文档库 最新最全的文档下载
当前位置:文档库 › 关于机械波的反射和折射定律的证明

关于机械波的反射和折射定律的证明

关于机械波的反射和折射定律的证明
关于机械波的反射和折射定律的证明

证明机械波的反射和折射定律 郭 宁

如图,假设AB 是波的宽,d 为任意长,OC 为AB 到达界面是在界面上的宽度,设为a ,a 的长也是任意的,波速为v ,在介质2中的速度变为nv ,n 为比例系数,以O 点为原点,建立平面直角坐标系,x 轴与界面重合,可知AOy θ∠= 为入射角。

当A 到达O 点后,根据惠更斯原理,以O 点为子波的波源,同理C 点也为子波的波源,发出球面波,之后二者的波速都设为kv ,在介质1中,k=1,可知球面波O 的方程为

222x y kvt +=() (1)

球面波C 的发出比O 要晚,sin a t v

θ?= ,因此球面波C 的方程为 222sin a x a y kv t v θ??-+=-????()() (2)

又a 为任意值,特殊地,当a=0时(2)式化为(1)式

当a 不断变化时,一组球面波的包络l 即是后来的波的波面,即l 为所求 将(2)式对a 微分:

222222sin 2sin a x k

a k vt θθ-=-

得 222sin 1sin x k vt a k θθ-=- (3)

将(3)带入(2)式

2222sin 1sin k x kvt y k θθ-=-() (4)

(4)式即为达到界面后波面的方程,有两个解

y = (5)

sin k x kvt

y θ-+=

(6) 在介质2中(5)式成立,并令k=n ,得

tan tan sin y x vt ?

?θ=- s i n s i n n θ?=

( 折射定律) 在介质1中(6)式成立,并令k=1 ,得

tan cos vt

y x ?θ=-+

(反射定律)

高中物理专题练习-机械振动与机械波 光及光的本性(含答案)

高中物理专题练习-机械振动与机械波光及光的本性(含答案) (时间:45分钟) 1.(江苏单科,12B)(12分)(1)某同学用单色光进行双缝干涉实验,在屏上观察到如图甲所示的条纹,仅改变一个实验条件后,观察到的条纹如乙图所示.他改变的实验条件可能是________. A.减小光源到单缝的距离 B.减小双缝之间的距离 C.减小双缝到光屏之间的距离 D.换用频率更高的单色光源 (2)在“探究单摆的周期与摆长的关系”实验中,某同学准备好相关实验器材后,把单摆从平 衡位置拉开一个很小的角度后释放,同时按下秒表开始计时,当单摆再次回到释放位置时停止计时,将记录的这段时间作为单摆的周期.以上操作中有不妥之处,请对其中两处加以改正. (3)Morpho蝴蝶的翅膀在阳光的照射下呈现出闪亮耀眼的蓝色光芒,这是因为光照射到翅膀 的鳞片上发生了干涉.电子显微镜下鳞片结构的示意图如图.一束光以入射角i从a点入射,经过折射和反射后从b点出射.设鳞片的折射率为n,厚度为d,两片之间空气层厚度为h.取光在空气中的速度为c,求光从a到b所需的时间t. 2.(江苏单科,12B)(12分)(1)一渔船向鱼群发出超声波,若鱼群正向渔船靠近,则被鱼群反射回来的超声波与发出的超声波相比________. A.波速变大B.波速不变 C.频率变高D.频率不变 (2)用2×106 Hz的超声波检查胆结石,该超声波在结石和胆汁中的波速分别为2 250 m/s和1 500 m/s,则该超声波在结石中的波长是胆汁中的________倍.用超声波检查胆结石是因为超

声波的波长较短,遇到结石时________(选填“容易”或“不容易”)发生衍射. (3)人造树脂是常用的眼镜镜片材料.如图所示,光线射在一人造树脂立方体上,经折射后,射 在桌面上的P点.已知光线的入射角为30°,OA=5 cm,AB=20 cm,BP=12 cm,求该人造树脂材料的折射率n. 3.(新课标全国卷Ⅰ,34)(15分)(1)(5分)在双缝干涉实验中,分别用红色和绿色的激光照射同一双缝.在双缝后的屏幕上,红光的干涉条纹间距Δx1与绿光的干涉条纹间距Δx2相比,Δx1____Δx2(填“>”、“=”或“<”).若实验中红光的波长为630 nm,双缝与屏幕的距离为1.00 m,测得第1条到第6条亮条纹中心间的距离为10.5 mm,则双缝之间的距离为________ mm. (2)(10分)甲、乙两列简谐横波在同一介质中分别沿x轴正向和负向传播,波速均为v=25 cm/s.两列波在t=0时的波形曲线如图所示.求: (ⅰ)t=0时,介质中偏离平衡位置位移为16 cm的所有质点的x坐标; (ⅱ)从t=0开始,介质中最早出现偏离平衡位置位移为-16 cm的质点的时间.

上海高一物理机械波的产生和描述

学科教师辅导讲义

(4)三者关系:________________________________________ 2、波动图像:表示在波的传播方向上,介质中的各个质点在________________相对平衡位置的________。当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线. (1)由波的图像可获取的信息 ①从图像可以直接读出振幅(注意单位). ②从图像可以直接读出波长(注意单位). > ③可求任一点在该时刻相对平衡位置的位移(包括大小和方向) ④可以确定各质点振动的加速度方向(加速度总是指向平衡位置) ⑤在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向. (2)波动图像与振动图像的比较: 振动图象波动图象研究对象一个振动质点沿波传播方向所有的质点 一个质点的位移随时间变化规律某时刻所有质点的空间分布规律@ 研究内容 图象 物理意义表示一质点在各时刻的位移表示某时刻各质点的位移 随时间推移,图象沿传播方向平移图象变化, 随时间推移图象延续,但已有形状不 变 一个完整曲线占横坐标距离表示一个周期表示一个波长 例3、一列简谐波在x轴上传播,其波形图如图7-32-4所示,其中实线,虚线分别表示t1=0,t2=时的波形,求⑴这列波的波速 ⑵若波速为280m/s,其传播方向如何此时质点P从图中位置运动至波谷位置 的最短时间是多少 :

练习2、如图7-32-5所示,甲为某一波在t=时的图象,乙为对应该波动的P质点的振动图象。 ⑴说出两图中AA’的意义 ⑵说出甲图中OA’B图线的意义 ⑶求该波速v= ⑷在甲图中画出再经时的波形图。 % ⑸求再经过时P质点的路程s和位移。 练习题: 1.在波的传播过程中,下列有关介质中质点的振动说法正确的是( ) A.质点在介质中做自由振动 B.质点在介质中做受迫振动 · C.各质点的振动规律都相同 D.各质点的振动速度都相同 2.下列关于横波与纵波的说法中,正确的是( ) A.振源上下振动形成的波是横波 B.振源左右振动形成的波是纵波 C.振源振动方向与波的传播方向相互垂直,形成的是横波 D.在固体中传播的波一定是横波 3.传播一列简谐波的介质中各点具有相同的( )

菲涅耳公式 折反射定律

Chapter 1 理论基础 1.1 介质中的Maxwell ’s equations 与物质方程 微分形式 =t =J+t ==0B E D H D B ρ????-? ?? ??????? ??? ?? (1-1) 传导电流密度J 的单位为安培/米2(A/m 2),自由电荷密度ρ的单位为库仑/米2(C/m 2)。同时有电磁场对材料介质作用的关系式,即物质方程(或称本构方程) 00==()J=D E E P B H H M E εεμμσ?=+?? =+???? (1-2) 麦克斯韦方程组与物质方程描写了整个电磁场空间与全时间过程中电磁场的分布与变化情况。因此,所有关于电磁波的产生与传播问题,均可归结到在给定的初始条件和边界条件下求解麦克斯韦方程组的问题,这也正是用以解决光波在各种介质、各种边界条件下传播问题的关键与核心。

1.2 积分形式与边界条件 由于两介质分界面上在某些情况下场矢量E 、D 、B 、H 发生跃变,因此这些量的导数往往不连续。这时不能在界面上直接应用微分形式的Maxwell ’s equations ,而必须由其积分形式出发导出界面上的边界条件。 积分形式 0L S L S S S d E dl B d S dt d H dl I D d S dt D d S Q B d S ? =-?? ?=+?? ? =?? =???????????? (1-3) 得边界条件为 (1-4) 式 (1-4)的具体解释依次如下(具体过程详见《光学电磁理论》P20): (1)电场强度矢量E 的切向分量连续,n 为界面的法向分量。 (2)α为界面上的面传导电流的线密度。当界面上无传导电流时,α=0,此时H 的切向分量连续。比如在绝缘介质表面无自由电荷和传导电流。 (3)σ为界面上的自由电荷面密度。 (4)磁感应强度矢量B 的法向分量在界面上连续。

最新机械波的产生和传播

机械波的产生和传播 编稿:门俊涛责编赵一平: 目标认知 学习目标 1.掌握机械波的概念和机械波产生的条件。 2.知道波传播的是振动的形式,同时波也是传递能量的一种运动方式。 3.了解机械波的种类,知道什么是横波中的波峰和波谷、纵波中的疏部和密部。 4.理解波速的意义,知道决定波的频率、波速和波长的因素以及它们三者的关系。 5.理解机械波的图象及其意义。 学习重点、难点 1.机械波的形成原因及传播过程的特征。 2.机械波的图象及其意义。 知识要点梳理 知识点一:波的形成和传播 要点诠释: 1. 介质 能够传播振动的媒介物叫做介质。(如:绳、弹簧、水、空气、地壳等)

2.机械波 机械振动在介质中的传播形成机械波。 3.形成机械波的条件 (1)要有波源;(2)要有能传播振动的介质。 注意:有机械波必有机械振动,而有机械振动不一定能产生机械波。 4.机械波的传播特征 (1)机械波传播的仅仅是振动这种运动形式,介质本身并不随波迁移。 沿波的传播方向上各质点的振动都受它前一个质点的带动而做受迫振动,因此波动的过程是介质中相邻质点间依次“带动”、由近及远相继振动起来的过程,是振动这种运动形式在介质中依次向外传播的过程。 对简谐波而言各质点振动的振幅和周期都相同,各质点仅在各自的平衡位置附近振动,并不随波动过程的发生而沿波传播方向发生迁移。 (2)波是传递能量的一种运动形式。 波动的过程也是由于相邻质点间由近及远地依次做功的过程,所以波动过程也是能量由近及远的传播过程。因此机械波也是传播能量的一种形式。 5.波的分类 波按照质点振动方向和波的传播方向的关系,可分为: (1)横波:质点的振动方向与波的传播方向垂直的波,其波形为凹凸相间的波。凸起的

惠更斯原理波的反射与折射

2.4惠更斯原理波的反射与折射 【教材分析】 教材首先介绍了惠更斯原理,要求学生了解波面、波线等概念,学会利用惠更斯原理确定下一时刻新的波面。在此基础上引导学生观察和研究波的反射现象和波的折射现象及其规律,并利用惠更斯原理进行论证。 【教案目标】 理解惠更斯原理 知道波发生反射时,反射角等于入射角,反射波的频率,波速、波长都与入射波相同知道波发生折射是由于波在不同介质中速度不同 知道折射角与入射角的关系 【教案重难点】 重点是使学生掌握波的反射与折射的规律 难点是理解惠更斯原理 【教案思路】 通过现象引入新课,激发学生的好奇性,然后在教师的组织下首先学习惠更斯原理,使学生了解波在传播时某一时刻的波面上的各点都可以认为是一个新的波源,向各个方向发出子波,由此可以确定下一时刻的波面。在此基础上,引导学生对波的反射和折射规律分别进行探究和论证。主要手段是先通过对实验现象的观察、分析得出大致的规律,进而利用惠更斯原理进行分析论证,最后分别得出波的反射和折射现象中满足的规律——反射定律和折射定律。这样教案的目的在于使学生开阔视野,了解科学家研究物理现象的极为巧妙的思维方法。通过例题和练习,使学生熟练掌握入射角、反射角、折射角和折射率的概念和反射定律和折射定律,并会应用解题。 【教案器材】 发波水槽、投影仪、自制多媒体课件等 【教案过程】 ◆新课导入 教师:各种波在传播过程中,遇到较大的障碍物时,都会发生反射现象.声波在遇到较大的障碍物后也会反射回来.反射回来的声波传入人耳,听到的就是回声,我们在山中、在大的空房间里大声说话时,都会听到回声。 学生:回顾生活中的体验。 教师:演示实验——水波的反射现象,并指导学生观察认识(采用发波水槽和实物投影仪)。 学生:观察实验,认识现象。 教师:提出问题:波为什么会有这样的现象呢?其有何规律呢? 要了解这些问题,我们必须先学习惠更斯原理。 ◆新课展示 一、惠更斯原理 1.相关概念:波面、波前和波线: 教师:引导学生思考问题:如何表示波传播的方向? 然后指导学生阅读教材40页有关内容,理解: (1)什么是波面?什么是波线? (2)对于水波和空间一点发出的球面波和平面波为例,如何理解波面和波线? 学生:阅读教材,思考理解:

专题(17)机械振动与机械波 光 电磁波(解析版)

第 1 页 共 14 页 2021年高考物理二轮重点专题整合突破 专题(17)机械振动与机械波 光 电磁波(解析版) 高考题型1 机械振动与机械波 1.必须理清的知识联系 2.巧解波的图象与振动图象综合问题的基本方法 3.波的叠加问题 (1)两个振动情况相同的波源形成的波,在空间某点振动加强的条件为Δx =nλ(n =0,1,2,…),振动减弱的条件为Δx =(2n +1)λ 2(n =0,1,2,…).两个振动情况相反的波源形成的波,在空间某点振动加强的条件为Δx = (2n +1)λ 2(n =0,1,2,…),振动减弱的条件为Δx =nλ(n =0,1,2,…). (2)振动加强点的位移随时间而改变,振幅为两波振幅的和A 1+A 2. 4.波的多解问题 由于波的周期性、波传播方向的双向性,波的传播易出现多解问题.

第 2 页 共 14 页 【例1】 (2020·全国卷Ⅲ·34(1))如图1,一列简谐横波平行于x 轴传播,图中的实线和虚线分别为t =0和t =0.1 s 时的波形图.已知平衡位置在x =6 m 处的质点,在0到0.1 s 时间内运动方向不变.这列简谐波的周期为________ s ,波速为________ m/s ,传播方向沿x 轴________(填“正方向”或“负方向”). 图1 【答案】0.4 10 负方向 【解析】根据x =6 m 处的质点在0到0.1 s 时间内运动方向不变,可知波沿x 轴负方向传播,且T 4=0.1 s , 得T =0.4 s ,由题图知波长λ=4 m ,则波速v =λ T =10 m/s. 【例2】(多选)(2019·全国卷Ⅲ·34)一简谐横波沿x 轴正方向传播,在t =T 2时刻,该波的波形图如图2(a)所示, P 、Q 是介质中的两个质点.图(b)表示介质中某质点的振动图象.下列说法正确的是( ) 图2 A .质点Q 的振动图象与图(b)相同 B .在t =0时刻,质点P 的速率比质点Q 的大 C .在t =0时刻,质点P 的加速度的大小比质点Q 的大 D .平衡位置在坐标原点的质点的振动图象如图(b)所示 E .在t =0时刻,质点P 与其平衡位置的距离比质点Q 的大 【答案】CDE 【解析】t =T 2时刻,题图(b)表示介质中的某质点从平衡位置向下振动,而题图(a)中质点Q 在t =T 2 时刻从平

6.第二章利用费马原理对光的反射与折射这两个实验定律进行推证

第二章利用费马原理对光的反射与折射这两个实验 定律进行推证 2.1 反射定律和折射定律 在教材中我们早就学习了折射定律和反射定律]1[,反射定律的传统表达为:入射光线与反射光线在同种介质中,且对称分居于法线两侧,即入射角i 等于反射角i ',或i =i '。折射定律的传统表达为:光折射时,折射光线、入射光线、法线在同一平面内,折射光线和入射光线分别位于法线的两侧。折射角随入射角的改变而改变:入射角增大时,折射角也增大;入射角减小时,折射角也减小。这两个定律通俗易懂,但它们在教材中都是通过实验推出,并没有从理论的角度进行推证。本章利用费马原理从理论角度对反射定律和折射定律进行推导。 我们已经学过nds 称为光程,并且当两列波在同一点相遇并叠加时,其光强取决于相位差,而相位差又取决于光程差。可以证明,几何光学中,有关光线的实验事实也可以归结为光程问题,即不考虑光的波动性,而只从光线的观点出发通过光程的概念。 2.2费马原理 费马原理是费马在1650年概括光线传播的实验定律提出的[2],其内容为:连结给定两点P 和Q 可以有许多路径,而光线只遵循两点间光程为极值的路径,数学表达形式为: Q P nds =?极值(极小值、极大值或恒值) (2-1) 费马原理要求光程为极值,可以是最小值,这是最常见的,也可以是最大值,还可以是稳定值。 几何光学的核心就是费马原理,虽然几何光学被看作是波动光学的近似,但现在光学设计中的光线追迹及光学成像等还是利用由费马原理推出的几何光学的知识,费马原理是物理学和数学的精妙结合。 2.3 折射定律的推导 设光线由P 点传播到Q 点, P 和Q 两点分别在折射率为1n 和2n 的均匀媒质中,首先建立笛卡儿空间直角坐标系,选两种介质的分界面为x y 平面,选过P 和Q 两点并与媒质分界面垂直的平面为yz 平面,如果P 和Q 两点的连线与分界

高考物理二轮复习专题机械振动与机械波光学案

专题11 机械振动与机械波 光 本专题在高考中的出题方向,一是以图象为主,考查简谐运动的特点和波传播的空间关系,题型为选择题、填空题或计算题;二是以常规模型或实际生活材料为背景,考查折射率、全反射等基本规律的应用,题型为选择题或计算题。 高频考点:波动图象的分析及应用;振动图象与波动图象的综合分析;波的多解问题;光的折射及折射率的计算;光的折射与全反射的综合。 考点一、波动图象的分析及应用 例 (2020·全国Ⅲ卷)(多选)如图,一列简谐横波沿x 轴正方向传播,实线为t =0时的波形图,虚线为t =0.5 s 时的波形图。已知该简谐波的周期大于0.5 s 。关于该简谐波,下列说法正确的是( ) A .波长为2 m B .波速为6 m/s C .频率为1.5 Hz D .t =1 s 时,x =1 m 处的质点处于波峰 E .t =2 s 时,x =2 m 处的质点经过平衡位置 【审题立意】本题考查机械波的相关知识,意在考查考生对与机械波相关的物理量的理解和掌握,以及分析波形图的能力。 【解题思路】由题图可知简谐横波的波长为λ=4 m ,A 项错误;波沿x 轴正向传播,t =0.5 s =3 4T , 可得周期T =23 s ,频率f =1T =1.5 Hz ,波速v =λ T =6 m/s ,B 、C 项正确;t =0时刻,x =1 m 处的质点 在波峰,经过1 s =3 2T ,一定在波谷,D 项错误;t =0时刻,x =2 m 处的质点在平衡位置,经过2 s =3T , 质点一定经过平衡位置,E 项正确。 【参考答案】BCE 【技能提升】解题常见误区及提醒 1. 误认为波的传播速度与质点振动速度相同; 2. 误认为波的位移与质点振动位移相同; 3. 实际上每个质点都以它的平衡位置为中心振动,并不随波迁移。 【变式训练】2020年2月6日23时50分,台湾花莲县附近海域发生6.5级地震。如果该地震中的简谐横波在地球中匀速传播的速度大小为4 km/s ,已知波沿x 轴正方向传播,某时刻刚好传到N 处,如图所示,则下列说法中正确的是( ) 考向预测 知识与技巧的梳理

机械振动与机械波计算题

机械振动与机械波(计算题) 1.(16分)如图甲是某简谐横波在t=0时刻的图像,如图乙是A 点的振动图像,试求: (1)A 点的振幅多大、此时振动的方向如何 (2)该波的波长和振动频率。 (3)该波的波速的大小及方向如何 2.(10分)如图1所示,一列简谐横波沿x 轴正方向传播,波速为v = 80m/s 。P 、S 、Q 是波传播方向上的三个质点,已知距离PS = 、SQ = 。在t = 0的时刻,波源P 从平衡位置(x = 0,y = 0)处开始向上振动(y 轴正方向),振幅为15cm ,振动周期T = 。 (1)求这列简谐波的波长λ ; (2)在图2中画出质点P 的位移—时间图象(在图中标出横轴的标度,至少画出一个周期); (3)在图3中画出波传到Q 点时的波形图(在图中标出横轴的标度)。 v 图1 x - -×甲 乙

3.(9分) (1)下列说法中正确的是________. A .水面上的油膜在阳光照射下会呈现彩色,这是由光的衍射造成的 B .根据麦克斯韦的电磁场理论可知,变化的电场周围一定可以产生变化的磁场 C .狭义相对论认为:不论光源与观察者做怎样的相对运动,光速都是一样的 D .在“探究单摆周期与摆长的关系”的实验中,测量单摆周期应该从小球经过最大位移处开始计时,以减小实验误差 (2)如图9所示,一个半径为R 的14 透明球体放置在水平面上,一束蓝光从A 点沿水平方向射入球体后经B 点射出,最后射到水平面上的C 点.已知OA = 2 R ,该球 体对蓝光的折射率为.则它从球面射出时的出射角β=________;若换用一束红光同样从A 点射向该球体,则它从球体射出后落到水平面上形成的光点与C 点相比,位置________(填“偏左”、“偏右”或“不变”). (3)一列简谐横波沿x 轴正方向传播,周期为2 s ,t =0时刻的波形如图10所示.该列波的波速是________m/s ;质点a 平衡位置的坐标x a = m ,再经________s 它第一次经过平衡位置向y 轴正方向运动. 4.如图12-2-12甲所示,在某介质中波源A 、B 相距d =20 m ,t =0时两者开始上下振动,A 只振动了半个周期,B 连续振动,所形成的波的传播速度都为v = m/s ,开始阶段两波源的振动图象如图乙所示. (1)定性画出t = s 时A 波所达位置一定区域内的实际波形; (2)求时间t =16 s 内从A 发出的半波前进过程中所遇到的波峰个数. y /c t/ × 0 15 -15 图2 y /c x/m 0 15 -15 图3

费马原理

费马原理的运用 王瑞林(03010425) (东南大学能源与环境学院,南京 210010) 摘要:本文介绍了几何光学的基本定理——费马原理的定义、传统表述及运用波动光学对其本质的介绍。并且运用费马原理证明了几何光学的三大定律,并求出了最速降线。 关键词:费马原理;折射定律;圆锥曲线光学性质;最速降线;最小作用量原理 The use of Fermat’s principle Wangruilin (The college of environment and energy , Southeast University, Nanjing 210096 ) Abstract: We introduced the Fundamental theorem of geometrical optics- Fermat’s principle. We introduced the definition and presentation of Fermat's principle, analysis its essemce . we also got the three basic laws of geometrical optics, and find the brachistochrone with proof of Fermat's principle. key words: Fermat’s principle;Law of ref raction;Optical properties of coni c;Brachistochrone;Principle of least action 我们之前在初高中就已经学习过几何光学,并了解了其中的一些重要定律,但是都只是一些经验的描述和一些实验的简单验证,本文我们运用几何光学的基础原理——费马原理对已学过的几何定律做一个简单的梳理并简单介绍一下运用费马原理对最速降线问题的求解。 费马原理简介 一、费马定理的表述 关于费马原理的定义,教科书上的表述如下:“过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。”其实表述并不足够准确,因为对于某些路程,不能简单的以光程极值来加以限定,最为准确而精炼的表述要利用到数学上的泛函知识,具体描述为:“过两个定点的光走且仅走光程的一阶变分为零的路径。”其中光程的定义为光通过的介质对光的折射率与光通过的路程的乘积。费马原理的数学表述形式为 其中,δ是变分符号,p1、p2表示空间中两个固定点,n为介质的折射率,s表示路程。我们将路径视为一个函数,而变分则是对泛函求导,其结果类似于我们函数求导,我们可以用函数求导来类似理解变分的求解。 费马定理还有另外一种表述:“过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。”其实就是把光程换成了时间t

由惠更斯原理可以解释反射定律和折射定律

由惠更斯原理可以解释反射定律和折射定律,并给出n 的物理意义 两种媒质 媒质1、媒质2,这是两种媒质的分界面 一束平行光(光线为1、2、3〃〃〃〃n )从媒质1射向媒质2,光线1、2、3〃〃〃n 分别交界面于A 1B 2B 3···B n 过A 1作平行光的波面,交光线于A 2A 3···A n 当光线1→到达A 1同时 光线2→到达A 2 光线3→到达A 3 光线n →到达A n 而光线2还要经 12 22V B A t = 时间才能到达B 2 光线3还要经 13 33V B A t = 时间才能到达B 3 …………………………………………… 光线n 还要经 V B A t n n n = 时间才能到达B n V 1为光波在媒质1中的波速,设在媒质2中波速为V 2 每条光线到达分界面上时,都同时发射两个次波。反射次波和折射次波 反射次波——向媒质1内发射反射次波 当光线n 到达B n 点时,A 1点发出的反射次波波面和透射次波波面分别是以V 1t n V 2t n 半径的半球面。 B 2点发出的反射次波波面和透射次波波面分别是以V 1(t n -t 2),V 2(t n -t 2)为半径的半球面。 光线 所有时间 到达点 反射波波面半径 透射波波面半径 1→A 1 0 A 1 V 1t n V 2t n 2→A 2 12 22V B A t = B 2 V 1(t n -t 2) V 2(t n -t 2)

3→A 3 13 33V B A t = → B 3 V 1(t n -t 3) V 2(t n -t 3) . . . . . . . . . . . . . . . . . . . . . n →A n V B A t n n n = → B n 0 0 这些次波面一个比一个小,直到B n 处缩成一个点。 按惠更斯原理: 这一时刻总扰动的波面是这些次波面的包络面 反射次波和透射次波总扰动的波面是这些次波的波面的包络面,且包络面是通过B n 点的平面。 设反射波总扰动的波面与各次波面相切于C 1C 2C 3···C n 透射波总扰动的波面与各次波面相切于D 1D 2D 3〃〃〃D n 连接次波源与切点,即得总扰动的波线 即反射光线A 1C 1 B 2C 2〃〃〃 透射光线A 1D 1 B 2D 2〃〃〃 (折射光线) 下面证明∵A 1C 1=A n B n A 1B n 公共 ∴RT ΔA 1C 1B n ≌RT ΔA 1A n B n ∴∠A n A 1B n =∠A 1B n C 1 又 ∴∠A n A 1B n =i 1 ,∠A 1B n C 1=i 11 ∴i 1=i 11 反射定律

专题七 第2讲 机械振动和机械波 光 电磁波

第2讲 机械振动和机械波 光 电磁 波 机械振动和机械波 [必 备 知 识] 1.必须理清知识间的联系 2.必须弄明的六个问题 (1)单摆的回复力是重力的切向分力,或合力在切向的分力。单摆固有周期T =2πl g 。 (2)阻尼振动的振幅尽管在减小,但其振动周期(频率)不变,它是由振动系统决定的。 (3)稳定时,受迫振动的周期或频率等于驱动力的周期或频率,与物体的固有频率无关。共振图象的横坐标为驱动力的频率,纵坐标为受迫振动物体的振幅。共振条件:f 驱=f 固。 (4)机械波必须要在介质中传播。振动质点是“亦步亦趋”,但不“随波逐流”! (5)横波是质点振动方向与波的传播方向垂直的波。注意:“垂直”是一个直线和一个面的关系——沿水平方向传播的横波,质点可能不只是上下振动。 (6)机械波传播时,频率(f )由振源决定,与介质无关且稳定不变,波速(v )由介质决定。波从一种介质进入另一种介质,频率不会发生变化,因为速度变化了,所

以波长将发生改变。 [真题示例] 1.[2017·全国卷Ⅰ,34(1)]如图1(a),在xy平面内有两个沿z方向做简谐振动的点波源S1(0,4)和S2(0,-2)。两波源的振动图线分别如图(b)和图(c)所示。两列波的波速均为1.00 m/s。两列波从波源传播到点A(8,-2)的路程差为________m,两列波引起的点B(4,1)处质点的振动相互________(填“加强”或“减弱”),点C(0,0.5)处质点的振动相互________(填“加强”或“减弱”)。 图1 解析由几何关系可知两波源到A点的距离为AS1=10 m,AS2=8 m,所以两波的路程差为2 m;同理可得,BS1-BS2=0,为波长的整数倍,由振动图象知两振源振动方向相反,故B点振动减弱;两波源到C点的路程差为Δx=CS1-CS2=1 m,波长λ=v T=2 m,所以C点振动加强。 答案2减弱加强 2.[2017·全国卷Ⅲ,34(1)]如图2,一列简谐横波沿x轴正方向传播,实线为t=0时的波形图,虚线为t=0.5 s时的波形图。已知该简谐波的周期大于0.5 s。关于该简谐波,下列说法正确的是________。(填正确答案标号) 图2 A.波长为2 m B.波速为6 m/s C.频率为1.5 Hz D.t=1 s时,x=1 m处的质点处于波峰

机械振动及机械波知识点(全)知识讲解

机械波的产生和传播 知识点一:波的形成和传播 (一)介质 能够传播振动的媒介物叫做介质。(如:绳、弹簧、水、空气、地壳等) (二)机械波 机械振动在介质中的传播形成机械波。 (三)形成机械波的条件 (1)要有 ;(2)要有能传播振动的 。 注意:有机械波 有机械振动,而有机械振动 能产生机械波。 (四)机械波的传播特征 (1)机械波传播的仅仅是 这种运动形式,介质本身并不随波 。 沿波的传播方向上各质点的振动都受它前一个质点的带动而做 振动,因此波动的过程是介质中相邻质点间依次“带动”、由近及远相继振动起来的过程,是将这种运动形式在介质中依次向外传播的过程。 对简谐波而言各质点振动的振幅和周期都 ,各质点仅在各自的 位置附近振动,并 随波动过程的发生而沿波传播方向发生迁移。 (2)波是传递能量的一种运动形式。 波动的过程也是由于相邻质点间由近及远地依次做功的过程,所以波动过程也是能量由近及远的传播过程。因此机械波也是传播 的一种形式。 (五)波的分类 波按照质点 方向和波的 方向的关系,可分为: (1)横波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。凸起的最高处叫 ,凹下的最底处叫 。 (2)纵波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。质点分布最密的地方叫作 ,质点分布最疏的地方叫作 。 知识点二:描述机械波的物理量知识 (一)波长(λ) 两个 的、在振动过程中对 位置的位移总是相等的质点间的距离叫波长。 在横波中,两个 的波峰(或波谷)间的距离等于波长。 在纵波中,两个 的密部(或疏部)间的距离等于波长。 振动在一个 内在介质中传播的距离等于一个波长。 (二)频率(f ) 波的频率由 决定,一列波,介质中各质点振动频率都相同,而且都等于波源的频率。 在传播过程中,只要波源的振动频率一定,则无论在什么介质中传播,波的频率都不变。 (三)波速(v ) 振动在介质中传播的速度,指单位时间内振动向外传播的距离,即x v t ?=?。 波速的大小由 的性质决定。一列波在不同介质中传播其波速不同。 对机械波来说,空气中的波速小于液体中的波速,小于固体中的波速。 (四)波速与波长和频率的关系 v = 注意:一列波的波长是受 和 制约的,即一列波在不同介质中传播时,波长不同。 知识点三:机械波的图象 (一)机械波的图象 波的传播也可用图象直观地表达出来。在平面直角坐标系中,用横坐标表示介质中各质点的 位置;用纵坐标表示某一时刻,各质点偏离 位置的位移,连接各位移矢量的末端,得出的曲线即为波的图象, (二)物理意义 表示各质点在某一时刻离开 位置的情况。

机械振动与机械波(计算题)

机械振动与机械波(计算题) t=0时刻的图像,如图乙是 A 点的振动图像,试求: A 点的 振幅多大、此时振动的方向如何 该波的波长和振动频率。 2. (10分)如图1所示,一列简谐横波沿 x 轴正方向传播, 波速为 v = 80m/s 。 P 、S 、Q 是波传播方向上的三个质点, 已知距离PS =、SQ =。在t = 0的时刻,波源P 从平衡位 置(x = 0, y = 0)处开始向上振动(y 轴正方向),振幅为15cm ,振动周期T =。 (1) 求这列简谐波的波长 (2) 在图2中画出质点 周期); (3) 在图3中画出波传到 Q 点时的波形图(在图中标出横轴的标度) 。 3. (9分)(1)下列说法中正确的是 _____ . A. 水面上的油膜在阳光照射下会呈现彩色,这是由光的衍射造成的 B. 根据麦克斯韦的电磁场理论可知,变化的电场周围一定可以产生变化的磁场 C. 狭义相对论认为:不论光源与观察者做怎样的相对运动,光速都是一样的 D. 在探究单摆周期与摆长的关系 ”的实验中,测量单摆周期 应该从小球经过最大位移 处开始计时,以减小实验误差 1 . (16分)如图甲是某简谐横 波在 (1) 入; P 的位移一时间图象(在图中标出横轴的标度,至少画出一个 15 15 (2)如图9所示,一个半径为 1 —的丄透明球体放置在水平面上,一束蓝光从 A 点沿水平 4 方向射入球体后经 B 点射出, R 最后射到水平面上的 C 点.已知OA =—,该球体对蓝光 2 -2 s X -15 图2 y/c x/m —15 图3 y/c

的折射率为J 3 .则它从球面射出时的出射角 3= ;若换用一束红光同样从 A 点 4 ?如图12-2- 12甲所示,在某介质中波源 A 、B 相距d = 20 m , t = 0时两者开始上下 振 动,A 只振动了半个周期,B 连续振动,所形成的波的传播速度都为 v = m/s ,开始 阶段两波源的振动图象如图乙所示. IS 12 -2 -12 (1) 定性画出t = s 时A 波所达位置一定区域内的实际波形; (2) 求时间t = 16 s 内从A 发出的半波前进过程中所遇到的波峰个数. 5. 如图12-2- 11所示,实线是某时刻的波形图, 射向该球体,则它从球体射出后落到水平面上形成的光点与 C 点相比, 偏左”偏右”或不变”?) ⑶一列简谐横波沿x 轴正方向传播,周期为2 s , t = 0时刻的波形如图 的波速是 _________ m/s ;质点a 平衡位置的坐标 x a = m ,再经 _____________ 位置 (填 10所示.该列波 s 它第一次经过 s 后的波形图. 虚线是 (1) 若波沿x 轴负方向传播,求它传播的可能距 离. (2) 若波沿x 轴正方向传播,求它的最大周期. (3) 若波速是35 m/s ,求波的传播方向. 6. 如图12-2- 9所示,空间同一平面上有 A 、 m , A 、C 两点处有完全相同的波源,振动频率为 上振动 B 、 C 二 点, AB = 5 m , BC = 4 m , AC = 3 波速为340 m/s ,则BC 连线 *

光的反射、折射、衍射

光的反射、折射、衍射 光的传播可以归结为三个实验定律:直线传播定律、反射定律和折射定律。 【光的直线传播定律】:光在均匀介质中沿直线传播。 在非均匀介质种光线将因折射而弯曲,这种现象经常发生在大气中,比如海市蜃楼现象,就是由于光线在密度不均匀的大气中折射而引起的。 【费马定律】:当一束光线在真空或空气中传播时,由介质1投射到与介质2的分界面上时,在一般情况下将分解成两束光线:反射(reflection)光线和折射(refraction)光线。 光线的反射 光线的反射取决于物体的表面性质。 如果物体表面(反射面)是均匀的,类似镜面一样(称为理想的反射面),那么就是全反射,将遵循下列的反射定律,也称“镜面反射”。 入射光线、反射光线和折射光线与界面法线在同一平面里,所形成的夹角分别称为入射角、反射角和折射角。 【反射定律】:反射角等于入射角。i = i' 对于理想的反射面而言,镜面表面亮度取决于视点,观察角度不同,表面亮度也不同。

当反射面不均匀时,将发生漫反射。其特点是入射光线与反射光线不满足反射定律。 一个理想的漫射面将入射光线在各个方向做均匀反射,其亮度与视点无关,是个常量。 光线的折射 一些透明/半透明物体允许光线全部/部分地穿透它们,这种光线称为透射光线。 当光线从一种介质(比如空气)以某个角度(垂直情形除外)入射到另外一种具有不同光学性质的介质(比如玻璃镜片)中时,其界面方向会改变,就是会产生光线的折射现象。 光的折射是由于光在不同介质的传播速度不同而引起的。 光线折射满足下列折射定律:入射角的正弦与折射角的正弦之比与两个角度无关,仅取决于两种不同介质的性质和光的波长,【折射定律】:n1 sin i = n2 sin r 任何介质相对于真空的折射率,称为该介质的绝对折射率,简称折射率(Index of refraction)。对于一般光学玻璃,可以近似地认为以空气的折射率来代替绝对折射率。公式中n1和n2分别表示两种介质的折射率。 当n1 = -n2时,折射定律就是变成反射定律了,所以反射定律可以看成是折射定律的特例。

选修3-4机械振动与机械波 光(原卷版)

选修3-4机械振动与机械波光(原卷版) 【专题考向】从近几年高考题来看,对于选修3-4内容的考查,形式比较固定,一般第(1)问为选择题,5个选项。从考查内容来看,机械振动和机械波、光学和电磁波的相关基础知识和基本方法都曾经命题;第(2)问命题主要以几何光学命题为主。 【知识、方法梳理】 1.分析简谐运动的技巧 (1)物理量变化分析:以位移为桥梁,位移增大时,振动质点的回复力、加速度、势能均增大,速度、动能均减小;反之,则产生相反的变化。 (2)矢量方向分析:矢量均在其值为零时改变方向。 2.波的传播方向与质点的振动方向判断方法 (1)“上下坡”法:沿波的传播方向,“上坡”时质点向下振动,“下坡”时质点向上振动。 (2)“同侧”法:波形图上某点表示传播方向和振动方向的箭头在图线同侧。 (3)“微平移”法:将波形沿传播方向进行微小的平移,再通过因波形平移引起质点的运动方向来确定。 3.几何光学临界问题的分析 画出正确的光路图,从图中找出各种几何关系;利用好光路图中的临界光线,准确地判断出恰好发生全反射的临界条件。 【热点训练】 1、(多选)如图,一列简谐横波沿x轴正方向传播,实线为t=0时的波形图,虚线为t=0.5 s 时的波形图。已知该简谐波的周期大于0.5 s。关于该简谐波,下列说法正确的是()

A.波长为2 m B.波速为6 m/s C.频率为1.5 Hz D.t=1 s时,x=1 m处的质点处于波峰 E.t=2 s时,x=2 m处的质点经过平衡位置 2、如图所示为某种透明材料制成的一柱形棱镜的横截面图,CD是半径为R的四分之一圆,圆心为O;光线从AB面上的M点入射,入射角为θ,光进入棱镜后恰好在BC面上的O点发生全反射,然后由CD面射出。已知OB段的长度为L,真空中的光速为c。求: (1)透明材料的折射率n; (2)该光在透明材料内传播的时间t。 3、一列简谐横波,某时刻的波形图象如图甲所示,从该时刻开始计时,波上A质点的振动图象如图乙所示,则:

费马原理与光的反射和折射

费马原理与光的反射和折射 福建省石狮市石光中学 陈龙法 1650年法国数学家费马对光的传播传播原理作了一个概括性的叙述:光从空间一点A 到另一点B,光沿着所需的时间为极值的路径传播。 1.光的反射 光线由A 点入射,经介面MN 反射到B 点(如图)。试求光线以最短时间所通过的路径。 分析 建立如图坐标系。A 点B 点是已知的, C 为界面上的任一点。设光的传播速度是V ,光线 由A 点经C 到B 经历时间 )(1 )(CB AC V x t += ()? ? ? ? ?+-++=2222121h x a h x V 式中V 、h 1、h 2及a 都是已知的,现在的问题是:光线AC 有怎样的一个已知方向(或x 取何值),才能使它由A 点出发到B 点的时间为最短。 为了求得最短时间,我们求t 对x 的导数: ()()???? ??+--- +='22221 21h x a x a h x x V x t 令()0='x t ,则 () 22 2 2 1 2 h x a x a h x x +--= + 若C 点的法线为CC ’,则由图知, Sin α=Sin β 所以,α=β,即入射角等于反射角。 又因为 ()() ()()()?????? ????? ?? ?+-+--+ +-- - ++- += ''2 2 2 2 2 22 22 2 2 122 12221 2 1h x a h x a x a h x a h x h x x h x V x t () ()[ ] ??? ??? ? ? +-+ +=2 /32222 2 2 /32 12211h x a h h x h V 式中所有值都是正的,所以()0>''x t ,故当α=β时,光线由A 点到B 点所需要的时间为最短。 2.光的折射 光线由A 点入射,经介面MN 折射到B 点(如图)。试求光线以最短时间从A 射到B 发生折射所通过的路径。 分析 建立如图坐标系。A 点B 点是已知的,C 为界面上的任一点。设光在第一介质中的传播速度 2)

专题七 机械振动和机械波+光剖析

专题定位本专题解决两大类问题:一是机械振动和机械波;二是光.作为选修模块的必考内容,高考试题中独立于其他模块而单独命题.《考试说明》中除对简谐运动的规律及振动图象;波动图象、波速公式的应用和折射率要求较高外,其他内容要求较低,命题方式仍是选择题. 高考对本部分内容考查的重点和热点有以下几个方面:①波的图象;②波长、波速和频率及其相互关系;③光的折射及全反射;④光的干涉、衍射及双缝干涉实验;⑤简谐运动的规律及振动图象. 应考策略复习本部分内容时,应加强对基本概念和规律的理解,抓住波的传播和图象、光的折射定律这两条主线,强化训练、提高对典型问题的分析能力. 1.简谐运动的对称性:振动质点在关于平衡位置对称的两点,x、F、a、v、E k、E p的大小均相等,其中回复力F、加速度a与位移x的方向相反,而v与x的方向可能相同,也可能相反.振动质点来回通过相同的两点间的时间相等,即t BC=t CB.振动质点通过关于平衡位置对称的等长的两线段的时间相等,即t BC=t B′C′.如图1所示. 图1 2.简谐运动的周期性:做简谐运动的物体,其位移、回复力、加速度、速度都随时间按“正弦”或“余弦”规律变化,它们的周期均相同.其位移随时间变化的表达式为:x=A sin_(ωt +φ)或x=A cos_(ωt+φ).

3.振动图象和波动图象的物理意义不同:振动图象反映的是一个质点在各个时刻的位移,而波动图象反映的是某时刻各质点的位移.振动图象随时间推移图象延续,但是已有的形状不变,而波动图象随时间推移图象沿传播方向平移. 4.波的现象 (1)波的叠加、干涉、衍射、多普勒效应. (2)波的干涉 ①必要条件:频率相同. ②设两列波到某一点的波程差为Δr .若两波源振动情况完全相同,则? ???? Δr =nλ(n =0,1,2,…),振动加强Δr =nλ+λ2(n =0,1,2,…),振动减弱 ③加强区始终加强,减弱区始终减弱.加强区的振幅A =A 1+A 2,减弱区的振幅A =|A 1-A 2|. ④若两波源的振动情况相反,则加强区、减弱区的条件与上述相反. 5.折射率与全反射 (1)折射率:光从真空射入某种介质,入射角的正弦与折射角的正弦之比叫做介质的折射率, 公式为n =sin i sin r .实验和研究证明,某种介质的折射率等于光在真空中的传播速度c 跟光在这种介质中的传播速度v 之比,即n =c v . (2)临界角:折射角等于90°时的入射角,称为临界角.当光从折射率为n 的某种介质射向真 空(空气)时发生全反射的临界角为C ,则sin C =1n . (3)全反射的条件: ①光从光密介质射向光疏介质; ②入射角大于或等于临界角. 6.光的干涉和衍射 (1)光的干涉现象和衍射现象证明了光的波动性,光的偏振现象说明光波为横波.相邻两明条 纹(或暗条纹)间的距离与波长成正比,即Δy =l d λ,利用双缝干涉实验可测量光的波长. (2)干涉和衍射的产生条件 ①双缝干涉产生亮、暗条纹的条件:屏上某点到双缝的路程差等于波长的整数倍时,该点干涉加强,出现亮条纹;当路程差等于半波长的奇数倍时,该点干涉减弱,出现暗条纹. ②发生明显衍射的条件:障碍物或小孔的尺寸跟光的波长相差不多或比光的波长小.

相关文档
相关文档 最新文档