文档库 最新最全的文档下载
当前位置:文档库 › 城市细胞自动机模型研究的回顾与展望

城市细胞自动机模型研究的回顾与展望

城市细胞自动机模型研究的回顾与展望
城市细胞自动机模型研究的回顾与展望

生物人教版七年级上册细胞模型的制作

《细胞模型制作综合实践活动流程》 第一课时确定主题 一、观察细胞图片,情景导入 观看动物植物、细菌、真菌细胞的结构。细胞是生物体结构和功能的基本单位。细胞的形态不尽相同、基本结构包括哪几部分?(细胞膜、细胞质、细胞核)怎样能直接看到细胞的结构呢?用显微镜观察。还有呢?制作细胞模型。 二、引导学生,生成主题 学生经过一番讨论,通过观察图片,欣赏了细胞的结构,对于有不同生物细胞结构的异同,同学们发表不同的见解,你观察到那些生物细胞?植物细胞、动物细胞、细菌细胞、酵母菌细胞、青霉细胞、神经细胞。观察的非常仔细。谁能提出一些想要探讨的主题,写在纸上师生共同交流,探讨动物与植物的异同?植物与细菌的异同?细菌与酵母菌的异同?植物与酵母菌的异同?神经细胞与植物? 神经细胞与细菌的异同?神经细胞与真菌异同?提出一些想要 探讨的主题,写在纸上师生共同交流,探讨,有的同学提出的问题是切实可行的,有的问题是不可行,最后在老师的引导下,经过筛选、整理、归类、总结确定所要研究的主题 三、筛选整合,确定子课题 师生共同筛选、整理,形成几个子课题。 制作动物、植物、细菌、酵母菌、神经细胞的模型,探究动物与植物细胞的异同?细菌与酵母菌细胞的异同?植物与细菌细胞的异同?植物与酵母菌的异同? 四、活动准备 1.上网搜集有关细胞模型制作图片打印出来、为实施这一探究活动,学生共同商讨所 要准备的工作: 2. 制作模型的材料和用具 3.准备各色卡纸、剪刀、直尺,橡皮泥、显微镜纸板、 吸管。 4老师指导学生设计方案 五分组课 1.推荐组长,选择课题 2.小组合作,创设组名、口号 3.展示各小组的设计 经过小组讨论,选出组长,选择课题,创设组名、口号。记录员记录,组长汇报 第二课时 制定方案 谈话导入:同学们各小组已经明确了研究的问题,那么我们怎样来设计活动方案,制作细胞模型首先知道细胞的结构特点,绘制细胞结构模型,选择做模型的材料和用具。大家可以谈谈自己的看法。1、1、教师说出活动方案思路: 观察细胞结构图—绘制结构简图—设计制作细胞模型方案 2、展示各小组的设计教师引导学生从以下几个方面制定活动方案 ①确定哪个活动的内容

生物模型制作

生物模型制作 生物模型制作是指学生利用身边的各种材料来制作 些有关生物结构的模型,这些生物模型可以将抽象的知识以形象的物质形式呈现出来。例如动植物细胞模型、花的结构模型等,学生都可以根据课本的文字内容或图片把它们实物化、立体化。在制作过程中学生把各种材料加工成要模拟的生物结构形状,直接构成一个整体的模型。学生在亲自参与制作生物模型以及运用模型演示生物知识的过程中,不仅能加深对知识的理解,巩固和掌握所学知识,更能使自身的动手能力得到培养,从而更好地开发与训练自己的创造力和创新思维。 1 制作生物模型的作用 1.1加深对知识的记忆和理解初中学生对直观的知识掌 握较快,形象思维比较差,对 于抽象的知识掌握得相对较弱。在生物教学中,有些观察对象很小或结构比较复杂,学生不易清楚地观察它们的结构,例如生物细胞的结构。制作模型则将它们放大很多倍,而且能将其中所含的各部分结构明确地表示出来,形象且直观,

使学生迅速地获得有关的知识,从而加深对知识的记忆和理 解。 1.2培养学生的动手能力和创造力 制作不同的生物模型,运用的材料、制作的方法不同。 学生在尝试制作生物模型的过程中,要选择制作的材料,每种模型可能还需要将不同的材料组合到一起,这无疑对学生的动手能力是一种挑战。比如在制作花的模型中,有的学生是将硬一点的纸剪成花瓣的形状,用双面胶粘在一起,但是这样很容易开,组合不到一起去。教师发现后,启发并鼓励学生最终对模型进行了改进,用针线将其缝合到了一起,并用软一点的纸做了一个新的模型。 1.3丰富教学资源许多学生制作的生物模型科学性和准 确性强,并且美 观,这样在以后的教学中教师可以将学生制作的模型作为教 具使用,比如学生制作的屈肘运动的模型。有一学生是用两木棍另一端分别固定两根橡皮绳代表肌肉,演示屈肘和伸肘运动,效果很好,这样的模型在课堂上演示,学生就很容易地理解了。有些学生在制作生物模型时科学性不强,甚至是错误的,比如学生在制作小肠模型时,有些学生做的小肠内表面的环形皱襞方向是错的,也就是说不是环形的,同样教师可以作为反面的教具使用,丰富教学资源。 根木棍代表骨,中间用螺丝固定并可以转动代表关节,两根 2 学生制作生物模型的过程和方法在初中生物教材中有 很多可以制作模型的生物结构,而 且制作同一种结构可以选用不同的材料。

基于元胞自动机模型的城市历史文化街区的仿真

文章编号: 1673 9965(2009)01 079 05 基于元胞自动机模型的城市历史文化街区的仿真* 杨大伟1,2,黄薇3,段汉明4 (1.西安工业大学建筑工程系,西安710032;2.西安建筑科技大学建筑学院,西安710055; 3.陕西师范大学历史文化学院,西安710061; 4.西北大学城市与资源学系,西安710069) 摘 要: 为了探讨当前城市规划中远期预测的科学性和准确性问题,将自组织理论与元胞自动机模型结合,在一定的时空区域,构建了一个城市增长仿真模型.将元胞自动机模型应用于西安市最具历史文化特色的区域中,形成自下而上的规划模型.元胞自动机模型对于西安回民区的空间发展城市历史文化特色街区的模拟具有一定的原真性和时效性,在时空中能反应当前的空间格局.元胞自动机在城市规划的预测中具有图式与范式结合的特点,在中长期的预测中形成符合城市规划发展战略的空间格局. 关键词: 元胞自动机;自组织;历史文化特色街区;空间演化 中图号: T U984 文献标志码: A 自组织理论是当前城市复杂性研究的主要研究方向之一.自组织是相对他组织而言,即自我、本身自主地组织化、有机化,意味着一种自动的、自发性的行为,一种自下而上、由内至外的发展方式.其主要涵义可以简单概括:在大多数情况下,作用于系统的外部力量并不能直接对系统的行为产生作用,而是作为一种诱因,即引入序参量引发系统内部发生相变,系统通过这一系列的变化自发地组织起来,最终大量微观个体的随机过程表现出宏观有序的现象[1]. 20世纪40年代U lam提出元胞自动机模型(Cellular Autom at o n M odel,CA),V on N eu m ann将其用于研究自复制系统的逻辑特性,且很快用于研究自组织系统的演变过程,其中对城市系统自组织过程的模拟是焦点问题[2 9]. CA是定义在一个具有离散状态的单元(细胞)组成的离散空间上,按一定的局部规则在离散时间维演化的动力学系统.一个CA模型通常包括单元、状态、邻近范围和转换规则4要素[9],单元是其最小单位,而状态则是单元的主要属性.根据转换规则,单元可以从一个状态转换为另外一个状态,转换规则通过多重控制函数来实现. 自组织理论的提出,对于解释相对封闭,具有自身演化规律的复杂适应系统中的复杂现象和问题具有重要意义和应用前景.而CA 自下而上的研究思路,强大的复杂计算功能、固有的并行计算能力、高度动态特征以及具有空间概念等特征,使其在模拟空间复杂系统的时空演变方面具有很强的能力,在城市学研究中具有天然优势[9 15].本文将自组织理论引入CA模型,并将该模型首次应用于西安回民区这一复杂的相对独立的历史街区中,就是为了得出其在自组织的作用下,未来20年空间发展的变化模型,为城市规划的制定做出科学的预测.下面对西安回民区做一简单介绍. 西安回民区位于西安旧城中心的中西地段,东接西安历史文化遗产钟楼和北大街,西接洒金桥,南到西大街,北到莲湖路,面积约为93.4公顷,人口约为77600人,在此居住的居民中有43.6%以 第29卷第1期 西 安 工 业 大 学 学 报 V o l.29No.1 2009年02月 Jo urnal o f Xi!an T echnolo g ical U niver sity Feb.2009 *收稿日期:2008 06 04 基金资助:国家自然科学基金(50678149) 作者简介:杨大伟(1981 ),男,西安工业大学助教,西安建筑科技大学博士研究生,主要研究方向为城市空间复杂性. E mail:yangdaw ei@https://www.wendangku.net/doc/60809897.html,.

CA元胞自动机优化模型原代码

CA优化模型原代码: M=load(‘d:\ca\jlwm’) N=load(‘d:\ca\jlwn.asc’) lindishy=load(‘d:\ca\ldfj3.asc’) caodishy=load(‘d:\ca\cdfj3.asc’) gengdishy=load(‘d:\ca\htfj3.asc’) [m,n]=size(M); Xr=[1 1 -1 1 1 1 -1 -1 1 1;1 1 1 1 -1 -1 1 1 1 -1;-1 1 1 1 -1 -1 -1 1 -1 -1;1 1 1 1 1 1 -1 1 1 I; l -1 -1 1 1 -1 -1 -1 1 1;1 -1 -1 1 -1 1 -1 1 -1 -1;-1 1 -1 -1 -1 -1 1 -1 -1 -1;-1 1 1 1 -1 1 -1 1 -1 -1;1 1 -1 1 1 -1 -1 -1 1 1;1 -1 -1 1 1 -1 -1 -1 1 1]; caodi=0;lindi=0;gengdi=0; for i=1:m forj=l:n if M(i,j)==4 caodi=caodi+1; elseif M(i,j)==3 lindi=lindi+1; elseif M(i,j)==2 gengdi=gengdi+1; end end end for i=1:m for j=1:n if M(i,j)==4 if lindishy(i,j)>gengdishy(i,j) if lindishy(i,j)>caodishy(i,j) z=0; for P=max(1,i-1):min(i+1,m) for q=max(j-1,1):min(j+1,n) if (M(p,q)~=0)&&xr(M(p,q),3)==-1 z=1; end end end if z== 0 caodi=eaodi-1; M(i,j)=3; lindi=lindi+1; end elseif lindishy(i,j)==caodishy(i,j) caoditemp=0; linditemp=0; gengditemp=0;

燃料电池汽车的动力传动系统设计

燃料电池汽车的动力传动系统设计 1引言 燃料电池汽车是电动汽车的一种。 燃料电池发出的电,经逆变器、控制器等装置,给电动 机供电,再经传动系统、驱动桥等带动车轮转动 ,就可使车辆在路上行驶,燃料电池的能量转 换效率比内燃机要高 2-3倍。燃料电池的化学反应过程不会产生有害产物 ,因此燃料电池车 辆是无污染汽车。随着对汽车燃油经济性和环保的要求 ,汽车动力系统将从现在以汽油等化 石燃料为主慢慢过渡到混合动力 ,最终将完全由清洁的燃料电池车替代。 近几年来,燃料电池系统和燃料电池汽车技术已经取得了重大的进展。世界著名汽车制 造厂,如丰田、本田、通用、戴姆勒-克莱斯勒、日产和福特汽车公司已经开发了几代燃料电 池汽车,并宣布了各种将燃料电池汽车投向市场的战略目标。 目前,燃料电池轿车的样车正在 进行试验,以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。其中本 田的FCX Clarity 最高时速达到了 160 km/h[8];丰田燃料电池汽车 FCHV-adv 已经累计运行 了 360,000 km 的路试,能够在零下37度启动,一次加氢能够从大阪行驶到东京 (560公 里)。 在我国科技部的支持下,燃料电池汽车技术得到了迅速发展。 2007年,我国第四代燃料电池 轿车研制成功,该车最高时速达150 km/h,最大续驶里程319 km 。2008年,20燃料电池示范 汽车又 在北京奥运进行了示范运行。 2010年,包括上汽、奇瑞等国内汽车企业共有 196辆燃 料电池汽车在上海世博园区进行示范运行。 燃油绘济性 排放环保 l ;uel economic exhaust eih ironmen(al protection Internal combustion engine Shori peicxl Mid peitxl Long pei

制作生物细胞模型课稿

边做边学“制作真核细胞模型” “制作真核细胞模型”是普通高中课程标准实验教科书《分子与细胞》(苏教版)第三章的重点内容,《生物课程标准》中也明确“尝试建立真核细胞的模型”为具体内容标准。在学习了细胞的三大基本结构和细胞器的结构与功能的基础上,本节内容主要是通过让学生亲自动手制作真核细胞模型,使学生全面思考细胞的基本结构与功能特点,加深学生对细胞结构与功能的理解。针对细胞这样肉眼看不见的微观世界,力图让学生从枯燥的文字中摆脱出来,通过动手和思考使学生建构细胞模型,全面掌握细胞的基本知识,引导学生理解结构与功能的统一性。 新课改把“科学探究”作为基本理念的核心,提倡学生在“做中学”,需要学生通过在“做中学”、“学中做”的实践,达到“学做统一”,使“活动教学”与“讲授教学”相互融合,彼此促进。 细胞在电子显微镜下才能观察到它的微细结构,因而学生缺乏感性认识。因此,亲身体验模拟制作“细胞”的立体结构模型有助于在现有的实验条件下让细胞变“微观”为“宏观”,而更好地构建完整的知识体系。且能激发他们的求知欲,真正实现在“做中学”。 【三维学习目标】 1.知识目标:说出细胞的基本结构,阐明细胞器的功能。 2.能力目标:通过制作细胞结构模型,锻炼学生的逻辑思维能力和创新能力,培养学生的动手、思维、合作,交流和语言表达等能力。 3.情感态度价值观目标:认同结构与功能的统一性、细胞结构的统一性、局部与整体的关系。

【教学重点】制作真核细胞结构模型。 【教学重点】细胞基本结构的模型构建,结构与功能的统一性。 【教学方法】实验法、汇报总结、生生师生讨论。 【教学准备】学生准备细胞模型制作的材料(如:橡皮泥、水果等); 预制作的细胞模型等。 【教学设计思路】 导入时利用学生猎奇心理,利用北京自然博物馆中的“细胞屋”引起学生学习兴趣。结束时采用学生拼装,创设情景,使学生在潜移默化中领悟细胞结构与功能的统一性。力求使整个课堂变成学生主动建构知识、提高素质的过程。总体上体现教师主导、学生主体的新课改精神。 【教学过程】

交通流元胞自动机模型综述

第23卷 第1期2006年1月 公 路 交 通 科 技 Journal of Highway and Transportation Research and Development Vol .23 No .1 Jan .2006 文章编号:1002-0268(2006)01-0110-05 收稿日期:2004-09-27 作者简介:郑英力(1971-),女,福建宁德人,讲师,研究方向为交通控制与仿真.(z hengyl71@s ina .com ) 交通流元胞自动机模型综述 郑英力,翟润平,马社强 (中国人民公安大学 交通管理工程系,北京 102623) 摘要:随着交通流模拟的需要及智能交通系统的发展,出现了基于元胞自动机理论的交通流模型。交通流元胞自动机模型由一系列车辆运动应遵守的运动规则和交通规则组成,并且包含驾驶行为、外界干扰等随机变化规则。文章介绍了交通流元胞自动机模型的产生与发展,总结和评述了国内外各种元胞自动机模型,并对元胞自动机模型的发展提出展望。 关键词:元胞自动机;交通流;微观模拟;模型中图分类号:U491.1+23 文献标识码:A Survey of Cellular Automata Model of Traffic Flow ZH ENG Ying -li ,ZH AI Run -p ing ,MA She -q iang (Department of Traffic Management Engineering ,Chinese People 's Public Security University ,Beijing 102623,China )Abstract :With the increas ing demand of traffic flow si mulation and the development of ITS research ,the traffic flow model based on cellular automata has been developed .Cellular automata model of traffic flow incorporates a series of vehicle movement rules and traffic regulations .Meanwhile ,the model works under some stochastic rules takin g into consideration of drivers 'behaviors and ambient interfer -ences .This paper introduces the establishment and development of cellular automata model of traffic flow ,su mmarizes and comments on different kinds of typical cellular automata models of traffic flow ,and furthermore ,presents a new perspective for further stud y of the model . Key words :Cellular automata ;Traffic flow ;Microscopic simulation ;Model 0 引言 交通流理论是运用物理学和数学定律来描述交通特性的理论。经典的交通流模型主要有概率统计模 型、车辆跟驰模型、流体动力学模型、车辆排队模型等 [1] 。20世纪90年代,随着交通流模拟的需要及智 能交通系统的发展,人们开始尝试将物理学中的元胞自动机(Cellular Automata ,简称CA )理论应用到交通领域,出现了交通流元胞自动机模型。 交通流C A 模型的主要优点是:(1)模型简单,特别易于在计算机上实现。在建立模型时,将路段分 为若干个长度为L 的元胞,一个元胞对应一辆或几辆汽车,或是几个元胞对应一辆汽车,每个元胞的状态或空或是其容纳车辆的速度,每辆车都同时按照所建立的规则运动。这些规则由车辆运动应遵守的运动规则和交通规则组成,并且包含驾驶行为、外界干扰等随机变化规则。(2)能够再现各种复杂的交通现象,反映交通流特性。在模拟过程中人们通过考察元胞状态的变化,不仅可以得到每一辆车在任意时刻的速度、位移以及车头时距等参数,描述交通流的微观特性,还可以得到平均速度、密度、流量等参数,呈现交通流的宏观特性。

有限状态自动机模型

龙源期刊网 https://www.wendangku.net/doc/60809897.html, 有限状态自动机模型 作者:刘威 来源:《新课程·教师》2015年第09期 当我们用计算机进行问题的求解时,首先需要用适当的数据进行问题表示,然后再设计 相应的算法对这些数据进行变换处理来获得问题的求解结果。因此,对问题进行建模和形式化表示,然后进行处理是进行计算机求解的基本途径。数理逻辑、自动机理论给出了如何描述一些基本问题以及如何建立问题的抽象表示,并通过对这些抽象化的表示的性质和它的变化方法进行研究。这些模型都是问题数学模型的典范,给计算机问题求解提供了坚实的理论基础,是计算机求解问题的重要方法和思想。 计算机科学与技术学科是以数学和电子学科为基础发展起来的,一方面研究计算机领域 中的一些普遍规律,描述计算的基本概念与模型,其重点是描述现象、解释规律。另一方面是包括计算机硬件、软件的计算机系统设计和实现的工程技术,简单地说,计算机科学与技术学科通过在计算机上建立模型并模拟物理过程来进行科学调查和研究,它系统地研究信息描述和变换算法,主要包括信息描述和变换算法的理论、分析、效率、实现和应用。 所有问题的描述都要以计算机能识别的语言来实现,计算机语言的文法描述提供了生成 语言的手段,但是,对于语言句子的识别来说,我们需要一些识别语言的模型,我们可以称这种模型为语言的识别模型。这种识别模型应该满足必要的约束条件,首先模型具有有穷个状态,不同的状态代表不同的意义。按照实际的需要,模型可以在不同的状态下完成特定语言的识别。我们可以将输入数据中出现的符号组成一个字符的列表。模型将输入数据作为线性表来进行处理和变换。模型有一个初始的状态,它是系统的开始状态,系统在这个状态下开始进行问题的求解。模型中还有一些状态表示它到目前为止所读入的字符构成的字符串是模型从开始状态引导到这种状态的所有字符串构成的语言就是模型所能识别的输入。我们可以将此模型对应成有穷状态自动机的物理模型,在处理问题的时候,它可以接受一个关于问题的输入数据,数据以字符串的形式提供,我们把这些输入数据划分成一系列的小部分,每个部分由若干字符组成,为了不让输入数据量影响该模型对问题的处理,我们约定,输入数据从开始输入时的时间点开始处理,输入状态可以是无穷的,这就是说,从输入第一部分数据开始,输入端可以有任意长度的输入序列。而且,模型有一个有穷状态控制器,该控制器的状态只有有穷多个,并且规定,模型的每一个动作分为三步,读入待输入的字符,根据当前的状态和读入的字符改变有穷控制器的状态,读下一部分输入数据。计算机的各个组成部分,既包括硬件系统也包括软件系统,都可以对其进行形式化的定义,计算机的硬件系统包括中央处理器、存储器、外部设备,可以形式化地用一个三元组来描述,对计算机个各个硬件部分进行管理的软件的功能也可以用形式化的方法来描述,例如,操作系统的各个功能模块、处理器管理、线程调度、文件系统、设备驱动程序、网络通信管理、虚拟内存管理等都可以进行形式化的定义。有穷状态机就是进行这种形式化定义的模型,有穷状态机是一个五元组,分别是描述状态的有穷非空集合,它称为有穷状态机的一个状态,输入符号表,所有输入有穷状态机的关于问题的描述都是这个符号表中的符号组成的字符串。状态转换函数,表示有穷状态自动机在某一状态读入字符,将

元胞自动机NaSch模型及其MATLAB代码

元胞自动机N a S c h模型 及其M A T L A B代码 This manuscript was revised by the office on December 22, 2012

元胞自动机N a S c h模型及其M A T L A B代码 作业要求 根据前面的介绍,对NaSch模型编程并进行数值模拟: 模型参数取值:Lroad=1000,p=0.3,Vmax=5。 边界条件:周期性边界。 数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的结果。 基本图(流量-密度关系):需整个密度范围内的。 时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致,画500个时间步即可)。 指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思路。 流量计算方法: 密度=车辆数/路长; 流量flux=density×V_ave。 在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N; 流量flux=N/T。 在计算过程中可都使用无量纲的变量。 1、NaSch模型的介绍 作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。 时间、空间和车辆速度都被整数离散化。道路被划分为等距离的离散的格子,即元胞。 每个元胞或者是空的,或者被一辆车所占据。 车辆的速度可以在(0~Vmax)之间取值。 2、NaSch模型运行规则 在时刻t到时刻t+1的过程中按照下面的规则进行更新: (1)加速:vnmin(vn1,vmax) 规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。 (2)减速:vnmin(vn,dn) 规则(2)确保车辆不会与前车发生碰撞。 (3)随机慢化:以随机概率p进行慢化,令:vnmin(vn-1,0) 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为,又可以反映减速过程中的过度反应行为。这一规则也是堵塞自发产生的至关重要因素。 (4)位置更新:vnxnvn,车辆按照更新后的速度向前运动。其中vn,xn分别表示第n辆车位置和速度;l(l≥1)为车辆长度; p表示随机慢化概率;dnxn1xn1表示n车和前车n+1之间空的元胞数; vmax为最大速度。 3、NaSch模型实例

燃料电池的建模仿真

燃料电池的建模仿真 虚拟样机是燃料电池的开发研制中不可或缺的重要工具 燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。 图1 可拆分燃料电池的模型,可以作为手机电池实现多次充电。 如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,现在它已是能源、电力行业不得不正视的课题。 燃料电池具有很多电子产品的优越性能,其中最突出的是高效率和高能量密度。燃料电池可以将氢、天然气、碳氢化合物中的化学能高效的转化为电能,非常适用于汽车以及固定使用的小规模耗能产品。燃料电池又因为具有很高的能量密度,使得他比普通电池更适于可携带设备。 在大部分汽车发动机中,汽油将燃烧产生的热能转化为机械能,转化效率受到卡诺循环的限制,普通的汽车的转化效率只有20%左右。燃料驱动的车辆,燃料中的化学能首先转化为电能,然后通过电动机将电能转化为机械能。这个过程不可避免的要受到卡诺循环的限制,导致内燃机引擎效率只有20%左右。而燃料电池理论上转化效率可高达90%左右,要远远高于内燃机引擎的效率。在实际应用中,这个效率能达到50%。这意味着使用同样的燃料,燃料电池汽车行驶的距离将是普通汽车的两倍。二氧化碳的排放量也更低,燃料电池低的运转温度几乎可以消除氮、硫氧化物的产生。

基于元胞自动机原理的微观交通仿真模型

2005年5月重庆大学学报(自然科学版)May2005第28卷第5期Journal of Chongqing University(Natural Science Editi on)Vol.28 No.5 文章编号:1000-582X(2005)05-0086-04 基于元胞自动机原理的微观交通仿真模型3 孙 跃,余 嘉,胡友强,莫智锋 (重庆大学自动化学院,重庆 400030) 摘 要:描述了一种对高速路上的交通流仿真和预测的模型。该模型应用了元胞自动机原理对复杂的交通行为进行建模。这种基于元胞自动机的方法是将模拟的道路量离散为均匀的格子,时间也采用离散量,并采用有限的数字集。同时,在每个时间步长,每个格子通过车辆跟新算法来变换状态,车辆根据自定义的规则确定移动格子的数量。该方法使得在计算机上进行仿真运算更为可行。同时建立了跟车模型、车道变换的超车模型,并根据流程对新建的VP算法绘出时空图。提出了一个设想:将具备自学习的神经网络和仿真系统相结合,再根据安装在高速路上的传感器所获得的统计数据,系统能对几分钟以后的交通状态进行预测。 关键词:元胞自动机;交通仿真;数学模型 中图分类号:TP15;TP391.9文献标识码:A 1 元胞自动机 生物体的发育过程本质上是单细胞的自我复制过程,50年代初,计算机创始人著名数学家冯?诺依曼(Von Neu mann)曾希望通过特定的程序在计算机上实现类似于生物体发育中细胞的自我复制[1],为了避免当时电子管计算机技术的限制,提出了一个简单的模式。把一个长方形平面分成若干个网格,每一个格点表示一个细胞或系统的基元,它们的状态赋值为0或1,在网格中用空格或实格表示,在事先设定的规则下,细胞或基元的演化就用网格中的空格与实格的变动来描述。这样的模型就是元胞自动机(cellular aut omata)。 80年代,元胞自动机以其简单的模型方便地复制出复杂的现象或动态演化过程中的吸引子、自组织和混沌现象而引起了物理学家、计算机科学家对元胞自动机模型的极大兴趣[1]。一般来说,复杂系统由许多基本单元组成,当这些子系统或基元相互作用时,主要是邻近基元之间的相互作用,一个基元的状态演化受周围少数几个基元状态的影响。在相应的空间尺度上,基元间的相互作用往往是比较简单的确定性过程。用元胞自动机来模拟一个复杂系统时,时间被分成一系列离散的瞬间,空间被分成一种规则的格子,每个格子在简单情况下可取0或1状态,复杂一些的情况可以取多值。在每一个时间间隔,网格中的格点按照一定的规则同步地更新它的状态,这个规则由所模拟的实际系统的真实物理机制来确定。格点状态的更新由其自身和四周邻近格点在前一时刻的状态共同决定。不同的格子形状、不同的状态集和不同的操作规则将构成不同的元胞自动机。由于格子之间在空间关系不同,元胞自动机模型分为一维、二维、多维模型。在一维模型中,是把直线分成相等的许多等分,分别代表元胞或基元;二维模型是把平面分成许多正方形或六边形网格;三维是把空间划分出许多立体网格。一维模型是最简单的,也是最适合描述交通流在公路上的状态。 2 基于元胞自动机的交通仿真模型的优点目前,交通模型主要分为3类: 1)流体模型(Hydr odyna m ic Model),在宏观上,以流体的方式来描述交通状态; 2)跟车模型(Car-f oll owing Model),在微观上,描述单一车辆运动行为而建立的运动模型; 3)元胞自动机模型(Cellular Aut omat on),在微观 3收稿日期:2005-01-04 基金项目:重庆市自然科学基金项目(6972) 作者简介:孙跃(1960-),浙江温州人,重庆大学教授,博士,研究方向:微观交通仿真、电力电子技术、运动控制技术及系统。

元胞自动机NaSch模型及其MATLAB代码精修订

元胞自动机N a S c h模型及其M A T L A B代码 标准化管理部编码-[99968T-6889628-J68568-1689N]

元胞自动机N a S c h模型及其M A T L A B代码 作业要求 根据前面的介绍,对NaSch模型编程并进行数值模拟: 模型参数取值:Lroad=1000,p=0.3,Vmax=5。 边界条件:周期性边界。 数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的结果。 基本图(流量-密度关系):需整个密度范围内的。 时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致,画500个时间步即可)。 指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思路。 流量计算方法: 密度=车辆数/路长; 流量flux=density×V_ave。 在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N; 流量flux=N/T。 在计算过程中可都使用无量纲的变量。 1、NaSch模型的介绍 作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。 时间、空间和车辆速度都被整数离散化。道路被划分为等距离的离散的格子,即元胞。 每个元胞或者是空的,或者被一辆车所占据。 车辆的速度可以在(0~Vmax)之间取值。 2、NaSch模型运行规则 在时刻t到时刻t+1的过程中按照下面的规则进行更新: (1)加速:vnmin(vn1,vmax) 规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。 (2)减速:vnmin(vn,dn) 规则(2)确保车辆不会与前车发生碰撞。 (3)随机慢化:以随机概率p进行慢化,令:vnmin(vn-1,0) 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为,又可以反映减速过程中的过度反应行为。这一规则也是堵塞自发产生的至关重要因素。 (4)位置更新:vnxnvn,车辆按照更新后的速度向前运动。其中vn,xn分别表示第n辆车位置和速度;l(l≥1)为车辆长度; p表示随机慢化概率;dnxn1xn1表示n车和前车n+1之间空的元胞数; vmax为最大速度。 3、NaSch模型实例

尝试制作真核细胞三维结构模型(课堂参照)

“尝试制作真核细胞三维结构模型”的教学组织摘要模型构建活动是学生理解模型和领悟模型方法途径。通过教师充分的课前准备和课堂教学中的有效组织,学生以小组合作方式完成真核细胞的三维结构模型的制作、评价、修正完善、创意模型展示等活动,将抽象的真核细胞结构形象化,并将具有真实感和立体感的实物模型以简单而科学的形式呈现出来。而真核细胞结构概念图的构建则可以进一步让学生将具体化的模型抽象化,实现对真核细胞结构和功能认知过程中抽象化与具体化的辩证统一。 关键词真核细胞模型教学组织 理解模型和领悟模型方法是高中生物学课程标准的重要内容之一,而理解模型和领悟模型方法的重要途径是进行模型构建。“尝试制作真核细胞的三维结构模型”是学生在高中阶段生物学课程学习中的第1个模型建构活动,课标标准要求该活动必须做,且尽可能在课堂教学中完成。但是在实际教学中,课堂上安排该活动的教师不多。经调查,原因主要有:一是认为教学任务太重,模型建构活动太费时;二是认为学生人数太多,活动难以组织开展,且所需材料缺乏;所以即使是安排了模型构建,也是课后由学生自主构建,没有发挥模型构建应有的教育价值。本文根据教学实践,探讨如何解决时间、材料等问题,在课堂有限的时间里有效地组织真核细胞的模型建构活动,充分发挥模型构建活动的价值。 1 准备工作 课堂模型构建教学的成败关键在于课堂教学的组织,而课前的充分准备是有效课堂教学的前提。 1.1 学情分析 学生对真核细胞的结构和功能已有所了解,但在光学显微镜下,大部分细胞结构观察不到,学生缺乏感性认识,不能很好地理解细胞是一个有机的统一整体,各部分结构相互联系和协调。本活动不仅能让学生体验模型构建的方法,更重要的是在模型构建过程中进一步探究细胞的结构和功能,把握细胞结构的完整性及与其功能相适应的结构特点。学生第1 次进行过模型制作活动,对模型及模型方法不清楚,需要在教师的引导下完成。 1.2 制定教学目标 1)知识目标更好地构建核心概念即细胞作为最基本的生命系统,有细胞膜作为边界将细胞与外界隔离,细胞内部的各种结构协调配合,使细胞具有各种各样的功能。 2)能力目标运用所学知识,设计并制作真核细胞三维结构模型;根据所制作的模型构建真核细胞结构概念图。 情感态度价值观目标体验“模型法”在生物学研究中的作用;体验小组合作学习时的快乐等。 1.3 学生分组,并准备模型构建材料

基于元胞自动机模型的沙堆稳定模型建立

基于元胞自动机模型的沙堆稳定模型建立 摘要: 世界上任何一个有休闲海滩的地方,似乎都有人在海边建沙堡。不可避免地,海浪的流入和涨潮侵蚀了沙堡。然而,并非所有沙坑对波浪和潮汐的反应都是一 样的。本文旨在通过建立数学模型来建立更稳定的沙堡。 为了保持沙堡基础在波浪和潮汐作用下的稳定性,从结构力学和流体力学的 知识出发,有必要尽可能减轻水流对地基的影响,减少地基砂的损失,保证地基 的稳定。受鱼流线的启发,基座是由四分之一椭圆曲线和旋转180°的抛物线组成 的半旋转结构。建立了半旋转体D0的最大半径、四分之一椭圆的半长轴LE、抛 物线的水平投影长度LR、地基的总长度L和冲击力与地基体积的比值之间的函数 关系。采用最优模型求解地基的最小冲击力与体积比D0= 0.22L,LE=0.63L,LR= 0.37 L,是最佳的三维砂土地基模型。 利用元胞自动机模拟砂土地基的形成过程,对砂地基模型进行优化,以两个 砂桩的塌陷间隔长度为指标,测量砂桩基础的稳定性;从而确定了雨作用下沙基 基础最稳定的三维形状。 关键词:流线结构、元胞自动机模型 一、问题分析 我们针对海浪和潮汐对沙堆基础的影响分析中,我们主要考虑了来自侧向的 水流冲击力对基础的影响,此时保持沙堆基础稳定性的一大主要因素是沙堆水平 方向上的粘接力,如果将沙堆基础视为一个整体,那么基础整体与沙滩的水平向 摩擦力保持了沙堆基础的稳定性。而雨水对于沙堆的作用力主要表现垂直方向上 的冲击力,如果将沙堆基础视为一个整体,那么沙滩对沙堆垂直向上方向的支持 力作为保持沙堆基础稳定性的主要因素。由受力结构分析,第一问所建立的模型 为流线型结构,对雨水垂直向下的的作用有一定缓解作用,但显然不是抵抗雨水 的最优结构。 我们对上述模型进行优化,假设沙堆基础受到每一滴雨水的性质相同,那么 基础结构仍为半旋体结构,为了方便分析我们对沙堆基础的侧面进行分析。 二、模型建立 我们这里使用元胞自动机对沙堆模型进行模拟,从上至下掉落的沙粒将使沙 堆不断堆积,当达到一定的临界高度后沙堆即发生崩塌,我们认为崩塌后的沙堆 基础本身是一个比较稳定的结构,而两次崩塌之间的时间间隔的长度也就代表了 沙堆基础的稳定型结构。 假设元胞个体的堆积和崩塌的最微小的运动都发生在一个 4×4 的单元块内,每次将一个 4×4 的元胞块做统一处理。这个小单元的划分方式是:在每个周期,单元 区域分别向右和向下移动一格,在所有周期中循环这一过程,得到两次崩塌时间 间隔最长的模型。 我们假设雨水的性质都是相同的,因此抵抗雨水的最优沙基模型应为上述最稳定 模型绕中心竖轴旋转过后所形成的三维图形。 三、模型分析: 利用元胞自动机模拟砂堡基础的形成过程,计算两个坍塌时间,确定最稳定 的砂基模型。根据以上分析,我们将该模式的优缺点总结如下: 优点:根据相关公式和规律对问题进行了仿真分析,证明了模型的有效性;利用MATLAB软件对砂桩模型进行仿真,生动地展示了砂桩的形成过程;模型通过合

元胞自动机NaSch模型及其MATLAB代码

元胞自动机NaSch模型及其MATLAB代码 作业要求 根据前面的介绍,对NaSch模型编程并进行数值模拟: 模型参数取值:Lroad=1000,p=0.3,Vmax=5。 边界条件:周期性边界。 数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的结果。 基本图(流量-密度关系):需整个密度范围内的。 时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致, 画500个时间步即可)。 指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思路。流量计算方法: 密度=车辆数/路长; 流量flux=density×V_ave。 在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N; 流量flux=N/T。 在计算过程中可都使用无量纲的变量。 1、NaSch模型的介绍 作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。 时间、空间和车辆速度都被整数离散化。道路被划分为等距离的离散的格子,即元胞。 每个元胞或者是空的,或者被一辆车所占据。 车辆的速度可以在(0~Vmax)之间取值。 2、NaSch模型运行规则 在时刻t到时刻t+1的过程中按照下面的规则进行更新: (1)加速:vnmin(vn1,vmax) 规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。 (2)减速:vnmin(vn,dn) 规则(2)确保车辆不会与前车发生碰撞。 (3)随机慢化:以随机概率p进行慢化,令:vnmin(vn-1,0) 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为,又可以反映减速过程中的过度反应行为。这一规则也是堵塞自发产生的至关重要因素。 (4)位置更新:vn xn vn,车辆按照更新后的速度向前运动。其中vn,xn 分别表示第n辆车位置和速度;l(l≥1)为车辆长度; p表示随机慢化概率;dn xn 1 xn 1表示n车和前车n+1之间空的元胞数;vmax为最大速度。 3、NaSch模型实例 根据题目要求,模型参数取值:L=1000,p=0.3,Vmax=5,用matlab软件进行编程,扔掉前11000个时间步,统计了之后500个时间步数据,得到如下基本图和时空图。 3.1程序简介 初始化:在路段上,随机分配200个车辆,且随机速度为1-5之间。

制作动植物细胞模型

青少年科技教育是素质教育的一项重要内容。为了培养学生爱科学、学科学、用科学的良好品质,本人充分利用课余时间,结合生物教学的知识内容,选择学生感兴趣的动植物细胞模型制作专题,组织开展科技实践活动,收到了较好的科技教育效果。 一、课题的提出 按照素质教育和生本教育的理念,为了培育学生的科学素养,提高学生科技制作的动手操作能力,在学校的倡议下,本人从生物教学的角度选择了“动植物细胞模型制作”课题。 二、活动目的和意义 通过开展科技实践活动,培养学生的动手能力,开发学生的智力思维,通过制作细胞模型,提高学生的实践能力,培养团结合作精神。开展制作活动,可以加深学生对动植物细胞结构的认识和理解,并区分动植物细胞结构的异同。学生集体参与活动,可以激发学生学科学、爱科学、用科学的精神和科学探究的意识。 三、建立活动小组 1.指导老师:杜立蓉(主要职责是课题的选择、活动方案的制订、技术指导和制作过程的监管)。 2.小组组长:任少墉(主要负责组织学生参与实践活动、负责资料收集保管)。 3.小组成员:任少墉、杨子、支开伟、郑馨雨、刘畅、罗文芳(按照指导教师和小组长的分工安排,完成各自承担的制作任务)。 四、实践活动时间 1.查阅文献阶段(2014年9月5日至9月15日)。网上查阅有关细胞模型制作的文献资料,避免重复实验。根据教材内容选材,确定科技制作课题。 2.材料准备阶段(9月16日至9月28日)。根据课题需要,准备动植物细胞模型制作所需要的物资材料。 3.制作组装阶段(10月8日至10月25日)。在指导教师的组织下,科技制作小组全体学生,按照拟定的计划参与作品制作。 4.课题结题阶段(10月26日至11月4日)。通过现象观察、流程归纳、效果分析等手段,形成书面报告。 五、材料准备 1.食材类:清水、食用琼脂、海棠(或山楂青梅)制成的果脯等。 2.器皿类:小塑料食品袋、线、果冻盒、电炉、锅等。 六、实践活动实施过程 1.选拔科技制作小组成员。9月初,由我校卢永金老师在学生大会上做了科技制作的专题知识讲座。学生热情高涨,跃跃欲试,会后纷纷报名参加。在人选征集的过程中,每个学生都想参加此次实践活动,但条件有限,我们只能忍痛割爱,从中选择了6名优秀学生。 2.文献资料查阅。我们分组从网上和图书室查阅相关的资料,学习动植物细胞结构。根据网上和图书馆查阅相关书籍后,结合生物教材,制订出具体的科技制作方案。 3.小组讨论。在指导教师的带领下,小组学生充分讨论科技制作方案的可行性,选择具有实践价值和探究意义的知识方向,根据学校具备的教学工作条件,最终确定合适的科技制作课题。 4.小组成员分工,找到所需的材料。(1)任少墉、支开伟:负责找食用琼脂、海棠(或山楂、青梅)制成的果脯。(2)杨子、郑馨雨、刘畅、罗文芳:负责找小塑料食品袋、线、果冻盒。(3)指导老师:电炉、锅等器材准备。 5.制作与组装过程。(1)加热食用琼脂。这个任务由任少墉、支开伟、杨子三同学负责完成。先将水和食用琼脂加热成溶胶状,然后将部分胶状琼脂倒入小塑料袋。未用完的琼脂

相关文档