文档库 最新最全的文档下载
当前位置:文档库 › 用高灵敏度激光干涉仪测量Z-pinch喷气负载质量线密度

用高灵敏度激光干涉仪测量Z-pinch喷气负载质量线密度

用高灵敏度激光干涉仪测量Z-pinch喷气负载质量线密度
用高灵敏度激光干涉仪测量Z-pinch喷气负载质量线密度

第18卷第6期强激光与粒子束V o l.18,N o.6 2006年6月H I G H P OW E R L A S E R A N D P A R T I C L E B E AM S J u n.,2006

文章编号:1001-4322(2006)06-1049-04

用高灵敏度激光干涉仪测量Z-p i n c h

喷气负载质量线密度*

何安1,2,杨向东1,邓建军2,李业勋2,李丰平2,姜巍2,陈林2,邹杰2

(1.四川大学原子与分子物理研究所,成都610064;2.中国工程物理研究院流体物理研究所,四川绵阳621900)

摘要:介绍了采用外差式记录系统和相位跟踪方法建立的高灵敏度(0.2o)迈克尔逊激光干涉系统对Z-p i n c h喷气负载质量线密度的测量。通过采用充气隔振光学平台和将干涉仪放置到喷气真空室内等隔振方

法,有效地消除了机械振动对测量结果的影响,获得了拉瓦尔喷嘴产生的超音速A r气喷气负载平均质量线密

度随时间的变化曲线,为优化喷嘴理论设计程序提供了实验依据。气流稳态的建立时间可以用于精确控制喷

气装置电磁阀门的打开时刻,保证喷气Z-p i n c h实验中脉冲功率装置提供的脉冲电流与喷气负载平顶之间的

时间同步。

关键词:喷气Z-p i n c h;拉瓦尔喷嘴;迈克尔逊干涉仪;相位;质量线密度;负载

中图分类号:T H744.3;T L65文献标识码:A

喷气Z-p i n c h实验研究采用的气体负载为拉瓦尔喷嘴产生的超音速瞬态气流,气体密度通常为1015~1017 c m-3,初始位形和质量线密度直接影响到箍缩后等离子体的密度、温度和X-r a y产额[1],是一个重要的物理量,其测量结果用于校验喷嘴理论设计程序,为Z-p i n c h实验研究提供合适的气体负载质量线密度,让喷气时间与脉冲功率装置脉冲电流相匹配。

目前,用于测量超音速瞬态喷气流场密度分布的方法主要有激光诱导荧光法、压力探测针法、微型快速电离规法和激光干涉等方法[2-10],这些方法都存在一定的不足之处。Z-p i n c h气体负载密度的测量需要采用微小条纹相移检测法,该方法可以分为被动和主动(外差式)检测两种类型[11-13]。美国海军实验室采用外差检测法对等离子体断路开关中电子密度进行了测量[14],其干涉系统的灵敏度为0.5o(1.4×10-3λ)。由于喷气Z-p i n c h气体负载建立和维持的时间大致为1m s,气流位于真空环境中,真空机组的机械振动周期接近1m s,这种机械振动很难消除,法国[15]和日本[16]在测量Z-p i n c h气体负载密度时,只好将其作为本底来减除,这样处理对测量结果有较大的影响。美国科学研究实验室和海军实验室[17-18]通过将马赫-曾德激光干涉仪放置到真空室中,有效地消除了机械振动的影响,使干涉系统灵敏度达到10-5λ,很好地完成了对喷气负载密度的测量。由于上述两类方法的光路和数据处理都比较复杂,本实验采用外差式记录系统和相位跟踪方法建立了一种不需要复杂光路稳定措施的高灵敏度干涉系统,通过采用充气隔振光学平台和将迈克尔逊干涉仪放置到喷气真空室内等方法来消除机械振动对Z-p i n c h喷气负载质量线密度测量的影响。

1

测量原理

F i g.1S k e t c ho f g a s-p u f f

图1喷气示意图

拉瓦尔喷嘴所产生的超音速气体流场近似为空心圆柱壳体,如

图1所示,气流沿负z方向前进,激光束沿负y方向横穿气体壳层。

采用迈克尔逊干涉仪进行测量,激光束经过半反半透镜后分成测量臂和参考臂,测量臂的激光沿y方向来回两次穿过气体壳层,对于折射率为n的气体所引起的相位移动为

Δφ=4π

λ∫

B

A

[n(x,y,z)-1]d y=4π

λ

K∫B Aρ(x,y,z)d y(1)

式中:K为G l a d s t o n e-D a l e常数[19];λ为激光波长;积分限|A-B|

为激光实际穿过气体的厚度。

*收稿日期:2006-03-15;修订日期:2006-05-15

基金项目:国家自然科学基金资助课题(10574096);高等教育博士点基金资助课题(20050610010)

作者简介:何安(1964-),男,副研究员,博士研究生,主要从事脉冲功率技术研究;h e a n66@t o m.c o m。

通讯作者:杨向东,男,博士生导师,四川大学原子与分子物理研究所。

线积分密度为

N (z ,x )≡∫

B

A ρ(x ,y ,z )d y =

λ4π

K Δφ(2

) 定义气体质量线密度N

'(z )为N '(z )≡

∫D C

B

A

ρ(x ,y ,z )d y d x (3

) 对不同x 进行测量,

可以获得N '(z )。 分别用E 1,E 2和φ1,φ

2表示测量臂和参考臂激光的振幅和相位,探测器上测得的干涉信号强度为I =C 0ω2π∫

2π/

ω

[E 1c o s (ωt +φ1)+E 2c o s (ωt +φ2)

]2

d t (4

)若E 1≈E 2,(4

)式可写为I =C 02ωπ

E 21c o s 2(φ1-φ22)∫

2π/

ω

0c o s 2

(ωt +φ1+φ22)d t =C 0E 21[1+c o s (φ1-φ2)](5)式中:C 0为常数;φ1-φ

2为探测光与参考光之间的相位差,包含干涉仪的初始相位差φ0和待测物质引起的相位差φe 两部分,下面用φ0-φ

e 表示。 (

5)式由直流项和交流项两部分组成,对于这种形式的干涉信号,在实际测量中,由于本底信号的存在,直流项会发生改变,由此引起直流项与交流项振幅的不同,此外,由于随机干扰信号的存在,会增加一个随机干扰项I (t

),一般表示为I =I 1+I 2c o s (φ

0-φe )+I (t )(6

)F i g .2 S c h e m a t i c o f i n t e r f e r e n c e s i g

n a l 图

2

干涉信号示意图

干涉信号如图2所示,

周期一般为1m s 左右。 微小相移φe 《φ

0时,(6)式微分得δI ≈I 2δφe s i n φ

0(7

) 则信号相移为

δφ

e =δI I 22-I ヘ

2

4(8) 当初始相位调整为φ0=(

2k +1)π/2时,干涉仪处于最灵敏的位置,将δφ

e 式代入(2)式,得气体线积分密度N (z ,x )=∫

B

A ρ(x ,y ,z )d y =

λ4πK δI I 2

(9) 因此,测出I 2和δ

I 就可以获得气体线积分密度,并对不同x 进行测量,可获得(3)式中气体质量线密度N '(z )。本实验采用H e -N e 激光,λ=0.6328×10-4c m ,氩气K =0.175c m 3

/g

,当喷嘴负载质量线密度为50μ

g /c m 时,计算稳态时的平均相移为12.6o(3.5×10-2λ)。为了获得气流稳态建立过程中质量线密度随时间的变化曲线,要求测量系统具有更高的灵敏度;又由于比稳态平均相移量低1个数量级的气体密度对喷气Z -p

i n c h 实验影响很小,综合这两方面的因素,喷气实验负载质量线密度测量要求干涉仪的最低灵敏度大致为1.3o

。2 实验装置

实验中将迈克尔逊干涉仪固定在一个平板上并放置到真空喷气室内,喷气装置、激光器和光学元件放置在同一充气光学隔振平台上。测量光路和实验布局如图3所示。

干涉信号经Ф

100μm 多模光纤传输到电磁屏蔽室后,入射到工作在反向偏压下的P I N 光二级管(H a m a m a t s u 公司生产,型号S 5973,上升时间30n s ,电容2.4p F ,对632.8n m 激光灵敏度为0.4A /W )。采用100k Ω负载电阻,产生的电压信号用0.5m 低电容同轴电缆引入到10G T e k t r o n i 453示波器上。控制系统如图4所示,将示波器触发电平设置为φ0=(2k +1)π/2时的幅值,可以简便地实现对初始相位φ0=(2k +1)π

/2的锁定,其同步输出用来触发20k V 高压脉冲发生器,然后触发三电极气体开关,将电磁阀门打开。3 实验条件和结果

H

e -N e 激光器:HN 1200D 单模放大,功率45mW ,发散角小于0.7m r a d ,光斑尺寸Ф1.4m m ;电磁阀门电0

501强激光与粒子束

第18卷

F i g.3S k e t c ho f e x p e r i m e n t a l s e t u p

图3光路和实验装置示意图

;储气室A r气压力0.4M P a;激光束测量位置在z方向距离喷嘴出口10m m;喷嘴出口内外半径m和18m m。实验前测得初始干涉条纹的振幅为600m V,对应的I2为60μA,示波器能够测量1m V,对应的光电流变化量δI为0.2μA,这套干涉系统能够测量的最小相位移动量为δI/I2≈0够满足前面计算对干涉仪要求的最低灵敏度1.3o。

参考文献:

[1] V e l i k o v i c hA L ,C o c h r a nFL ,SD a v i s J .S u p p r e s s i o no fR a y l e i g h -T a y l o r i n s t a b i l i t y i nZ -p i n c h l o a d sw i t h t a i l o r e d d e n s i t yp r o f i l e s [J ].P h y

s R e vL e t t ,

1996,77:853-856.[2] L o m p r eL A ,F e r r a y M ,L r s q u oA ,e t a l .O p t i c a l d e t e r m i n a t i o no f t h e c h a r a c t e r i s t i c so f a p u l s e d -g a s j e t [J ].JA p p lP h y

s ,1988,63(5):1791-1793.

[3] K u e t h eA M.F o u n d a t i o n s o f a e r o d y

n a m i c s [M ].N e w Y o r k :A c a d e m i cP r e s s ,1959.[4] S m i t hRS ,O g g e t tW O ,R o t h I ,e t a l .S u p e r s o n i c g a s s h e l l f o r p u f f p i n c he x p e r i m e n t s [J ].A p p l P h y sL e t t ,1982,21(6):572-573.[5] V a l s a m a k i sE A.I o n i z a t i o n g a u g e f o r t r a n s i e n t g a s p r e s s u r em e a s u r e m e n t s [J ].R e v S c i I n s t r u m ,1966,37(10):1318-1320.[6] F i s h e rA ,M a k oF .F a s t v a l v e f o r g a s i n j

e c t i o n i n t ov a c u u m [J ].R e v S c i I n s t r u m ,1978,49(6):872-873.[7] 邹晓兵,王新新,罗承沐,等.喷气Z 箍缩负载的质量线密度确定[J ].强激光与粒子束,2002,14(3):473-475.(Z o uXB ,W a n g XX ,

L u o C M ,e t a l .L i n em a s s d e n s i t y m e a s u r e m e n t f o r g a s -p u f f Z -p i n c h l o a d .H i g hP o w e rL a s e r a n dP a r t i c l eB e a m s ,2002,14(3):473-475)[8] M

e r z k i r c h W.F l o wv i s u a l i z a t i o n [M ].N e w Y o r k :A c a d e m i cP r e s s ,1974.[9] B e h j a tA ,T a l l e n t sGJ ,N e e l y D.T h e c h a r a c t e r i z a t i o no

f ah i

g

h -d e n s

i t yg a s

j e t [J ].JP h y sD :A p p l P h y s ,1997,30(30):2872-2879.[10] 贺安之,阎大鹏.激光瞬态干涉度量学[

M ].北京:机械工业出版社,1993.(H u oA Z ,Y a nDP .T r a n s c i e n t l a s e r i n t e r f e r e n em e a s u r e -m e n t .B e i j i n g

:C h i n aM a c h i n eP r e s s ,1993)[11] G e b h a r d tFG ,S m i t hDC .K i n e t i c c o o l i n g o f a g a s b y a b s o r p t i o no fC O 2l a s e r r a d i a t i o n [J ].A p p l P h y sL e t t ,1972,20(3):129-132.[12] D a v i sCC .T r a c e d e t e c t i o n i n g a s e s u s i n gp h a s e f l u c t u a t i o no p t i c a l h e t e r o d y n e s p e c t r o s c o p y [J ].A p p l P h y sL e t t ,1980,36(7):515-518.[13] A v i sCC ,P e t u c h o w s k i SJ .P h a s e f l u c t u a t i o no p t i c a l h e t e r o d y n e s p e c t r o s c o p y o f g a s e s [J ].A p p l O p

t ,1981,20:2359-2554.[14] W e b e rBV ,H i n s h e l w o o dD D.H e -N e i n t e r f e r o m e t e r f o rd e n s i t y m e a s u r e m e n t s i n p l a s m ao p e n i n g s w i t c he x p

e r i m e n t s [J ].R e vS c iI n -s t r u m ,1992,63(10):5199-5201.

[15] B a r u i e r JN ,C h e v a l i e r JM ,D u b r o c aBD ,e t a l .G a s p u f f n o z z l e c h a r a c t e r i z a t i o nu s i n g i

n t e r f e r o m e t r i cm e t h o d s a n dn u m e r i c a l s i m u l a t i o n [J ].I E E ET r a n s a t i o n s o nP l a s m aS c i e n c e ,1998,26(4):1094-1099.

[16] K a t s u k i S ,M u r a y a m aK ,N i s h iT ,e t a l .I n f l u e n c eo f g a sd e n s i t y d i s t r i b u t i o no nt h e p i n c h p r o c e s s i n g a s -p u f fZ -p

i n c hs c h e m e [C ]//P r o -c e e d i n g o

f t h e 12t h I E E EI n t e r n a t i o n a l P u l s eP o w e rC o n f e r e n c e .1999:1067-1070.[17] W e b e rBV ,H i n s h e l w o o dDD ,C o m m i s s oRJ .I n t e r f e r o m e t r y o f f l a s h b o a r da n d c a b l e -

g u n p l a s m ao p e n i n g s

w i t c h e so n H a w k [J ].I E E E T r a n s a t i o n s o nP l a s m aS c i e n c e ,1997,25(2):189-195.

[18] W e b e rBV ,F u l g h u m l SF .Ah i g h s e n s i t i v i t y t w o -c o l o r i n t e r f e r o m e t e r f o r p u l s e d p o w e r p

l a s m a s [J ].R e v S c i I n s t r u m ,1997,68(2):1227-1232.

[19] L i d eDR.H a n d b o o ko f c h e m i s t r y a n d p h y

s i c s (74t he d i t i o n )[M ].B o c aR a t o n :C R CP r e s s ,1993.L i n em a s s -d e n s i t y m e a s u r e m e n t s o f g a s p u f fZ -p

i n c h l o a du s i n g h i g

h s e n s i t i v e l a s e r i n t e r f e r o m e t e r H E A n 1,

2, Y A N G X i a n g -d o n g 1, D E N GJ i a n -j

u n 2, L IY e -x u n 2

,L IF e n g -p i n g 2, J I A N G W e i 2, C H E NL i n 2, Z O UJ i e 2

(1.I n s t i t u t e o f A t o m i c a n d M o l e c u l a rP h y s i c s ,S i c h u a nU n i v e r s i t y ,C h e n g

d u 610064,C h i n a ;2.I n s t i t u t

e o

f F l u i dP h y s i c s ,C A E P ,P .O .B o x 919-108,M i a n y a n

g 6

21900,C h i n a ) A b s t r a c t : T h eh i g h s e n s i t i v e l a s e r i n t e r f e r o m e t e r o f c h e c k i n g m i n u t e n e s s p h a s e s h i f t 0.2ow a s b u i l t u s i n g t h ew a y o f h e t e r o -d y n e a n d p h a s e t r a c k .T h e l i n em a s s -d e n s i t y o f g a s p u f f Z -p i n c h l o a dw a sm e a s u r e d .T h e i n t e r r u p t i o no fm a c h i n e v i b r a t i o n t o i n -t e r f e r e n c e -s i g n a lw a s e l i m i n a t e db yp u t t i n g t h e i n t e r f e r o m e t e r i n t o t h e v a c u u mc h a m b e r a n d s e t t i n g t h e l a s e r a n dv a c u u mc h a m b e r a n do p t i c e l e m e n t s o n t h e f u l l g a s o p t i c a l p l a t f o r m.T h e c u r v e o f a v e r a g e l i n em a s s -d e n s i t y o fA r g a s l o a dv a r y i n g w i t h t i m ew a s o b t a i n e d .I t c a nb e u s e d t o o p t i m i z e t h eL a v a l e n o z z l e d e s i g n .T h e f o r m i n g t i m e o f g a s f l u i d s t a t i o n a r y s t a t e i s h e l p f u l f o r a d j u s t i n g t h e s y n c h r o n i z a t i o nb e t w e e n t h e o p e n i n g t i m e o f e l e c t r o m a g n e t i c v a l v e a n d t h e d r i v e c u r r e n t f r o m p u l s e p o w e r f a c i l i t i e s i nZ -p i n c h e x p

e r i m e n t . K e y w

o r d s : G a s p u f f Z -p i n c h ; L a v a l en o z z l e ; M i c h e l s o n -i n t e r f e r o m e t e r ; P h a s e ; L i n em a s s -d e n s i t y ; L o a d 2

501强激光与粒子束

第18卷

全站仪在使用中的误差

全站仪在使用中的误差 时间:2010-05-07 10:21:08 来源:本站作者:四眼我要投稿我要收藏投稿指南 随着现代高新技术的发展与运用,促使测绘工作正从传统的测绘技术手段向现代数字测绘过渡,全站仪在现代测绘工作中的应用比例也越来越大。因此,有必要对全站仪在使用过程中的误差产生及大小做分析。 全站仪是全站型电子速测仪的简称,它集电子经纬仪、光电测距仪和微电脑处理器于一体,因此,它也兼具经纬仪的测角误差和光电测距仪的测距误差性质。本文分别对这两项误差在城市测量中的大小进行分析,然后综合两方面的影响对地面点的点位误差进行分析与估算。最后单独分析全站仪的高程误差。 一、全站仪测图点位中误差分析 1、全站仪测角误差分析 检验合格的全站仪水平角观测的误差来源主要有: ①仪器本身的误差(系统误差)。这种误差一般可采用适当的观测方法来消除或减低其影响,但在全站仪测图中对角度的观测都是半测回,因此,这里还是要考虑其对测角精度的影响。分析仪器本身误差的主要依据是其厂家对仪器的标称精度,即野外一测回方向中误差M 标,由误差传播定律知,野外一测回测角中误差M1测= M 标,野外半测回测角中误差M 半测= M1测=2M 标。 ②仪器对中误差对水平角精度的影响,仪器对中误差对水平角精度的影响在《测量学》教材中有很详细的分析其公式为M 中= ρ e/ ×S AB/S1S2其中e 为偏心距,熟练的仪器操作人员在工作中的对中偏心距一般不会超过3mm ,这里取e=3mm 。S1在这里取全站仪测图时的设站点(图根点)至后视方向是(另一通视图根点)之间的距离,S2取全站仪设站点至待测地面点之间的规范限制的最大距离。由公式知,对中误差对水平角精度的影响与两目标之间的距离S AB成正比,即水平角在180 时影响最大,在本文讨论中只考虑其最大影响。 ③目标偏心误差对水平角测角的影响,《测量学》教材推导出的化式为m 偏= ρ /2× √ (e1/S1)2+(e2/S2)2,S1、S2的取法与对中误差中的取法相同,e1取仪器设站时照准后视方向的误差,此项误差一般不会超过5mm ,取e1=5mm ,e2取全站仪在测图中的照准待测点的偏差。因为常规测图中棱镜中心往往不可能与地面点位重合,偏差为棱镜的半径 R=50mm ,固取e2=50mm 因为对中误差与目标偏心误差均为“对中”性质的误差,就对中本身而言,它是偶然性的误差,而仪器一旦安置完毕,测它们就会同仪器本身误差一样同时对测站上的所有测角发生影响,根据误差传播定律,则测角中误差M β= 。 下面就以上分析,根据《城市测量规范》中给出的各比例测图,图根控制测量与各比例测图

激光干涉仪报告讲解

机械工程综合实 践 实验报告 课程名称机械工程综合实践 专业精密工程 指导教师彭小强 小组成员刘强14033006 谌贵阳 吴志明 实验日期2012.4.2—2011.6.25 国防科学技术大学机电工程与自动化学院

目录 1激光干涉仪 1.1激光干涉仪介绍 1.2激光干涉仪原理 2 激光干涉仪测量机床的直线度 2.1实验器材以及平台的搭建 2.2激光干涉仪的调试 2.3直线度的测量 3 激光干涉仪测量机床的重复定位精度3.1实验器材以及平台的搭建 3.2激光干涉仪的调试 3.3重复定位精度的测量 4 实验分析与总结

目录 一、实验目的与任务 (2) 二、实验内容与要求 (2) 三、实验条件与设备 (2) 四.实验原理 (3) 1.定位精度测量 (3) 2.直线度测量 (4) 五、实验步骤 (5) 1.设定激光测量系统 (5) 2.调整激光光束,使之与机器运动轴准直。 (5) 3.数据记录与数据处理 (6) 六、实验过程和结果 (8) 1.X轴定位精度 (8) 2.X轴直线度 (9) 3.误差分析 (11) 七、实验总结与体会 (14) 1.实验总结 (14) 2.实验心得体会 (14) 3.对课程的一些建议 (14)

综合实践3 伺服系统运动精度建模与评价 一、实验目的与任务 通过对三轴机床的X轴进行定位误差实验,使学生掌握一般机构空间运动精度的测量与分析评价方法。主要内容包括了解双频激光干涉仪测量位移的基本原理,掌握利用双频激光干涉仪测量机床进给轴的定位误差的方法,深刻理解轴运动的精度的概念。在对机床进给轴运动定位误差测量的基础上,分析机床的运动误差。 二、实验内容与要求 (1)直线轴运动误差测量。利用双频激光干涉仪建立直线轴定位精度、直线度、姿态误差的测量系统,并对机床典型三维进给机构各轴的运动误差进行测量,分析测量结果的不确定度; (2)垂直度测量。任选进给机构两轴,利用双频激光干涉仪建立两轴垂直度的测量系统,并对垂直度进行测量,并对测量结果进行评价; (3)典型三维进给机构的精度建模。在分析多轴进给机构拓扑结构的基础上,用多体系统理论和变分法建立多轴进给机构运动空间各点的运动误差传递模型; (4)典型三维进给机构的精度分析与评价。在测量得到的进给机构轴运动误差的基础上,利用所建立的精度模型,对机构的典型运动轨迹如直线、圆弧、平面等的运动误差进行分析,并对分析结果的不确定度进行评价。 三、实验条件与设备 双频激光干涉仪,含直线度、定位精度测量组件。具体如图1所示。 (图1 定位精度测量组件直线度测量组件)

全站仪测量误差分析

全站仪测量误差分析 随着新仪器新设备的不断出现,测量技术的不断提高,同时对工程质量的要求也是愈来愈高,这就对精度的要求加强了许多,随着全站仪在施工放样中的广泛应用,为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在测量放样中的误差及其注意事项进行分析。 在我们建筑施工测量中,全站仪主要是用于测量坐标点位的控制和高程的控制,在以下几个方面对全站仪放样的误差作简要概述。 1、全站仪在施工放样中坐标点的误差分析 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测 角精度以及外界的影响等。 式(3)表明,对固定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站O。因此对每一个放样控制点O,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 2、全站仪在控制三角高程上的误差分析 一般情况下,在测量高程时方法为:设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA±HAB得到B点的高程HB。 当A、B两点距离较短时,用上述方法较为合适。 在较长距离测量时要考虑地球曲率和大气折光对高差的影响。 设仪器高为i,棱镜高度为l,测得两点间的斜距为S,竖直角α,则AB两点的高差为: 一般情况下,当两点距离大于400m时须考虑地球曲率及大气折光的影响,在高差计算时需加两差改正。 式中R为地球曲率半径,取6371km, k为大气折光差系数,k=1-2RC (C为球气差,C=0.43D2/R,D:两点间水平距离)。 从上式中可以看出,当距离较远时,影响高差精度的主要因素就是地球曲率及大气折光,如果高程传递次数较多,累计误差就会加大,在测量时,最好是一次传递高程,若有需要,往返测高程,取其平均值以减小误差。 (1)、地球曲率改正 以水平面代替椭球面时,地球曲率对高差有较大的影响,测量中,采取视距离相等,消除其影响。三角高程测量是用计算影响值加以改正。地球曲率引起的高差误差,按下式计算 P=D2 /2R (2)、大气折光改正 一般情况下,视线通过密度不同的大气层时,将发生连续折射,形成向下弯曲的曲线。视线读数与理论位值读数产生一个差值,这就是大气光引起的高差误差。按下式计算 r =D2 /14R

大影响激光干涉仪测量精度的因素完整版

大影响激光干涉仪测量 精度的因素 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

6大激光干涉仪影响因素,提高数控机床检测准确度全靠它了! 激光干涉仪是精度最高的线性位移测量仪器,其光波可以直接对米进行定义,可溯源至国家标准,通过与不同的光学组件结合,可以实现对各类机床的线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析,在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。 但是我们在使用中往往会出现检测偏离值,偏离我们的预估,以至于在高精度检测时,对设备产生怀疑。今天我们来扒一扒引起激光干涉仪测量误差的部分原因。 因测量光学镜组的安装高度不在被测设备的运动轴上引起的测量误差称之为阿贝误差。产生的原因是设备移动时存在俯仰、扭摆差,因此光学镜组与运动轴偏置距离越远,引起的阿贝误差越大。 角度、偏置距离引起的误差表(单位:um) 上表可得:角度1″在500mm偏置距离下引起的误差大约是2.40um。 来个实际案例:以检测机床时不同安装高度为具体说明。

线性镜组安装距工作台10cm: 线性镜组安装距工作台30cm 线性镜组安装距工作台50cm 实验结果:按GB/T17421.2《机床检验通则》2000版分析标准得出结果,镜组安装高度偏离设备运动轴线越远,检测结果中重复精度以及定位精度就越差。 正确方式:设备校准时线性镜组的安装高度应该尽量靠近被测轴,使激光光束与运动轴重合(或尽量靠近),减小阿贝误差。 扩展:SJ6000激光干涉仪用户在进行两台同类设备定位精度的对比时,应该进行同轴比对,即共用线性镜组,这样才具有可比性。 环境补偿单元能准确采集空气温度、压力、相对湿度信息,基于Edlen公式计算空气折射率,以此对激光波长进行补偿。

全站仪在施工测量放样中的误差及其注意事项

全站仪在施工测量放样中的误差及其注意事项 目前,随着科学技术的发展,全站仪已经相当普及而且不断向智能化方向发展,全站仪以其高度自动化和准确快捷的定位功能在目前工程测量中广泛应用。许多新技术运用到全站仪的制造和使用当中,如无反射棱镜测距、目标自动识别与瞄准、动态目标自动跟踪、无线遥控、用户编程、联机控制等。为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在施工测量放样中的误差及其注意事项进行探讨。 1仪器精度的选择 为了能够满足施工中测量精度,应该严格按照有关规范和设计技术文件规定的测角和测距精度要求匹配的原则进行仪器选用: mβ/(ρ)≈mS/S或mγ/ρ≈ms/S 式中mβ、mγ为相应等级控制网的测角中误差、方向中误差,(″);ms为测距中误差,m;S为测距边长,m;ρ为常数,ρ=206265″。 例如:使用的测距仪标称精度为±(5mm+5×10-6S),平均测距长度S为按 500m计,按照精度匹配原则有:mγ=ms/S×ρ=5P500000×206265=2″,因此,当 使用的测距仪标称精度为±(5mm+5×10-6S)时,应选用测角精度为2″级经纬仪。 2全站仪在施工放样中坐标点的精度估算 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差 ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: Mp=± (1) 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误

差、仪器本身的测角精度以及外界的影响等。 由式(1)可得S2=[(M2P-m2s)×ρ2]/m2β (2) 顾及s2=(Xi-XA)2+(Yi-YA)2 因此(Xi-XA)2+(Yi-YA)2=(M2p-m2s)/(mβ/ρ)2 (3) 式(3)表明,对一定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站A。因此对每一个放样控制点A,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 3全站仪三角高程的精度估算 设仪器高为i,棱镜高度为l,测距仪测得两点间的斜距为 S,竖直角α,则AB两点的高差为: hAB=Ssinα+i-l (4) 式(4)是假设的水平面来起算的,实际上,高程的起算面是平均海水面。因此,在较长距离测量时要考虑地球曲率和大气折光对高差的影响,在高差计算中加两差改正,即: hAB=Ssinα+i-l+h球+h气 =Ssina+i-l+s2/(2R)-k2s/(2R) (5) 式中R为地球曲率半径,取6371km,h球、h气为大气折光系数。一般来说,两差改正很小,当两点间的距离小于400m时,可以不考虑。 由式(5)可知: m2h=m2ssin2α+(s/ρ)2m2a+[s2/(2R)]2m2k+m2i+m2l (6) 由于α角一般比较大,因此,测距误差ms对测定高差的影响不是主要的,若采用对中杆,仪器和棱镜高的测量误差mi,ml大约为1mm,竖直角的观测误差mɑ

激光干涉仪测量三坐标示值误差方法步骤

激光干涉仪测量三坐标示值误差方法步骤 仪器的校准是产品控制的重要一环。随着三坐标测量机的不断发展,传统的校准方法已经无法满足一些大型三坐标测量机的校准工作。JJF1064-2010《坐标测量机校准规范》是我国各计量技术机构及校准实验室对三坐标测量机进行校准的唯一技术依据。JJF 1064-2010中规定,在实物标准器无法满足测量要求时,可使用激光干涉仪进行位置示值误差测量,并且测量可以只在使用尺寸实物标准器不能满足要求的轴向进行。关于尺寸实物标准器的要求中有“在尺寸实物标准器的最大长度无法达到空间对角线的66%时,可以增加测量位置或使用激光干涉仪进行位置示值误差测量”的规定。 激光干涉仪测量三坐标测量机 本文以深圳中图仪器公司的SJ6000激光干涉仪为例,因其具有极高的测量准确度、广泛的用途度,能够实现准确定位、距离测量、重复性测量等任务。激光干涉仪的示值误差直接影响对三坐标测量机示值误差的校准结果,因此要尝试各种不同的校准试验方法,尽量避免或减少由激光干涉仪的激光友生器(以下简称激光器)、XC80环境补偿系统、夹持器组、线性长度测量镜组、重负荷三脚架等引入的测量误差。 1.测量系统的建立 选择工作状态良好、稳定、测量数据准确可靠的三坐标测量机为被测对象,其测量范围为X轴方向0~ 900 mm;Y轴方向0~1600 mm;Z轴方向0~ 800 mm。在稳定的温度、湿度和大气压测量环境中,选用双频激光干涉仪对三坐标测量机进行校准试验。校准试验过程如下:确立试验方法和步骤,建立测量模型(包括如何减小激光干涉仪引入的各项误差),通过线位移法,按照试验流程图1进行校准试验,最后得到测量结果。 校准过程中首先对三坐标测量机X、Y、Z坐标轴上的移动距离进行测量,并将三坐标测量机的示值与激光干涉仪的示值进行比对,得到三坐标测量机的示值误差。因为在三个坐标轴方向上的测量过程类似,而在Y方向的测量范围为0~1 600 mm,是本次试验对象中测量范围最大的一个方向,用标准实物量具无法有效测量Y轴全量程的示值误差,所以Y轴是本次试验中最有效的一个测量轴方位。本次试验仅对Y轴的测量进行详细说明。

激光干涉仪软硬件介绍讲解

激光干涉仪软硬件介绍 本次试验我们使用的仪器为:Renishaw 激光器测量系统。 这个系统由“软件”与“硬件”两个部分组成,所以我们认识他,就是搞清楚各是什么硬件和软件。 看到这个章节时,可定有人会问还有什么硬软件之分的吗?答案是肯定的! 先问大家一个问题:只有躯体的人就是一个正常的人吗?答案是否定的! 一个正常的人不但须要一个实实在在的躯体,还需要由看不见的意识性的东西——思想的存在! 3.1 激光干涉仪是由什么硬件组成 3.1.1 什么是硬件? 硬件:硬件就是我们看到的一堆由金属、塑料等材料堆成的被称之为“Renishaw 激光干涉仪”的东西(事实上,它是由一些机壳和电路板等物构成)。因为是一些看得见、摸得着的东西,又因为都是“硬”的,所以被人们形象地称为“硬件”。 3.1.2具体硬件名称以及各自的用途是什么? 一、本次使用激光检测仪主要检测螺距误差,因此我们主要使用到以下的仪器: (1)ML10 激光器 Renishaw ML10 Gold Standard 激光器

以上四个图案为激光罩在不同的状态下的作用 A)无光束射出 B)缩小横截面光束及目标 C)最答光束及目标 D)标准测量位置射出最大光来的横截面以及反射光束的探测器孔Renishaw ML10 Gold Standard 激光器:

ML10 是一种单频 HeNe 激光器,内含对输出激光束稳频的电子线路及对由测量光学镜产生的干涉条纹进行细分和计数处理。 其主要作用简单概括为:发射红外线以及返收红外线供特定的软件做分析,记录相关的数据。 (2)三脚架

三脚架及云台可用来安装 ML10 激光器,将 ML10 激光器设置在不同的高度,并充分控制 ML10 激光束的准直。对于大多数机床校准设置,建议将 ML10 激光器安装在三脚架和云台上。 三脚架、安装云台和 ML10 激光器三合一体,可为 ML10 光束准直提供下列调整:高度调整 水平平移调整 角度偏转偏转调整 角度俯仰调整 其中高度调整是由图9上显示的高度曲柄控制的,水平平移是由图2上显示的平移控制旋钮控制,角度偏转偏移是由图2上显示的旋转微调旋钮控制。图2后的两个示意图为水平平移和角度偏移的使用方法。 (3)EC10 环境补偿装置

平面度的测量分解

平面度测量 工作单位:广东技术师范学院机电学院机械精度检测实验室作者:刘涵章关键词:平面度平面度误差三远点法三角形准则对角线准则对角线法 目录 一、什么是平面度 二、平面度误差值的各种评定方法 三、误差值评定的步骤: 四、实验教学中的实验仪器和实验步骤: 五、平面度误差值的各种评定方法应用举例 六、总结

一、什么是平面度 首先谈一谈什么是平面度,平面度就是实际平面相对理想平面的变动量。换句话说,就是被测平面具有的宏观凹凸高度相对理想平面的偏差。也可以说成是平整程度。 平面度公差是实际表面对平面所允许的最大变动量。也就是用以限制实际表面加工误差所允许的变动范围。这个变动范围可以在图样上给出。(可以插入一个图) 二、平面度误差值的各种评定方法 1. 最小区域判别准则: 由两个平行平面包容实际被测平面S时,S上至少有四个极点分别与这两个平行平面接触,且满足下列条件之一:(1)至少有三个高(低)极点与一个平面接触,有一个低(高)极点与另一个平面接触,并且这一个极点的投影落在上述三个极点连成的三角形内(三角形准则);(2)至少有两个高极点和两个低级点分别与这两个平行平面接触,并且高极点连线和低极点连线在空间呈交叉状态(交叉准则);这两个平行平面之间的区域即为最小区域,该区域的宽度即为符合定义的平面度误差值。就是最高点与最低点的差值。如下图所示: 2.三远点平面法和对角线平面法: 平面度误差值还可以用对角线平面法和三远点法评定。对角线平面法是指以通过实际被测平面一条对角线(两个角点的连线)且平行另一条对角线(其余两个角点的连线)的平面作为评定基准,取各测点相对于它的偏离值中最大偏离值(正值或零)与最小偏离值(零或负值)之差作为平面误差值。 三远点平面法是指以通过被测平面上相距最远的三个点构成的平面作为评定基准,取各测点相对于它的偏离值中最大偏离值(正值或零)与最小偏离值(零或负值)之值差作为平面度误差值。应当指出,由于从实际被测平面上选取相距最远的三个点有多种可能,因此按三远点平面法评定的平面度误差值不是唯一的,有时候差别颇大。 评定过程就是根据上述判别准则去寻找符合最小条件的理想平面位置的过程。可有多种数据处理方法,其中旋转法为最基本的方法。此法适用于前述各种测量方法获得的统一坐标值的数据处理。 三、误差值评定的步骤:

全站仪校正方法

全站仪校正方法 1,长气泡:首先将气泡平行于两脚螺旋,假设为0度方向,再调平。再旋转90度使气泡垂直于第三个脚螺旋再调平。然后回到0度位置看是否居中,如不居中照之前方法重来,再90度方向看是否居中,如不平如前一样。要是这两方向都平就旋转至180度方向。看气泡是否居中,是则不用校,不是则要校。其方法如下(首先看差多少,再确定差的一半距离。再通过调校正螺丝使其改正一半。在调的时候始终把握这样一个观念气泡在那边就那边高,校正螺丝是顺时针升高,逆时针降低。只把握住这点不管校正螺丝在左边还是右边都可照此做。上面做完之后回到0度位置。看是否居中,如不居中照以上方法重来。) 2,圆气泡:这项是在长气泡完好的基础上做的,首先将长气泡调平,这里是指各方向都已平了。然后看圆气泡是否居中,如不是则通过调气泡下面三颗螺丝将其调平。当然这里面有经验,总之在保证各螺丝既紧又能使其居中。一般哪边高就调哪颗。 3,对中器:这项相对以上要难点。书上说是首先要将仪器调平,但经验告诉不必这么做,因为我们这是在校对中器。将仪器架好之后,我们假设0度方向,把对中器对准地面一个目标,目标越小越好。最好是自己做个十字点。然后旋转180度,看是否对中,如不是则要校。这是只说全站及电经,光经比较难而且实用性不大。首先打对中器护盖看到四颗螺丝。再看对中器的十字丝或者小圆点在地面目标的哪边。例如在上边就松上面那颗螺丝,紧下面那颗。在这里请注意,也只是改一半,调到差距一半即可。同理左边就松左边紧右边。其它方向按此理推。然后旋转至0度位置看是否居中,如不是照止方法重做。(注意,一般几个螺丝都会动才行。但基本方法都是如此。但这只针对于对中器是正镜才这样调,倒镜反之。国产仪器及日本仪器都是这样的。) 4,2C值校正:首先将仪器整平,在20米外贴一十字丝。先在盘左照准目标再置0,再旋转180度盘右照准目标读数,正常情况是180度正负15秒。如不是就要校正,最好是这样多做几次以确定误差到底有多大,然后通过水平微动改误码差一半,这时十与目标不重合,十字丝在目标左边就松左边紧右边,反之松右边紧左边。再回到盘左按之前方法重来。反复几次看误差是否达到允许范围。(这是水平角} 5,I角校正:仪器调平,打开补偿器,这中是针对于有补偿器的全站及电子经纬仪的。这类仪器都是自动校正的,只需我们按步骤做就行。盘左照准目标读垂直角,再盘右位置读垂直角。然后盘左加盘右看是否是360正负15秒。如不是则需校正。方法如下: 关机然后电源加F1开机,(电源和F1同时按下,但电源只按将近不到1秒钟就行,F1不放)进入仪器校正模式,按F1垂直角校正,千万不要按F2。再过0盘左照准目标按回车, 盘右照准目标按回车,校正完毕。自己再按最先的方法再做几次看是否在允许范围内。 一台仪器如全站其校正指标共十项,但条件限制一般野外只能校正五项,以上方法也不一定全对,但很多是经验之谈。望共同学习。

大影响激光干涉仪测量精度的因素

大影响激光干涉仪测量 精度的因素精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

6大激光干涉仪影响因素,提高数控机床检测准确度全靠它了! 激光干涉仪是精度最高的线性位移测量仪器,其光波可以直接对米进行定义,可溯源至国家标准,通过与不同的光学组件结合,可以实现对各类机床的线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析,在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。 但是我们在使用中往往会出现检测偏离值,偏离我们的预估,以至于在高精度检测时,对设备产生怀疑。今天我们来扒一扒引起激光干涉仪测量误差的部分原因。 因测量光学镜组的安装高度不在被测设备的运动轴上引起的测量误差称之为阿贝误差。产生的原因是设备移动时存在俯仰、扭摆差,因此光学镜组与运动轴偏置距离越远,引起的阿贝误差越大。 角度、偏置距离引起的误差表(单位:um)

上表可得:角度1″在500mm偏置距离下引起的误差大约是。 来个实际案例:以检测机床时不同安装高度为具体说明。 线性镜组安装距工作台10cm: 线性镜组安装距工作台30cm 线性镜组安装距工作台50cm 实验结果:按GB/《机床检验通则》2000版分析标准得出结果,镜组安装高度偏离设备运动轴线越远,检测结果中重复精度以及定位精度就越差。

正确方式:设备校准时线性镜组的安装高度应该尽量靠近被测轴,使激光光束与运动轴重合(或尽量靠近),减小阿贝误差。 扩展:SJ6000激光干涉仪用户在进行两台同类设备定位精度的对比时,应该进行同轴比对,即共用线性镜组,这样才具有可比性。 环境补偿单元能准确采集空气温度、压力、相对湿度信息,基于Edlen公式计算空气折射率,以此对激光波长进行补偿。 1000mm示值因环境温度、压力、空气湿度各自变化引起的示值变化量(单位:um)

激光干涉仪使用技巧讲解

厨 f静堂鸯溅斌技术)2007亭第弘誊第{O麓 激光干涉仪使用技巧 Precise G口洫to Vsine a Laser Interferometer 魏纯 (广州市计最检测技术研究院,广东广州510030) 瓣萎:本文讨论了激光予涉仪在使用巾的准直等技礴,用户在实际使用中增加葺芒件以及维护巾邋蓟的同舔。燕键词:激光平涉仪;准直 l引言高性能激光干涉仪具有快速、高准确测量的优点,是校准数字机床、坐标测量机及其它定位装置精度及线性指标最常用的标准仪器,弦者所在单位使用的是英国RENISHAW公闭生产的MLl0激光干涉仪,具有性能稳定,使罱方便等特点。 通过较长时闯使用,作者认为测量人员除了要考虑环境、温度、原理等影响测量的常规因素外,掌握一些激光干涉仪的使用技巧会使测量互作事半功倍。 2原理介绍

MLl0激光干涉仪是根据光学千涉基本原理设计磊成酌。从MLl0激光器射出的激光束有单一频率,其标称波长隽0.633pLIn,且其长期波长稳定健(真空状态)要高于0.1ppm。当此光束抵达偏振分光镜时,会被分为两道光束一一道反射光糯一道透射光。这两道光射向其反光镜,然后透过分光镜反射圈去,在激光头内的探测器形成一道干涉光束。若光程差没有任俺变讫,探测器会在樵长性秘楣潢性于涉的两极找到稳定的信号。若光程差确实有变化,探测器会在 每一次光程改变时,在相长性和相消性干涉的弼极找 到变动的信号。这些变化(援格)会被计算并用来测量两个光程闻的差异变化。测量的光程就是栅格数乘以光束大约一半的波长。 值褥注意的是,激光束的波长取决于所通过敖空气折射率。由于空气折射率会随着温度、压力和相对湿度而变化,用来计算测蹩值的波长值可能需要加以李}偿,以配合这魍环境参数豹改变。实际上就测量准确度而言,此类补偿在进行线性位移(定位精度)测量,特别是量程较大时,非常重要。3激光干涉仪使用技巧 3.1 Z轴激光光路快速准直方法 用激光干涉仪进行线性测量时,无论是数字机 床、还是坐标测燮枫,z轴测量酵激光光路的礁童榻对X、Y轴准直来说,要困难的多。尤其是在z轴距离较长的情况下,要保证激光光束经反射镜反射后回到激 先探测器的强度满足测量对对光强的要求,准妻激光光路往往需要很长时间。 根据作者长期使用的经验,按照“离处动尾部,低处动整体”的调整方法,将会大大缩短漆直时闻。(“尾部”是指MLl0激光器电源接口边上的倾斜度调蹩旋钮和三兔架云台上的旋转微调控制旋锂,“整体”是指三

激光干涉仪如何测量五轴机床的垂直度误差

激光干涉仪如何测量五轴机床的垂直度误差SJ6000激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在SJ6000激光干涉仪动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。

SJ6000激光干涉仪典型应用就是数控机床精度测量,本文讲解如何用激光干涉仪测量五轴机床的垂直度误差。 对于三根平移轴而言,其轴间误差即垂直度误差有三个:xy ε、z x ε和yz ε。激光干涉仪测量垂直度误差的根本原理是与直线度测量原理一致。它是通过一个共同的基准来测量两个垂直的轴的直线度从而实现垂直度的测量。这个共同的基准就是直线度反射镜,因此在整个测量过程中,它相对于工作台不可移动,不可调整,如下所示。图中的方块就是光学直角器,它用来保证在测量第一个轴时的激光光束完全垂直于第二个轴测量时的激光光束。

垂直度测量配置主要由SJ6000主机、短直线度镜组(或长直线度镜组)、垂直度镜组(含光学直角尺)、SJ6000静态测量软件等组件构成。 附:SJ6000激光干涉仪垂直度测量精度。 轴向量程测量范围测量精度分辨力 短距离(0.1~3.0)m±3/M±(2.5+0.25%R+0.8M)0.01μm/m 长距离(1.0~15.0)m±3/M±(2.5+2.5%R+0.08M)0.01μm/m 注:R为垂直度结果;M为测量距离,单位:m

激光干涉仪如何对光

激光干涉仪概述 SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(约6分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。 SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,为机床误差修正提供依据。 激光干涉仪原理

激光器发射单一频率光束射入线性干涉镜,然后分成两道光束,一道光束(参考光束)射向连接分光镜的反射镜,而第二道透射光束(测量光束)则通过分光镜射入第二个反射镜,这两道光束再反射回到分光镜,重新汇聚之后返回激光器,其中会有一个探测器监控两道光束之间的干涉(见图)。若光程差没有变化时,探测器会在相长性和相消性干涉的两极之间找到稳定的信号。 若光程差有变化时,探测器会在每一次光程变化时,在相长性和相消性干涉的两极之间找到变化信号,这些变化会被计算并用来测量两个光程之间的差异变化。 激光干涉仪功能 1.几何精度检测可用于检测直线度、垂直度、俯仰与偏摆、平面度、平行度等; 2.位置精度的检测及其自动补偿可检测数控机床定位精度、重复定位精度、微量位移精度等; 3.动态性能检测利用动态特性测量与评估软件,可用激光干涉仪进行机床振动测试与分析,滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析,导轨的动态特性(低速爬行)分析。

全站仪在测量中的误差分析

全站仪在测量中的误差分析 刘松----------兰渝铁路LY12标 摘要:随着社会经济和科学技术不断发展,测绘技术水平也相应地得到了迅速提高。测量放样仪器的更新大幅度的提高了放样精度,根据全站仪的工作原理,分析全站仪坐标放样误差产生的原因及其改正方法,以此提高测量精度,保证工程质量。 关键词:全站仪、精度、放样、误差 伴着十二五时期经济发展的指导思想,铁路、高速公路建设在我国迅速发展,同时对工程质量的要求也是愈来愈高,这就对精度的要求加强了许多,随着全站仪在施工放样中的广泛应用,为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在测量放样中的误差及其注意事项进行分析。 在我们分部桥梁施工测量中,全站仪主要是用于测量坐标点位的控制和高程的控制,在以下几个方面对全站仪放样的误差作简要概述。 1、全站仪在施工放样中坐标点的误差分析 全站仪极坐标法放样点点位中误差M P由测距边边长S(m)、测距中误差m s(m)、水平角中误差m β(″)和常数ρ=206265″共同构成,其精度估算公式为: M P =±√m s 2 +(Smβ/ρ)2 (1) 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测角精度以及外界的影响等。 由式(1)可得S2 =[(M P2-m s 2)×ρ2]/mβ2 (2) 又有s2=(X O-X A)2+(Y O-Y A)2 所以有 (X O-X A)2+(Y O-Y A)2 = (M p2-m s 2)/(mβ/ρ)2 (3) 式(3)表明,对固定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站O。因此对每一个放样控制点O,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 2、全站仪在控制三角高程上的误差分析 一般情况下,在测量高程时方法为:设A,B为地面上高度不同的两点。已知A点高程H A,只要知道A点对B点的高差H AB即可由H B=H A±H AB得到B点的高程H B。

全站仪在使用过程中的误差

随着现代高新技术的发展与运用,促使测绘工作正从传统的测绘技术手段向现代数字测绘过渡,全站仪在现代测绘工作中的应用比例也越来越大。因此,有必要对全站仪在使用过程中的误差产生及大小做分析。 全站仪是全站型电子速测仪的简称,它集电子经纬仪、光电测距仪和微电脑处理器于一体,因此,它也兼具经纬仪的测角误差和光电测距仪的测距误差性质。本文分别对这两项误差在城市测量中的大小进行分析,然后综合两方面的影响对地面点的点位误差进行分析与估算。最后单独分析全站仪的高程误差。 一、全站仪测图点位中误差分析 1、全站仪测角误差分析 检验合格的全站仪水平角观测的误差来源主要有: ①仪器本身的误差(系统误差)。这种误差一般可采用适当的观测方法来消除或减低其影响,但在全站仪测图中对角度的观测都是半测回,因此,这里还是要考虑其对测角精度的影响。分析仪器本身误差的主要依据是其厂家对仪器的标称精度,即野外一测回方向中误差M 标 ,由误差传播定律知,野外一测回测角中 误差M 1测=M 标 ,野外半测回测角中误差M 半测 =M 1测 =2M 标 。 ②仪器对中误差对水平角精度的影响,仪器对中误差对水平角精度的影响在 《测量学》教材中有很详细的分析其公式为M 中=ρe/×S AB /S 1 S 2 其中e为偏心 距,熟练的仪器操作人员在工作中的对中偏心距一般不会超过3mm,这里取 e=3mm。S 1 在这里取全站仪测图时的设站点(图根点)至后视方向是(另一通视 图根点)之间的距离,S 2 取全站仪设站点至待测地面点之间的规范限制的最大距 离。由公式知,对中误差对水平角精度的影响与两目标之间的距离S AB 成正比,即水平角在180时影响最大,在本文讨论中只考虑其最大影响。 ③目标偏心误差对水平角测角的影响,《测量学》教材推导出的化式为m 偏 =ρ/2×√(e 1/S 1 )2+(e 2 /S 2 )2,S 1、 S 2 的取法与对中误差中的取法相同,e 1 取仪器 设站时照准后视方向的误差,此项误差一般不会超过5mm,取e 1=5mm,e 2 取全站 仪在测图中的照准待测点的偏差。因为常规测图中棱镜中心往往不可能与地面点位重合,偏差为棱镜的半径R=50mm,固取e 2 =50mm因为对中误差与目标偏心误差均为“对中”性质的误差,就对中本身而言,它是偶然性的误差,而仪器一旦安置完毕,测它们就会同仪器本身误差一样同时对测站上的所有测角发生影响,根 据误差传播定律,则测角中误差M β=。 下面就以上分析,根据《城市测量规范》中给出的各比例测图,图根控制测量与各比例测图测距限值,通过计算得出下表:

激光干涉仪进行角度测量

SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(约6分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。 SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,为机床误差修正提供依据。 激光干涉仪角度测量方法

1.1.1. 角度测量构建 与线性测量原理一样,角度测量需要角度干涉镜和角度反射镜,并且角度反射镜和角度干涉镜必须有一个相对旋转。相对旋转后,会导致角度测量的两束光的光程差发生变化,而光程差的变化会被SJ6000激光干涉仪探测器探测出来,由软件将线性位置的变化转换为角度的变化显示出来。 图 16-角度测量原理及测量构建 图 17-1水平轴俯仰角度测量样图图 17-2水平轴偏摆角度测量样图1.1.2. 角度测量的应用 1.1. 2.1. 小角度精密测量 激光干涉仪角度镜能实现±10°以内的角度精密测量。

图 18-小角度测量实例 1.1. 2.2. 准直平台/倾斜工作台的测量 由于角度镜组的不同安装方式,其测量结果代表不同方向的角度值。您可以结合实际需要进行安装、测量。 图 19-水平方向角度测量 图 20-垂直方向角度测量 在垂直方向的角度测量中,角度反射镜记录下导轨在不同位置时的角度值,可由软件分析导轨的直线度信息,实现角度镜组测量直线度功能。

数控机床检修:几何精度检验 GBT 17421-1-1998 平面度测量方法

检验内容、公差测量方法、工具测量原理示意图平面度确定平面或者代表面的总方向,是为了获得平面度的最小偏差,通常采用的方法有:- 一个被检平面内适当选择的三点,在靠近边缘部分上存在无关紧要的局部缺陷可以忽略不计。- 按划分的点用最小二乘法计算的平面。 在被检面上涂上红丹或者用轻油稀释的氧化铬。将平板放在被检面上进行恰当的往复运动,取下平板并记录被检面每单位面积接触点的分布情况。在表面的整个范围内接 触点的分布均匀,并不少于一个规定值。这种方法适用于小尺寸较精密的平面(刮过或者磨过的平面)。 用移动平尺所得的一组直线测量 首先用一些基准点建立一个理论平面。在检 验面上选择a、b、c三点作为零位标记,将三 个等高块放在这三点上。 将平尺放在a、c点上,在检验面的e点放置可 调量块,使其与平尺的下表面接触。再将平 尺放在b、e点上即可找到d点的偏差。 用平尺、精密水平仪和千分表测量 测量基准由两根借助精密水平仪到达平行放 置的平尺提供。平尺R1、R2应有足够的刚 度,使基准平尺的重量产生的挠度忽略不计 。 建立一个测量基准,根据测量基准测量出偏 差并加以标绘。标绘是在有规律的方格的不 同节点上进行的。 矩形表面的测量基准平面由两条直线OmX和OO'Y确定,此时 O、m、O'是被检面上的三个点。 圆形轮廓表面的测量 采用沿边缘的圆周和直径进行测量 - 在两个垂直直径上 - 在连接边缘点的正方形的四边上 圆周检验:在一个均衡座A上放置水平仪,并 以匀称的间隔绕平板周边移动。 直径检验:按照对一条线的直线度测量的任 何一种方法进行。用平板测量用平板和千分表测量 测量装置由平板和千分表组成,千分表装在具有一个基座的支架上,基座在平板上运动。有两种测量方法: - 被测部件放在平板上:平板尺寸和千分表支架开度足够大使整个表面都能测量。- 平板与被测面相对放置:用一个尺寸与被测面尺寸相似的平板进行测量。 用平尺测量平面度用精密水平仪测量平面度 当测量工具从一个位置移向另一个位置时, 这是目前所知的能够保持测量基准方向恒定 (水平)的唯一方法。 用角度偏差方法测量一条线的直线度是这项 测量的基础。在规定的测量范围内,当所有点被包含在与该平面的总方向平形并相距给定值得两个平面内时,则认为该面是平的。 平面度公差 平面度的公差带用相隔距离为t,且平行于该平面(代表平面)总方向的两个平面限定。测量范围及公差相对于代表平面的位置应予规定。 - 平面度公差:当表面两端点间允许凹和凸时。 - 凹(或凸):当表面两端点间只许凹(或者凸)时。 - 局部公差:当它被规定且允许凹或者凸时。

全站仪使用过程误差分析

全站仪使用过程误差分析 一、全站仪测图点位中误差分析1、全站仪测角误差分析检验合格的全站仪水平角观测的误差来源主要有:①仪器本身的误差(系统误差)。这种误差一般可采用适当的观测方法来消除或减低其影响,但在全站仪测图中对角度的观测都是半测回,因此,这里还是要考虑其对测角精度的影响。分析仪器本身误差的主要依据是其厂家对仪器的标称精度,即野外一测回方向中误差M标,由误差传播定律知,野外一测回测角中误差M1测=M标,野外半测回测角中误差M半测=M1测=2M标。②仪器对中误差对水平角精度的影响,仪器对中误差对水平角精度的影响在《测量学》教材中有很详细的分析其公式为M中=ρe/×SAB/S1S2其中e为偏心距,熟练的仪器操作人员在工作中的对中偏心距一般不会超过 3mm,这里取e=3mm。S1在这里取全站仪测图时的设站点(图根点)至后视方向是(另一通视图根点)之间的距离,S2取全站仪设站点至待测地面点之间的规范限制的最大距离。由公式知,对中误差对水平角精度的影响与两目标之间的距离SAB成正比,即水平角在180时影响最大,在本文讨论中只考虑其最大影响。③目标偏心误差对水平角测角的影响,《测量学》教材推导出的化式为m偏 =ρ/2×√(e1/S1)2+(e2/S2)2,S1、S2的取法与对中误差中的

取法相同,e1取仪器设站时照准后视方向的误差,此项误差一般不会超过5mm,取e1=5mm,e2取全站仪在测图中的照准待测点的偏差。因为常规测图中棱镜中心往往不可能与地面点位重合,偏差为棱镜的半径R=50mm,固取e2=50mm 因为对中误差与目标偏心误差均为“对中”性质的误差,就对中本身而言,它是偶然性的误差,而仪器一旦安置完毕,测它们就会同仪器本身误差一样同时对测站上的所有测角发 生影响,根据误差传播定律,则测角中误差Mβ=。下面就以上分析,根据《城市测量规范》中给出的各比例测图,图根控制测量与各比例测图测距限值,通过计算得出下表:2、全站仪测距的误差估计目前全站仪大多采用相位式光电测距,其测距误差可分为两部分:一部分是与距离D成正比例的误差,即光速值误差,大气折射率误差和测距频率误差;另一部分是与距离无关的误差,即测相误差,加常数误差,对中误差。故,将测距精度表达式简写成MD=±(A+B×D),式中A为固定误差,以mm为单位,B为比例误差系数以mm/km为单位,D为被测距离以km为单位。目前测绘生产单位配备的测图用全站仪的测距标称精度大多为 MD=3mm+2m m/km×D。在这里D取测站点到待测点之间的《城市测量规范》规定的限值。通过计算得到各比例尺测图中测距中误差值MD,如下表:3、分析全站仪测图的点位中误差M根据前面对测角和测距精度的分析,运用误差传播定

相关文档
相关文档 最新文档