细度为45~rr-方孔筛筛余。 1.5试验方法 执行GB/T50080—2002《普通混凝土拌合物性能试验方法标准》。按标准规定,测得的坍落度值均精确到1mm,修约至5mm。 2结果与讨论 2.1砂率对混凝土坍落度的影响 采用两种研究途径:(1)固定单位用水量和水灰比不变,分别用粗集料最大粒径为25mm、40rnm的碎石混凝土拌合物试验,结果见图1。(2)固定单位用水量和粗集料最大粒径不变,分别取水灰比为0.45、0.55的凝土拌合物试验,结果见图2。

混凝土试块抗压强度的影响因素

混凝土试块抗压强度的影响因素 一、试件取样对混凝土试块抗压强度的影响 1、试件数量不足。出现该问题的原因大多为在施工之前没有将抽样方案确定下来,对于留置数量和评定统计方法没有量化、细化,导致统计上出现了误差。 2、抽样的样品没有代表性,不能将混凝土的质量真实地反映出来。这大多是由于取样人员在取样时,没有严格按照相关规范的要求实施取样。在实施中,仅是根据混凝土搅拌质量的优劣一次制作出了多组试件包含了下一个批次的试件,如此做法,不能真实地反映个批次混凝土的实际质量。 3、《普通混凝土物理力学性能试验方法标准》中的相关条例具体规定了混凝土试件的成型方法、振捣方法和养护要求,如果在施工现场对这些规范和要求有所缺失,必然导致成型后的试件存在诸多问题,这些问题也势必影响了试块抗压强度检测的准确性。 二、检测过程对混凝土试块抗压强度的影响 1、在对试块实施抗压强度测试之前,没有能够按照试件的尺寸公差实施检测。大量工程实践和相关标准表明,标准的试件检测有如下要求: (1)承压面的平整度公差应£0.0005d(其中d为试件直径); (2)试件相邻面应该垂直,即夹角为90°,公差应0.5°; (3)对于试件各边长、直径和高的实际尺寸公差应1mm。 2、在进行试块抗压强度测试的操作中,试块放置位置的精确程

度不够,导致试块不是轴心受压。 3、没有按照加荷速度标准实施正确的操作,导致由于加荷速度过于快了生成冲击荷载。大量理论研究和工程实践经验表明,试块在受力被破坏之前,荷载增加的速度如果大于材料裂纹扩展的速度,那么测试得到的强度值与真实值相比偏高。 4、在测试时,如果试件表面有油污对测试结果有影响。理论研究和实验表明,如果试件的受压面上存有油污,那么将减小承压板与试件表面之间的摩擦力,试件将出现垂直裂纹而破坏,如此一来测试得到的混凝土强度值偏低。 5、试件浸泡养护后没有晾干对测试结果也有影响。理论研究和实验表明,试件在水中浸泡养护后,试件含水量比较大,如果不将其晾干,那么测试得到的混凝土强度值偏低。 三、改善措施分析 1、试件取样上控制 (1)严格做好试配、试验、设计配合比、浇筑施工、养护、取样和测强等等每一环节来科学地确定混凝土强度等级,因为在操作上任何一个环节出现疏忽或失误,都有导致降低混凝土强度的可能。 (2)对于混凝土施工组织设计和质量措施方案的编制要有专人负责,精心编制,确保混凝土质量能够始终位于受控的状态。 (3)在具体工程中配备的从业人员,应是具有一定文化水平和工作责任心的专职抽样人员,由其负责现场的混凝土取样和制作工作。

影响混凝土强度因素

影响混凝土强度因素; 1、原材料 水泥强度,包括早期与后期 掺合料,品种与活性 砂石,砂石得级配与含泥量、针片状等含量 外加剂,有得外加剂就是早强,有得缓凝,但不影响后期强度,部分外加剂引气量高会影响强度。 2、配合比 合理得调整水灰比与砂率。 3、养护 养护温度,温度高则强度高,温度低则强度低,当然不不能用火烤,高于60多度混凝土水化产物会分解得,导致强度降低。 4、周边环境 有无腐蚀性得介质存在,如酸碱盐等 我说点现场需具体考虑得: 天气,需考虑就是否下雨,降温。 人员配制,如果砼工劳动力不足,会影响浇筑质量。 掺与料,现在都就是商混,掺与料,水灰比都不需要工长操心了,只要控制如丹落度与禁止工人往砼里加水,基本上就相当于控制住了砼质量。 浇筑方案,大体积砼如果浇筑,一层砼,先浇什么后浇什么都要有方案。 养护要跟上。 收面,找平,做好,就OK了影响因素与控制措施 混凝土内部得温度与混凝土厚度及水泥品种、用量有关。混凝土越厚,水泥用量越大,水化热越高得水泥,其内部温度越高,形成温度应力越大,产生裂缝得可能性越大。 对于大体积混凝土,其形成得温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝得危险性也越大,这就就是大体积混凝土易产生温度裂缝得主要原因。因此防止大体积混凝土出现裂缝最根本得措施就就是控制混凝土内部与表面得温度差。 3、1混凝土原材料及配合比得选用 (1)尽量选用低热或中热水泥,减少水泥用量。 大体积钢筋混凝土引起裂缝得主要原因就是水泥水化热得大量积聚,使混凝土出现早期升温与后期降温,产生内部与表面得温差。减少温差得措施就是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。再有,可充分利用混凝土后期强度,以减少水泥用量。改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。 (2)掺加掺合料 大量试验研究与工程实践表明,混凝土中掺入一定数量优质得粉煤灰后,不但能代替部分水泥,而且由于粉煤灰颗粒呈球状具有滚珠效应,起到润滑作用,可改善混凝土拌合物得流动性、粘聚性与保水性,从而改善了可泵性。 特别重要得效果就是掺加原状或磨细粉煤灰后,可以降低混凝土中水泥水化热,减少绝热条件下得温度升高。在混凝土中掺加一定量得具有减水、增塑、缓凝等作用得外加剂,改善混凝土拌合物得流动性、保水性,降低水化热,推迟热峰得出现时间。

影响混凝土质量的主要因素

影响混凝土质量的主要因素 来工程质量受到越来越多的社会关注。预拌混凝土有利于采用先进的工艺技术,实行专业化生产管理,产品质量好、材料消耗少、工效高、成本较低,又能改善劳动条件,减少环境污染等优势,在施工占有越来越大的比重。由于生产地点与使用地点不同,在施工中必须掌握影响混凝土质量的主要因素,切实控制施工质量。 随着改革开放进程的不断深化我国的建筑业取得了快速的发展。混凝土作为主要的建筑材料,其质量优劣,直接影响到结构物的使用安全及人民生命财产安全。在施工中我们必须对混凝土的施工质量有足够的重视。预拌混凝土是时代发展和市场经济下的产物,由于其优质、高效、环保等特点备受施工企业青睐。近年来,全国各地预拌混凝土厂家犹如雨后春笋建成投产,在为国家建筑业增添活力的同时,也出现了许多值得重视和解决的问题。 1、预拌混凝土质量的外部因素 随着市场竞争愈来愈激烈,生产厂家为生存相互压价,最终导致预拌混凝土质量普遍下降,最近几年较大的工程质量事故的事例屡屡见诸报端。再者生产与施工管理两张皮,预拌混凝土的生产、运输、浇筑成型等环节的质量要求在国家或地方规范、标准中均有相关规定。但在实际过程中,往往出现供需双方管理界限问题,因质量造成的责任纠纷不断,厂家指责施工方浇筑方法不正确,养护不及时,施工方指责厂家产

品不合格,运输超时等。 以上问题的应采用系统的方法加以解决。宏观上积极呼吁地方政府对本地的经济发展规模,对预拌混凝土搅拌站项目要有积极的政策导向,避免出现生产力过剩现象。政府应对企业生产过程中的产品质量起到有效监督、协调等作用。其次,建筑施工企业与混凝土厂家签订合同时,不应局限于合同负责人之间理论性的谈判及笼统模糊的约定,应该要求双方负责现场管理、具有实践经验的技术人员参加,使合同条款具有实用、全面、约束力强、便于责任追溯等特点。 2、预拌混凝土质量的技术性因素 混凝土质量要求是一种综合性指标,根据工程特点,结构设计不仅对混凝土的强度等级提出明确要求,具备相应的变形性能、耐久性等,而且在施工过程中还需混凝土具有和易性。混凝土抗压强度与混凝土所用水泥的强度成正比,按公式计算,当水灰比相等时,高强度等级水泥比低强度等级水泥配制出的混凝土抗压强度高许多。所以预拌混凝土生产时应严格执行技术要求,切勿用错水泥标号及用量。实践中,不少厂家为降低成本,想方设法降低水泥用量,为在数据上使混凝土试块抗压强度符合要求,采用非统计方法评定,但如采用统计方法评定时却不合格,希望工程技术、质量管理人员及监理单位注意此类问题。 由上述可知,影响混凝土抗压强度的主要因素是水泥强度和水灰比,

砂率对混凝土性能的影响

砂率对混凝土性能的影响 砂率:SP= 砂的用量S/(砂的用量S+石子用量G)×100% 是质量比 砂率的变动,会使骨料的总表面积有显著改变,从而对混凝土拌合物的和易性有较大影响。 和易性概念和易性是指新拌水泥混凝土易于各工序施工操作(搅拌、运输、浇灌、捣实等)并能获得质量均匀、成型密实的性能。 和易性是一项综合的技术性质,它与施工工艺密切相关,通常,包括有流动性、保水性和粘聚性三方面的含义。 流动性是指新拌混凝土在自重或机械振捣的作用下,能产生流动,并均匀密实地填满模板的性能。 粘聚性是指新拌混凝土的组成材料之间有一定的粘聚力,在施工过程中,不致发生分层和离析现象的性能。 保水性是指在新拌混凝土具有一定的保水能力,在施工过程中,不致产生严重泌水现象的性能。 新拌混凝土的和易性是流动性、粘聚性和保水性的综合体现,新拌混凝土的流动性、粘聚性和保水性之间既互相联系,又常存在矛盾。因此,在一定施工工艺的条件下,新拌混凝土的和易性是以上三方面性质的矛盾统一。 确定砂率的原则是:在保证混凝土拌合物具有的粘聚性和流动性的前提下,水泥浆最省时的最优砂率。 砂率对和易性的影响非常显著。 ① 对流动性的影响。在水泥用量和水灰比一定的条件下,由于砂子与水泥浆组成的砂浆在粗骨料间起到润滑和辊珠作用,可以减小粗骨料间的摩擦力,所以在一定范围内,随砂率增大,混凝土流动性增大。另一方面,由于砂子的比表面积比粗骨料大,随着砂率增加,粗细骨料的总表积增大,在水泥浆用量一定的条件下,骨料表面包裹的浆量减薄,润滑作用下降,使混凝土流动性降低。所以砂率超过一定范围,流动性随砂率增加而下降 ② 对粘聚性和保水性的影响。砂率减小,混凝土的粘聚性和保水性均下降,易产生泌水、离析和流浆现象。砂率增大,粘聚性和保水性增加。但砂率过大,当水泥浆不足以包裹骨料表面时,则粘聚性反而下降。

混凝土强度的影响因素

混凝土强度的影响因素 混凝土硬化后最基本的性能就是强度, 混凝土强度有抗压、抗拉、弯曲、剪切强度等。抗压强度同其他强度间有密切的关系。由于它的测定方法比较简单, 同时在混凝土结构中混凝土主要用来承受 压力, 因此凝土的抗压强度就成为评价其质量的最重要的一项指标。通常所讲的混凝土强度等级是混凝土的特定抗压强度,是设计和施工 时的强度指标。混凝土强度等级是按照标准方法试验测定的。用边长为15 cm的立方体试件, 标准条件( 温度为20±2℃, 相对湿度95% 以上)下养护28天的抗压强度。影响混凝土强度的因素较多, 主要是混凝土的构成材料, 施工中振捣密实强度及混凝土强度增长过程中 的养护条件。混凝土的组成材料包括水泥、集料( 粗、细骨料) 、水、掺合料、外加剂等。 1 水灰比是决定混凝土强度的关键 水在混凝土中的掺量是决定混凝土强度的主要因素。通常情况下, 满足水泥水化所需的水量不超过水泥重量的25%。普通混凝土常用 的水灰比为0.4:0.65, 超过水化需要的水主要是为了满足工作性的 需要。超量的水在混凝土内部留下了缝,使混凝土强度、密度和各种 耐久性都受到不利影响, 因此, 水灰比是定混凝土强度的关键。灰水比越大( 水灰比越小) 混凝土强度越高, 灰水比越小( 水灰比越大) 强度越低。在一般情况下, 集料的强度都高于混凝土强度, 甚至高 出几倍。因此, 混凝土的强度主要取决于起胶结作用的水泥石的质量。而水泥石的质量又决定于水泥标号和水灰比, 所以说水泥石质量

决定于水灰比, 可从水在水泥浆体中的存在形态加以分析。经研究证明, 水泥浆体中的水有四种形态: ( 1) 化合水, 水以原子形态参加晶格, 即水分子有序排列于水化物晶格之内, 完全与水泥化合而形成新物质。这部分约占总量的 20~25%。 ( 2) 凝胶水,存在于水化物凝胶中的水为凝胶所包围, 但不与水泥起水化反应。蒸发后在水泥石中留下凝胶孔。 ( 3) 毛细水,存在于毛细孔中的可蒸发水, 蒸发后留下毛细孔。( 4) 游离水, 对水泥浆体结构和性能完全属于多余的可蒸发水, 因此, 愈少愈好。但因为混凝土施工需一定的和易性, 故游离水不能完全避免。 以上4种存在于水泥浆体的水, 除了化合水外, 其余三种形态的水, 都将随着水泥浆体的凝结硬化而逐渐蒸发掉, 给水泥石留下的是孔隙, 而任何固体的强度都与所含孔隙率大小有关, 孔隙率越大强度越低, 孔隙越小强度越高。所以混凝土水灰比越大, 孔隙率越大, 强度越低, 水灰比越小, 孔隙率越小, 强度越高。 2 水泥对混凝土强度的影响 水泥标号对混凝土强度的作用是人们所熟知的, 同样配合比, 水泥标号愈高, 混凝土强度愈高, 水泥标号愈低, 混凝土强度愈低。关于水泥用量对混凝土强度的影响, 一般认为“水泥越多混凝土强度越高”。这个认识是不确切的: 这个前提应该是在水灰比不变的情况下。如果水灰比不同, 就无法谈高低问题。二是两者间关系不是永

影响钢筋混凝土工程质量因素及解决方法

影响钢筋混凝土工程质量因素及解决方法 摘要:本文针对在某工程施工中通过加强控制混凝土工程施工管理,有效控制了混凝土工程施工质量,达到了良好的效果。 关键词:钢筋混凝土质量;因素;解决方法 某工程由10栋高层住宅,框架剪力墙结构,建筑层数26-33层、由于在基础、主体结构施工过程中材料、施工等方面把关不到位,控制不严格,造成较多的质量缺陷,混凝土强度回弹不合格,柱、梁出现较多的孔洞、麻面、爆模等现象,严重影响工程的质量,造成重大的经济损失。 1 主要质量问题分析 1.1 材料方面 钢筋问题:(1) 钢筋进场后没有及时按规定进行取样复验而事先进行使用;钢筋进入仓库或现场时,管理不好,施工中容易弄错。 (2) 钢筋露天堆放,保管不好,受雨雪侵蚀,环境潮湿而通风不良,产生锈蚀;或存放期过长,工程中途停工,裸露钢筋未加保护使钢筋呈片状褐锈,造成钢筋截面减小,受拉应力降低。(3) 工程施工中油类等物质污染钢筋或混凝土浇筑过程中水泥浆污染钢筋,影响钢筋的握裹力及结构受力。 混凝土问题: (1) 水泥无出厂合格证或材质证明,进场后未经复试合格:出厂后超过三个月(快硬水泥超过一个月)未经复试;进口水泥没有商检合格证,未经复试。(2) 砂、石未按规定批量取样

试验或砂石级配不合格。(3) 掺合料如粉煤灰、氟石粉等无出厂合格证或未经试验;混凝土外加剂没有生产许可证,未经质量监督部门认可合格。 1.2 施工方面 1.2.1 模板工程 柱模板问题: (1) 由于柱模的背楞间距大,柱箍少或柱箍对拉螺栓松紧不一,出现胀模,断面尺寸鼓出等现象。(2) 由于柱模拼装接缝较大,柱下口不平、容易造成漏浆、烂根,柱身扭曲变形等缺陷。(3) 柱子支模前未弹出截面尺寸线,成排柱支模不跟线,钢筋偏移未校正就合模。(4) 模板有混凝土残渣未认真清理,漏刷拆模剂或拆模过早,致使柱混凝土表面产生粘膜、掉角等缺陷。 梁模板问题:(1) 梁的支撑间距大,刚度不足;支撑直接设在素土地面上造成下沉变形,未设水平拉杆和斜撑,稳定性差。(2) 梁底模铺设时未拉通线找直,接缝不严,没有按规定起拱或起拱太大;底模板材料厚度小,横楞间距大,断面偏小。(3) 梁侧模的刚度不足,横楞间距大,断面小,上下口固定不牢或松紧不一。(4) 梁侧模拼接不严,缝隙大,组合钢模板拼装时u形卡漏安或方向一顺。板模板问题: (1) 板模板的搁栅用料偏小或搁栅间距偏大,下部支撑未加拉杆和斜撑;支撑稳定性差,上标高没有找正,支撑地面下沉。(2) 板底搁栅未拉通线找平或模板厚薄不一,模板铺设完后没有用水准仪找平调整标高。(3) 模板铺设时板面高低不平,板

[提高混凝土强度的方法] 提高混凝土强度的措施有哪些

影响混凝土强度的因素和提高措施 1 混凝土原料构成及其作用 混凝土是一种由水泥、砂、石骨料、水及其它外加材料按一定比例均匀拌和,经一定时间硬化而形成的人造石材。在混凝土中,砂石起骨架作用称为骨料,水泥与水形成水泥浆,水泥浆包裹在骨料表面并填充其空隙。在硬化前,水泥浆起润滑作用,赋予拌和物一定的和易性,便于施工。水泥浆硬化后,则将骨料胶结成一个坚实的整体。 混凝土强度的高低,直接影响到建筑物结构安全,情况严重的将造成建筑物倒塌,严重危害到人们的生命安全。因此,在施工中对混凝上的强度应有足够的重视。 2 混凝土强度等级与混凝土强度平均值及其标准差的关系 混凝土强度等级是根据混凝土强度分布的平均值减去645倍标准差确定的,保证混凝土强度标准值具有95%的保证率,低于该标准值的概率不大于5%,充分地保证结构的安全。从这个定义推定,抽样检验的N组件的混凝土强度平均值一定不小于混凝土设计强度等级,而强度平均值的大小取决于标准差的大小。因此施工人员必须明确,不但要使混凝土强度平均值大于混凝土强度的变异性,更要使混凝土强度标准差降低到最低值。这样既保证了工程质量又降低了工程造价,是行之有效的节约措施。 3 影响混凝土强度的因素 普通混凝土受力破坏一般出现在骨料和水泥石的分界面上,是常见的粘结面破坏的形式。在普通混凝土中,骨料最先破坏的可能性小,因为骨料强度通常大大超过水泥石和粘结面的强度。所以混凝土的强度主要决定于水泥石强度及其与骨料表面的粘结强度。而水泥石强度及其与骨料的粘结强度又与水泥标号、水灰比、及骨料的性质有密切关系。当水泥石强度较底时,水泥石本身容易受到破坏。此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1 水灰比和水泥标号是决定混凝土强度的主要因素 水泥是混凝土中的活性成分,其强度的大小直接影响着混凝土强度的高低。从混凝土强度表达式fcu.o=A?fce(C/W-B)可以看出,在配合比相同的条件下,所用的水泥标号越高,制成的混凝土强度越高。当水泥相同时,混凝土的强度取决于水灰比。当水泥水化时所需的结合水,一般只占水泥重量的23%左右。如果结合水较大(约占水泥重量的40~70%),混凝土硬化后,多余的水分残留在混凝土中形成气泡或蒸发后形成气孔,大大地减少了混凝土抵抗荷载的实际有效断面,可能在空隙周围产生应力集中。因此,在水泥标号相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土的强度就愈高。如果加水太少,拌和物过于干硬,在一定的捣实成型条件下,无法保证浇灌质量,混凝土中将出现较多的蜂窝孔洞,混凝土强度也将下降。 2 粗骨料的影响 粗骨料对混凝土强度也有一定的影响。当石质强度相等时,决定于骨料的表面粗糙度。

影响混凝土质量的因素

影响混凝土质量的因素 摘要:从原材料、配合比、运输过程、养护等方面因素讨论提高混凝土质量问题 关键词:混凝土;施工质量;问题 前言混凝土泛指由胶凝材料(胶结料),粗、细骨料(或称集料),水及必要时加入化学外掺剂和矿物掺合料,经适当合理的比例配制、拌和而成的混合料,硬化后即形成具有所需的形体,强度和耐久性的人造石材。 实质上混凝土是由多种性能不同的材料组合而成的石状复合材料。其品种很多,一般包括沥青混凝土、聚合物混凝土、钢筋混凝土及钢纤混凝土等,使用最多的是普通水泥混凝土。在建筑工程中,混凝土是当代最大宗的最重要的土建材料,其质量问题直接关系到整个工程质量,使用寿命以及人民的生命、财产的安全。为了更好地提高混凝土工程质量,结合日常工作实际经验总结,将分析一下影响它的不利因素. 一、原材料 混凝土的质量和技术技能在很大程度上是由原材料的性质及其相对含量所决定的,要了解原材料的性质,作用及质量要求,合理选择原材料,以保证混凝土的质量。 1、水泥 水泥在混凝土中起胶结作用,是最重要的材料。为了保证混凝土的强度,耐久性及经济性,根据工程性质与特点、工程所处的环境及施工条件、依据水泥的特性,合理选择。施工进场的水泥要按批量的多少进行抽样试验,一般是将抽取的样品送到由通过国家认证的质检机构进行安定性、细度与强度等物理性能指标的检测。 水泥安定性较差的话会使混凝土产生体积膨胀性裂缝;强度上下波动也会使混凝土强度产生相应的变化。一般水泥安定性与3天强度不合格的话是不允许试配混凝土配比的。要选择优质的水泥,大水泥厂家的水泥质量比较的稳定可靠。 2、骨料 骨料在混凝土中占总体积的70%~80%,因此骨料的性能对所配制的混凝土有很大的影响。混凝土用骨料,按其粒径大小不同分为细骨料和粗骨料两种。粒径在0.15 μm~4.75mm之间的岩石颗粒为细骨料,粒径大于4.75mm的为粗骨料。 细骨料按起产源不同可分为河砂、海砂、山砂。在建筑工程中大多采用河砂为主,砂子太细或含泥量过多会增加混凝土的干缩裂缝,最好是采用2区,中粗砂,具有良好的颗粒级配,质地坚硬,有害杂质含量少较满足规范要求。 粗骨料分为卵石和碎石两种。卵石是由天然岩石经自然分化,水流搬运和分选,堆积形成的粒径大于4.75mm的颗粒。碎石是由天然岩石或卵石经破碎、筛分制成。碎石规格按其粒径尺寸分为单粒级和连续粒级,按其级配选择连续级配为佳,可保证混凝土的强度和减少水泥用量节约成本。石子主要控制好级配,针片状含量和压碎值,经试验室工作经验得出,目前很多施工单位所使用的石子级配都不是很好,若选用连续级配,也不太现实,因此要确保石子级配连续,且在生产中切实可行,有待进一步探讨研究。 不论细骨料还是粗骨料,其杂质含量必须在规范允许范围内并满足其标准要求。 3、混凝土拌和用水 对混凝土拌和用水质量的要求,只要不影响混凝土的凝结时间和硬化、无损于混凝土强度发展耐久性、不加快钢筋锈蚀、不引起预应力钢筋脆断、不污染混凝土表面,满足《混凝土拌和用水标准》(JGJ63)其标准质量就可。 二、混凝土配合比 混凝土配合比设计实质上就是确定水泥,水,砂与石的这四项基本组成材料用量之间的三个比例关系。水灰比、砂率、单位用水量是混凝土配合比的三个重要参数。要确定这三个参

机制砂的石粉含量和砂率等因素对混凝土工作性和强度的影响

机制砂的石粉含量和砂率等因素对混凝土工作性和强度的影响 摘要:本文将天然的混凝土作为基准,研究了机制砂和机制砂中砂率及石粉含量的变化对混凝土的强度和工作性的影响。通过相关的研究,可以得出如下结论:水灰比的含量越低,天然砂混凝土和机制砂的强度都不断增大。在浆体含量和水灰比相同的条件之下,天然砂混凝土的工作性能和强度都比不上机制砂混凝土,石粉含量达到百分之十左右的时候,随着石粉比重的不断增加,机制砂混凝土的的磨耗值不断降低。当石粉含量超过百分之十的时候,机制砂混凝土的磨耗值又有所提高。 关键词:机制砂;石粉;砂率;混凝土;工作性;强度 Abstract: This paper will be natural concrete as the benchmark, study the mechanism and mechanism Zhongsha sand ratio and the changes in the content of cement concrete strength and the influence of the crack. Through the related research, the author draws a conclusion that the content of water cement ratio is lower, the natural sand concrete and mechanism of sand strength increasing. In the paste content and water cement ratio under the same conditions, the natural sand concrete work performance and strength than mechanism sand concrete, cement content is around ten percent, with the increase of the proportion of stone, the mechanism of the concrete sand the abrasion of values are reduced. When more than ten percent of the content of stone, sand mechanism of concrete and improve abrasion value. Key Words: Mechanism sand; “; Sand ratio; Concrete; Workability; Strength 水泥混凝土具有承载能力大、强度高、刚度大、日常维护工作量小和持 久性的特点。并且,从长期的投资上来看,水泥混凝土路面的性能优于沥青混凝土路面,因此在城市建设、机场跑道和工矿道路之中已经开始广泛的使用水泥混凝土的路面,在一些载重量很大的公路交通之中受到了越来越多的关注。 1、混凝土强度和工作性能概述 随着我国交通设施的不断发展,混凝土之中对机制砂的使用量也不断增加,由于天然砂属于稀少的地方性资源,具有分布不均匀的特点,因此,可以进行开采的天然砂呈现逐年减少的模式,尤其是在一些山区的公路建设过程之中,存在着砂少石多的现象,正是因为天然砂含量越少的现象,因此,在水泥混凝土的使用中,采用机制砂替换天然砂的现象已经十分普遍。但是,机制砂和天然砂相比,具有着明显的优点。具体来说,机制砂的表面十分粗擦,而且在机制砂中

相关文档
相关文档 最新文档