文档库 最新最全的文档下载
当前位置:文档库 › 高中数学教案选4-5二维形式的柯西不等式(一)

高中数学教案选4-5二维形式的柯西不等式(一)

教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式.

教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义.

教学过程:

一、复习准备:

1. 提问: 二元均值不等式有哪几种形式?

答案:(0,0)2

a b

a b +>>及几种变式.

2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥

二、讲授新课:

1. 教学柯西不等式:

① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++

222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则

22()()()f x ax c bx d =-+-≥0恒成立.

∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式? 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+

2

22c d ac bd +≥+.

④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 )

→ 讨论:上面时候等号成立?(β是零向量,或者,αβ共线)

⑤ 练习:已知a 、b 、c 、d . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式:

① 出示定理3:设1122,,,x y x y R ∈≥分析其几何意义 → 如何利用柯西不等式证明

→ 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点)

三、巩固练习:

1. 练习:试写出三维形式的柯西不等式和三角不等式

2. 作业:教材P 37 4、5题.

教学要求:会利用二维柯西不等式及三角不等式解决问题,体会运用经典不等式的一般方法——发现具体问题与经典不等式之间的关系,经过适当变形,依据经典不等式得到不等关系. 教学重点:利用二维柯西不等式解决问题. 教学难点:如何变形,套用已知不等式的形式.

教学过程:

一、复习准备:

1. 提问:二维形式的柯西不等式、三角不等式? 几何意义?

答案:22222()()()a b c d ac bd ++≥+2. 讨论:如何将二维形式的柯西不等式、三角不等式,拓广到三维、四维?

3. 如何利用二维柯西不等式求函数y =?

要点:利用变式22||ac bd c d ++.

二、讲授新课:

1. 教学最大(小)值:

① 出示例1:求函数y =

分析:如何变形? → 构造柯西不等式的形式 → 板演

→ 变式:y =

→ 推广:

,,,,,)y a b c d e f R +=∈

② 练习:已知321x y +=,求22x y +的最小值.

解答要点:(凑配法)2222222111

()(32)(32)131313

x y x y x y +=

++≥+=. 讨论:其它方法 (数形结合法) 2. 教学不等式的证明:

① 出示例2:若,x y R +∈,2x y +=,求证:11

2x y

+≥.

分析:如何变形后利用柯西不等式? (注意对比 → 构造)

要点:2222

111111()()]

22x y x y x y +=++=++≥… 讨论:其它证法(利用基本不等式)

② 练习:已知a 、b R +∈,求证:11

()()4a b a b

++≥.

3. 练习:

① 已知,,,x y a b R +∈,且1a b

x y

+=,则x y +的最小值.

要点:()()a b

x y x y x y

+=++=…. → 其它证法

② 若,,x y z R +∈,且1x y z ++=,求222x y z ++的最小值. (要点:利用三维柯西不等式)

变式:若,,x y z R +∈,且1x y z ++=.

3. 小结:比较柯西不等式的形式,将目标式进行变形,注意凑配、构造等技巧.

三、巩固练习:

1. 练习:教材P 37 8、9题

2. 作业:教材P 37 1、6、7题

第三课时 3.2 一般形式的柯西不等式

教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题.

教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想.

教学过程:

一、复习准备: 1. 练习:

2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维?

答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++

二、讲授新课:

1. 教学一般形式的柯西不等式:

① 提问:由平面向量的柯西不等式||||||αβαβ≤,如果得到空间向量的柯西不等式及代数形式?

② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b ++

+++≥+++

讨论:什么时候取等号?(当且仅当1212n n

a a a

b b b ===时取等号,假设0i b ≠)

联想:设1122n n B a b a b a b =+++,22212n A a a a =++

,22212n C b b b =+++,则有

20B AC -≥,可联想到一些什么?

③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类)

要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+(

)(222

12()n b b b +++???+ ,则 2221122()()())0n n f x a x b a x b a x b =++++???+≥+(.

又222120n a a a ++???+>,从而结合二次函数的图像可知,

[]2

2221122122()4()n n n a b a b a b a a a ?=+++-++

22212()n b b b +++≤0

即有要证明的结论成立. (注意:分析什么时候等号成立.)

④ 变式:222212121

()n n a a a a a a n

++≥++???+. (讨论如何证明)

2. 教学柯西不等式的应用:

① 出示例1:已知321x y z ++=,求222x y z ++的最小值.

分析:如何变形后构造柯西不等式? → 板演 → 变式:

② 练习:若,,x y z R +∈,且1111x y z ++=,求23y z

x ++的最小值.

③ 出示例2:若a >b >c ,求证:c

a c

b b a -≥-+-4

11. 要点:21111()(

)[()()]()(11)4a c a b b c a b b c a b b c

-+=-+-+≥+=---- 3. 小结:柯西不等式的一般形式及应用;等号成立的条件;根据结构特点构造证明.

三、巩固练习:

1. 练习:教材P 41 4题

2. 作业:教材P 41 5、6题

第四课时 3.3 排序不等式

教学要求:了解排序不等式的基本形式,会运用排序不等式分析解决一些简单问题,体会运用经典不等式的一般方法.

教学重点:应用排序不等式证明不等式. 教学难点:排序不等式的证明思路.

教学过程:

一、复习准备:

1. 提问: 前面所学习的一些经典不等式? (柯西不等式、三角不等式)

2. 举例:说说两类经典不等式的应用实例. 二、讲授新课:

1. 教学排序不等式: ① 看书:P 42~P 44.

② 提出排序不等式(即排序原理): 设有两个有序实数组:12a a ≤≤···n a ≤;12b b ≤≤···n b ≤.12,,c c ···n c 是12,b b ,···,n b 的任一排列,则有

1122a b a b ++···+n n a b (同序和) 1122a c a c ≥++·

··+n n a c (乱序和) 121n n a b a b -≥++·

··+1n a b (反序和) 当且仅当12a a ==···=n a 或12b b ==···=n b 时,反序和等于同序和. (要点:理解其思想,记住其形式) 2. 教学排序不等式的应用:

① 出示例1:设12,,,n a a a ???是n 个互不相同的正整数,求证:

321222

111

12323n a a a a n n +++???+≤+++???+

. 分析:如何构造有序排列? 如何运用套用排序不等式? 证明过程:

设12,,,n b b b ???是12,,,n a a a ???的一个排列,且12n b b b <

又222111

123n

>>>???>,由排序不等式,得

33

2211

222222

2323n n a a b b a b a b n n +++???+≥+++???+≥… 小结:分析目标,构造有序排列. ② 练习:

已知,,a b c 为正数,求证:3332222()()()()a b c a b c b a c c a b ++≥+++++. 解答要点:由对称性,假设a b c ≤≤,则222a b c ≤≤,

于是 222222a a b b c c a c b a c b ++≥++,222222a a b b c c a b b c c a ++≥++, 两式相加即得.

3. 小结:排序不等式的基本形式.

三、巩固练习:

1. 练习:教材P 45 1题

2. 作业:教材P 45 3、4题

相关文档
相关文档 最新文档