文档库 最新最全的文档下载
当前位置:文档库 › Landsat8的不同波段组合说明

Landsat8的不同波段组合说明

Landsat8的不同波段组合说明
Landsat8的不同波段组合说明

Landsat 8 OLI_TIRS 卫星数字产品波段介绍

2013 年2月11日,美国航空航天局(NASA) 成功发射Landsat-8卫星。Landsat-8卫星上携带两个传感器,分别是OLI陆地成像仪(Operational Land Imager)和TIRS热红外传感器(Thermal Infrared Sensor)。

Landsat-8 在空间分辨率和光谱特性等方面与Landsat 1-7保持了基本一致,卫星一共有11个波段,波段1-7,9-11的空间分辨率为30米,波段8为15米分辨率的全色波段,卫星每16 天可以实现一次全球覆盖。

OLI陆地成像仪有9个波段,成像宽幅为185x185km。与Landsat-7 上的ETM 传感器相比,OLI陆地成像仪做了以下调整:1. Band 5的波段范围调整为

0.845–0.885 μm,排除了0.825μm处水汽吸收的影响;2. Band 8全色波段范围较窄,从而可以更好区分植被和非植被区域;3. 新增两个波段。Band 1蓝色波段(0.433–0.453 μm) 主要应用于海岸带观测,Band 9短波红外波段(1.360–1.390 μm) 应用于云检测。

LandSat-8上携带的TIRS热红外传感器主要用于收集地球两个热区地带的热量流失,目标是了解所观测地带水分消耗。

Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。

OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI 全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。

如表1是国外公布的OLI波段合成的简单说明。表2是前人在长期工作中总结的Landsat TM(ETM+)不同波段合成对地物增强的效果。对比表3,可以将表1和表2的组合方案结合使用。

图1:数据管理面板

图2:7、6、4,水体和植被得到了增强

图3:6、5、2,裸地得到增强,可以与有作物的耕地区分

图4:5、6、2,植被呈现不同颜色

图5:6、5、4,植被非常鲜艳,植被和非植被区很好的区分

landsat8波段介绍

Landsat8卫星包含OLI(Operational Land Imager 陆地成像仪)和TIRS(Thermal Infrared Sensor 热红外传感器)两种传感器。OLI包括了ETM+的所有波段,为了避免大气吸收部分特征,OLI对波段进行了重新调整,比较大的调整: 1、OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征; 2、OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征; 3、新增两个波段:海蓝波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测;短波红外波段,又称卷云波段(band 9; 1.360–1.390 μm) 包含水汽强吸收特征,可用于云检测; 4、近红外band5和短波红外band9与MODIS对应的波段更加接近。 Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。 OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm)

主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,

ETM多波段合成解析

ETM+遥感不同波段的用途(转) 各个波段的特征 B1 为蓝色波段,该波段位于水体衰减系数最小的部位,对水体的穿透力最大,用于判别水深,研究浅海水下地形、水体浑浊度等,进行水系及浅海水域制图; B2 为绿色波段,该波段位于绿色植物的反射峰附近,对健康茂盛植物反射敏感,可以识别植物类别和评价植物生产力,对水体具有一定的穿透力,可反映水下地形、沙洲、沿岸沙坝等特征; B3 为红波段,该波段位于叶绿素的主要吸收带,可用于区分植物类型、覆盖度、判断植物生长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、水文等特征均可提供丰富的植物信息; B4 为近红外波段,该波段位于植物的高反射区,反映了大量的植物信息,多用于植物的识别、分类,同时它也位于水体的强吸收区,用于勾绘水体边界,识别与水有关的地质构造、地貌等; B5 为短波红外波段,该波段位于两个水体吸收带之间,对植物和土壤水分含量敏感,从而提高了区分作物的能力,此外,在该波段上雪比云的反射率低,两者易于区分,B5 的信息量大,应用率较高; B6 为热红外波段,该波段对地物热量辐射敏感,根据辐射热差异可用于作物与森林区分、水体、岩石等地表特征识别; B7 为短波外波段,波长比 B5 大,是专为地质调查追加的波段,该波段对岩石、特定矿物反应敏感,用于区分主要岩石类型、岩石水热蚀变,探测与交代岩石有关的粘土矿物等; B8 为全色波段(Pan),该波段为 Landsat-7 新增波段,它覆盖的光谱范围较广,空间分辨率较其他波段高,因而多用于获取地面的几何特征。 波段组合: TM321(RGB):均是可见光波段,合成结果接近自然色彩。对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。这种RGB组合模拟出一副自然色的图象。有时用于海岸线的研究和烟柱的探测。 TM453(RGB):2个红外波段、1个红色波段。对内陆湖泊及河流分辨清楚。植被类型及长势可由棕、绿、橙、黄等色调分别。能区分土壤含水量(水分越多则越暗)。用于土壤湿度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确定。 TM742(RGB):植被基本都是绿色,城市呈现品红色或紫色,草地淡绿色,森林深绿色(针叶林色调比阔叶林暗)。能区分土壤和植被的含水量。适用于水/陆边界划分、土/植被边界划分,但不适于植被分类。土壤和植被湿度内容分析;内陆水体定位。植被显示为绿色的阴影。 TM432(RGB):标准假彩色。植被呈现各种红色调。深红色/亮红色为阔叶林,浅红色为草地等生物量较小的植被。密集的城市地区为青灰色。最适合用于植被分类。红外假色。在

landsat8波段介绍

landsat8: Landsat 8 是美国陆地卫星计划(Landsat)的第八颗卫星,于2013年2月11号在加利福尼亚范登堡空军基地由Atlas-V火箭搭载发射成功,最初称为“陆地卫星数据连续性任务”(Landsat Data Continuity Mission,LDCM)。Landsat 8上携带陆地成像仪(Operational Land Imager ,OLI)和热红外传感器(Thermal Infrared Sensor,TIRS)。 简介: Landsat 8是NASA与美国地质调查局(USGS)合作开发并由轨道科学公司(Orbital Science Corporation)建造的。NASA负责了设计、建造、发射和在轨校准阶段,在此期间卫星被称为Landsat 数据连续性任务(Landsat Data Continuity Mission ,LDCM)。2013年5月30日,USGS接管了常规操作,卫星改名为Landsat 8。USGS在地球资源观测与科学(EROS)中心负责发射后的校准活动、卫星操作、数据产品生成和数据存档。 介绍: OLI陆地成像仪包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185x185km。OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了 0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两

个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近。

ETM 遥感不同波段的意义及用途1解析

ETM+遥感不同波段的意义及用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、42假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类4处,C 类5处。为该区优选找矿靶区提供遥感依据。 743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;

同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754 对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律 754 陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MSS4图像、第五波段MSS5图像和第七波段MSS7图像,分别配以兰、绿、红色的彩色合成图像上的彩色。并称此种合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅兰色(浅水),冰雪为白色等。 541 XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。

Landsat卫星的TM ETM各波段介绍

Landsat卫星的TM/ETM各波段介绍 北京揽宇方圆信息技术有限公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、PLEIADES、高分一号、高分二号、资源三号等世界上最高分辨率卫星影像的代理权,能够为户提供全天候、全覆盖、多分辨率、多尺度的影像产品。整合最丰富的遥感影像数据资源,为用户提供最专业的遥感影像数据服务,北京揽宇方圆致力成为中国遥感影像数据服务第一品牌。 一、波段介绍 1.TM1 0.45-0.52um,蓝波段 对水体穿透强, 该波段位于水体衰减系数最小,散射最弱的部位(0.45—0.55um),对水体的穿透力最大,可获得更多水下信息,用于判断水深,浅海水下地形,水体浑浊度,沿岸水,地表水等; 能够反射浅水水下特征,区分土壤和植被、编制森林类型图、区分人造地物类型,分析土地利用。 对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。 2.TM2 0.52-0.60um,绿波段 对植物的绿反射敏感该波段位于健康绿色植物的绿色反射率(0.54—-0.55um)附近; 对健康茂盛植物的反射敏感, 主要观测植被在绿波段中的反射峰值,这一波段位于叶绿素的两个吸收带之间,利用这一波段增强鉴别植被的能力 对绿的穿透力强, 探测健康植被绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种,植被类型和评估作物长势 对水体有一定的穿透力,可反映水下特征,水体浑浊度,水下地形,沙洲,沿岸沙地等。. 可区分人造地物类型, 3.TM3 0.62-0.69um ,红波段 对水中悬浮泥沙反映敏感。该波段位于含沙浓度不同的水体辐射峰值(0.58—-0.68um)附近,对水中悬浮泥沙反映敏感。 叶绿素的主要吸收波段, 能增强植被覆盖与无植被覆盖之间的反差,亦能增强同类植被的反差,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率, 测量植物绿色素吸收率,并以此进行植物分类; 此外其信息量大,广泛用于对裸露地表,植被,岩性,地层,构造,地貌等为可见光最佳波段; 可区分人造地物类型 4 .TM4 0.76-0.96UM 近红外波段, 对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量, 处于水体强吸收区,水体轮廓清晰,用于勾勒水体,绘制水体边界、探测水中生物的含量和

Landsat简介及数据预处理教学内容

L a n d s a t简介及数据 预处理

Landsat8数据打开和辐射定标处理 美国的USGS(https://www.wendangku.net/doc/6a1316847.html,/)网站提供最新的Landsat8数据下载,产品类型标示L1GT,与之前的数据格式类似,每个波段以.tif文件提供,元数据存放在 _MTL.txt文件中。Landsat8增加了几个波段,详细信息浏览: https://www.wendangku.net/doc/6a1316847.html,/s/blog_764b1e9d01016gvh.html。 在ENVI5.0SP3中非常容易打开Landsat8数据,如下: (1)选择File->Open ,选择_MTL.txt文件打开。 (2)ENVI自动显示RGB显示真彩色图像,打开Data Manager对话框,可以看到 ENVI自动读取元数据信息,包括中心波长信息、波段名称等。并将数据根据类型自动划分为三类。 (3)从文件信息中可以看到,热红外数据被重采样为30米分辨率,与可见光-近红 外波段一致,全色为15米分辨率。

图1:Data Manager对话框 打开之后就可以很方便的进行其他处理,比如辐射定标、大气校正、融合等处理。下面使用ENVI下的通用定标工具进行Landsat8的辐射定标。 (1)选择ToolBox/Radiometric Correction/Radiometric Calibration,选择可见 光-近红外数据。

(2)在Radiometric Calibration面板中,可以选择定标类型:辐射亮度值和大气 表观反射率。 (3)其他选项是方便用于FLAASH大气校正。 (4)选择文件名和路径输出 (5)如图3所示,得到大气表观反射率数据。 图2:Radiometric Calibration面板

Landsat8的不同波段组合说明

Landsat8的不同波段组合说明 Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。 OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI 全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。 如表1是国外公布的OLI波段合成的简单说明。表2是前人在长期工作中总结的Landsat TM(ETM+)不同波段合成对地物增强的效果。对比表3,可以将表1和表2的组合方案结合使用。 表1:OLI波段合成

表2:Landsat TM波段合成总结说明

ENVI中进行波段组合非常方便,如下图为打开一个标准Landsat8数据,根据需求选择对应RGB合成显示即可。图2-图5为几个RGB组合。 图1:数据管理面板

图2:7、6、4,水体和植被得到了增强

图3:6、5、2,裸地得到增强,可以与有作物的耕地区分

图4:5、6、2,植被呈现不同颜色 图5:6、5、4,植被非常鲜艳,植被和非植被区很好的区分

ETM 7个波段组合的不同用途_百度文库解析

ETM +7个波段组合的不同用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势, 图面色彩丰富, 层次感好, 具有极为丰富的地质信息和地表环境信息; 而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用 1:1 0万 TM7、4、 2假彩色合成片进行解译,共解译出线性构造 1615条, 环形影像 481处 , 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上, 对全区进厅成矿预测, 圈定金银 A 类成矿远景区 2处, B 类 4处, C 类 5处。为该区优选找矿靶区提供遥感依据。 743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。这是因为 TM7波段(2.08-2.35微米对温度变化敏感; TM4、 TM3波段则分别属于红外光、红光区,能反映植被的最佳波段, 并有减少烟雾影响的功能;同时TM7、 TM4、 TM3(分别赋予红、 绿、蓝色的彩色合成图的色调接近自然彩色,故可通过 TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754 对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星 MSS 7, MSS5, MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律

754 陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段 MSS4图像、第五波段 MSS5图像和第七波段 MSS 7图像,分别配以兰、绿、红色的彩色合成图像上的彩色。并称此种合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅兰色(浅水,冰雪为白色等。 541 XX 开发区砂石矿遥感调查是通过对陆地卫星 TM 最佳波段组 fefee7合的选择(TM5、 TM4、 TM1以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。 543 例如把 4、 5两波段的赋色对调一下,即 5、 4、 3分别赋予红、绿、 蓝色, 则获得近似自然彩色合成图像, 适合于非遥感应用专业人员使用。 543 波段选取及主成份分析我们的研究采用 1995年 8月 2日的 TM 数据。对于屏幕显示和屏幕图象分析,选用信息量最为丰富的 5、 4、 3波段组合配以红、绿、兰三种颜色生成假彩色合成图象,这个组合的合成图象不仅类似于自然色, 较为符号人们的视觉习惯, 而且由于信息量丰富, 能充分显示各种地物影像特征的差别, 便于训练场地的选取,可以保证训练场地的准确性;对于计算机自动识别分类,采用主成分分析(K-L 变换进行数据压缩,形成三个组分的图象数据,用于自动识别分类。 543 742

不同波段组合说明

Landsat8 ETM+7个不同波段组合说明 Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。 OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段 (band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。 如表1是国外公布的OLI波段合成的简单说明。表2是前人在长期工作中总结的Landsat TM(ETM+)不同波段合成对地物增强的效果。对比表3,可以将表1和表2的组合方案结合使用。 表1:OLI波段合成

741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具 有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形 迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及 火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成 片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山 岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类 4处,C类5处。为该区优选找矿靶区提供遥感依据。 743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。这是因为 TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的 最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色 调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754 对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成的标准 假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律。 754 陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MSS4图像、 第五波段MSS5图像和第七波段MSS7图像,分别配以兰、绿、红色的彩色合成图像上的彩色。并称此种 合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅 兰色(浅水),冰雪为白色等。 541 XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、 TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。 543 例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。 543 波段选取及主成份分析。我们的研究采用1995年8 月2日的TM数据。对于屏幕显示和屏幕图象分析,选用信息量最为丰富的5、4、3波段组合配以红、绿、兰三种颜色生成假彩色合成图象,这个组合的合成图象不仅类似于自然色,较为符号人们的视觉习惯, 而且由于信息量丰富,能充分显示各种地物影像特征的差别,便于训练场地的选取,可以保证训练场地 的准确性;对于计算机自动识别分类,采用主成分分析(K-L变换)进行数据压缩,形成三个组分的图象 数据,用于自动识别分类。 543 742 该项工作是采用以遥感图像解译为主结合地质、物化探资料进行研究的综合方法。解译为 目视解译,解译的遥感图像有:以1984年3月成像经处理放大为1:5万卫星TM假彩色片(5、4、3波 段合成)和1979年7月拍摄的1:1.6万黑白航片为主要工作片种;采用1986年11月的1:10万TM假 彩色片(7、4、2波段合成》为参考片种。 432 卫星遥感图像示蓝藻暴发情况我们先看一看蓝藻爆发时遥感监测机理。蓝藻暴发时绿色的藻类

TM不同波段组合及其用途解析

741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类4处,C类5处。为该区优选找矿靶区提供遥感依据。 743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754 对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律。754 陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MSS4图像、第五波段MSS5图像和第七波段MSS7图像,

分别配以兰、绿、红色的彩色合成图像上的彩色。并称此种合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅兰色(浅水),冰雪为白色等。 541 XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。 543 例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。543 波段选取及主成份分析。我们的研究采用1995年8月2日的TM数据。对于屏幕显示和屏幕图象分析,选用信息量最为丰富的5、4、3波段组合配以红、绿、兰三种颜色生成假彩色合成图象,这个组合的合成图象不仅类似于自然色,较为符号人们的视觉习惯,而且由于信息量丰富,能充分显示各种地物影像特征的差别,便于训练场地的选取,可以保证训练场地的准确性;对于计算机自动识别分类,采用主成分分析(K-L变换)进行数据压缩,形成三个组分的图象数据,用于自动识别分类。 543 742 该项工作是采用以遥感图像解译为主结合地质、物化探资料进行研究的综合方法。解译为目视解译,解译的遥感图像有:以1984年3月成像经处理放大为1:5万卫星TM假彩色片(5、4、3波段合成)和1979年7月拍摄的1:1.6万黑白航片为主要工作片种;采用1986年11月的1:10万TM假彩色片(7、4、2波段合成》为参考片种。

TM影像各波段介绍

TM影像各波段介绍 1.TM1 0.45-0.52um,蓝波段,对水体穿透强,对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等. 2.TM2 0.52-0.60um,绿波段,对健康茂盛植物的反射敏感,对力的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征. 3.TM3 0.62-0.69UM ,红波段,叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面. 4 .TM4 0.76-0.96UM 近红外波段,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,水域测量. 5.TM5 1.55-1.75UM,中红外波段,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力.易于反映云与雪. 6.TM6 1.04-1.25UM热红外波段,可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,进行热制图. 7.TM7 2.08-3.35UM,中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物. 二.类型提取: 1.城市与乡镇的提取:TM1+TM7+TM3+TM5+TM6+TM2-TM4 2.乡镇与村落:TM1+TM2+TM3+TM6+TM7-TM4-TM5 3.河流的提取:TM5+TM6+TM7-TM1-TM2-TM4 4.道路的提取:TM6-(TM1+TM2+TM3+TM4+TM5+TM7) 三.光谱差异 TM1居民地与河流菜地不易分开. TM2居民地与河流菜地不易分 TM3乡村与菜地不易分 TM4农田与道路不易分,乡镇,道路,河滩易浑. TM5县城与农田不易分 TM6村庄与河流易混.

Landsat系列辐射定标参数整理

辐射定标参数整理 1.亮度温度计算 亮度温度是一个常用的温度概念,是在卫星高度上传感器探测波段范围内普朗克黑体辐射函数与传感器响应函数乘积积分得到的辐射值.亮度温度包含有大气和地表对热辐射传导的影响,不是真正意义上的地表温度。 计算公式: 其中,Lλ为传感器探孔处光谱辐射强度,即星上辐射亮度值,实现像素DN值转化为绝对辐射亮度值。 1.1.星上辐射亮度(Lλ) 遥感影像的亮度值(DN值)都是经过量化和纠正过的以8bit编码的数字影像,为了精确反演地物特性,有必要将DN值转化为星上辐射亮度值。 https://www.wendangku.net/doc/6a1316847.html,ndsat8 Lλ= M L*Q cal + A L 通过查看影像的头文件,可以获取偏差参数:M L(RADIANCE_MULT_BAND_x)和A L(RADIANCE_ADD_BAND_x)为图像的增益和偏置。 1.1. https://www.wendangku.net/doc/6a1316847.html,ndsat5/7

QCAL为经过辐射校正的图像灰度值即DN值;L max为探测器可检测到的最大辐射亮度,也是最大灰度值所相应的辐射亮;L min为探测器可检测到的最小辐射亮度,也是最小灰度值所相应的辐射亮度。 表 1 Landsat5 TM的Lmin和Lmax值 表 2 Landsat7 ETM+的Lmin和Lmax值 QCAL max为传感器接收到的最大灰度值,QCAL min为传感器接收到的最小灰度值。(1)如

果没有元数据信息,QCAL MIN默认值1(TM和ETM+1)或者0(MSS);QCAL MAX取默认值255(TM 和ETM+)或者127(MSS)。(2)如果有元数据信息,QCAL MIN取值如下:对于LPGS Products(The level 1 product generation system)取值为1,对于NLAPS Products(National Landsat Archive Production System)在04 April 2004之前取值为0,在04 April 2004之后取值为1;QCAL MAX 取值为127(MSS), 255(TM、ETM)。 注:LPGS和NLAPS分别是两种数据处理系统得到的产品,从2008年12月份开始,L7 ETM+ 和L5都是以LPGS系统处理,L4 TM和MSS以NLAPS系统处理。 表 3 Landsat5/7的QCALmin和QCALmax的值 1.2.预设常量K K1和K2是发射前预设的常量,具体值如下表所示。 2.大气顶层反射率(表观发射率) https://www.wendangku.net/doc/6a1316847.html,ndsat 5/7(TM/ETM) ρ= π?Lλ?d2 ESUN?cosθ 其中:ρ——地面相对反射率;D——日地天文单位距离;Lλ——传感器光谱辐射值,即大气顶层的辐射能量;ESUN——大气顶层的太阳平均光谱辐射,即大气顶层太阳辐照度;1注:Landsat7热红外波段(Band 6)在格式1时总设置为低增益(6L),格式2时总设置为高增益(6H)

遥感影像的波段组合及用途

高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择,以提高解译的速度和精度。 若要获得丰富的地质信息和地表环境信息,可以选择TM(7、4、1)波段的组合,TM(7、4、1)波段组合后的影像清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚; 若要获得监测火灾前后变化分析的影像,可以选择TM(7、4、3)波段的组合,它们组合后的影像接近自然彩色,所以可通过TM(7、4、3)彩色合成图的分析来掌握林火蔓延与控制及灾后林木的恢复状况; 若要获得砂石矿遥感调查情况,可以选择TM(5、4、1)波段组合;用TM影像编制洲地芦苇资源图时,宜用TM(3、4、5)波段组合的影像,分辨率最高,信息最丰富;用MSS图像编制土地利用地图,通常采用MSS(4、5、7)波段的合成影像; 若要再区分林、灌、草,则需要选用MSS(5、6、7)波段的组合影像。 遥感影像时相的选择 : 遥感影像的成像季节直接影响专题内容的解译质量。对其时相的选择,既要根据地物本身的属性特征,又要考虑同一地物不同地域间的差异。例如解译农作物的种植面积最好选在8、9月份,因为这时作物成熟了,但还没有收割,方便各种作物的区别;解译海滨地区的芦苇地及其面积宜用5、6月份的影像;解译黄淮海地区盐碱土分布图宜用3、4月份的影像。 高分辨率影像的选择 : 分辨率的选择要符合自己的实际需要,分辨率高对解译速度和精度都有很大帮助。随着科技的不断发展,已经有了15~30m分辨率的ETM/TM影像、2.5~5.0m分辨率的SPORT 影像、2m分辨率的福卫二号、lm分辨率的ORBVIEW一3/IKONOS、0.6m分辨率的QUICK BIRD 等。法国SPOT-5卫星影像分辨率可达到2.5m,并可获得立体像对,进行立体观测。SPOT 一5卫星上的主要遥感设备是2台高分辨率几何成像仪(HRVIR),其工作谱段有4个,主要任务是监测自然资源分布,特别是监测农业、林业和矿产资源,观测植被生长状态与农田含水量等项,对农作物进行估产,了解城市建设与城市土地利用状况等。卫星遥感传感器和遥感数据处理技术发展很快,一些传感器的立体观测,各类遥感数据分辨率的提高,为遥感影像解译标志和遥感影像信息模型的开发、研究提供了有利条件,为快速和精确地进行解译提供了便利。 ETM+遥感不同波段的用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色

landsat7波段介绍

Landsat-7是美国的陆地卫星计划(Landsat)中的第七颗,于1999年4月15日在加利福尼亚范登堡空军基地用Delta II 火箭发射。卫星携带增强型专题制图仪(Enhanced Thematic Mapper ,ETM+)传感器。自2003年6月以来,该传感器已采集并传输了扫描线校正器(SLC)故障导致的数据间隙数据。到2020年底,地球资源卫星9号将取代轨道上的Landsat 7。 在数据产品方面,Landsat-7与Landsat-5的最主要差别有:增加了分辨率为15米的全色波段(PAN波段);波段6的数据分低增益和高增益数据,分辨率从120米提高到60米。此外,在增加了2个校准灯之外,还增加了一个全孔径太阳校准器(FASC)和一个部分孔径太阳校准器(PASC)。 产品分类: 1. 标准景产品 按标准WRS分幅体系(World Reference System)确定产品。 2. 移动景产品 移动景产品是指在连续两幅标准景产品中分割出的图像产品,其大小与标准景产品相同。需指定产品下移比例。 3. 超级景(superscene)产品 在Landsat-7数据预处理系统中,超级景产品是指图像长度在1景和3景之间、宽度与标准景产品相同的连续图像产品。需指定产品下移比例及产品大小(以景为单位),但必须在连续3个标准景的范围内选择,也就是说,下移比例及产品大小之和不能超过3。

4. 子区产品 针对标准景产品、移动景产品和超级景产品,可以选择1/4景产品、1/2景产品、或给定产品范围,也可以用户上机选子区。与以上产品一样,子区产品也只经过一次数据重采样。

ETM各波段组合的用途

ETM+遥感不同波段的用途 | [<<][>>] 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息 的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息; 而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界 、特殊岩性的展布以及火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造161 5条, 环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类4处,C类5处。为该区优选找矿靶区提供遥感依据。 743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林

火及灾后变化。这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754 对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS 7,MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律 754 陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MSS4图像、第五波段MSS5图像和第七波段MSS 7图像,分别配以兰、绿、红色的彩色合成图像上的彩色。并称此种合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅兰色(浅水),冰雪为白色等。 541 XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7 合的选择(TM5、TM4、TM1)以及航空、航天多种遥感资料的解译分

Landsat 各产品参数及常用波段组合

Landsat 各产品参数及常用波段组合

ETM+个波段组合的不同用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类4处,C类5处。为该区优选找矿靶区提供遥感依据。 743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。这是因为TM7波段(2. 08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754 对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律

陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MSS4图像、第五波段MSS5图像和第七波段MSS7图像,分别配以兰、绿、红色的彩色合成图像上的彩色。并称此种合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅兰色(浅水),冰雪为白色等。 541 XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。 543 例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。 543 波段选取及主成份分析我们的研究采用1995年8月2日的TM数据。对于屏幕显示和屏幕图象分析,选用信息量最为丰富的5、4、3波段组合配以红、绿、兰三种颜色生成假彩色合成图象,这个组合的合成图象不仅类似于自然色,较为符号人们的视觉习惯,而且由于信息量丰富,能充分显示各种地物影像特征的差别,便于训练场地的选取,可以保证训练场地的准确性;对于计算机自动识别分类,采用主成分分析(K-L变换)进行数据压缩,形成三个组分的图象数据,用于自动识别分类。 543 742 该项工作是采用以遥感图像解译为主结合地质、物化探资料进行研究的综合方法。解译为目视解译,解译的遥感图像有:以1984年3月成像经处理放大为1:5万卫星TM假彩色片(5、4、3波段合成)和197 9年7月拍摄的1:1.6万黑白航片为主要工作片种;采用1986年11月的1:10万TM假彩色片(7、4、2波段合成》为参考片种。 432 卫星遥感图像示蓝藻暴发情况 我们先看一看蓝藻爆发时遥感监测机理。蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。由于所含高叶绿素A的作用,蓝藻区在Lands atTM2波段具有较高的反射率,在TM3波段反射率略降但仍比湖水高,在TM4波段反射率达到最大。因此,在TM4(红)、3(绿)、2(蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与周围的湖水面也有明显不同。 453 本研究遥感信息源是中国科学院卫星遥感地面接收站于1995年10月接收美国MSS卫星遥感TM波段4 (红)、波段5(绿)、波段3(蓝)CCT磁带数据制作的1∶10万和1∶5万假彩色合成卫星影像图。图上山地、丘陵、平原台地等喀斯特地貌景观及各类用地影像特征分异清晰。成像时期晚稻接近收获,且稻田中不存积水,因此耕地类型中的水田色调呈粉红色;旱地由于作物大多收获,且土壤水分少而呈灰白色;菜地则由于蔬菜长势好,色调鲜亮并呈猩红色。园地色调呈浅褐色,且地块规则整齐、轮廓清晰。林地中乔木林色调呈深褐色,而分布于喀斯特山地丘陵等地区的灌丛则呈黄到黄褐色。牧草地大多呈黄绿色调。建设用地中的城镇呈蓝色;公路呈线状,色调灰白;铁路呈线条状,色调为浅蓝;机场跑道为蓝色直线,背景草地呈蓝绿色;在建新机场建设场地为白色长方形;备用旧机场为白色色调,外形轮廓清晰、较规则。 水库和河流则都呈深蓝色调。 453 采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地物的色彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。

ETM+7个波段组合的不同用途

ETM+7个波段组合的不同用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:1 0万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类 4处,C类5处。为该区优选找矿靶区提供遥感依据。 743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林 火及灾后变化。这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、

绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754 对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS 7,MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律 754 陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MSS4图像、第五波段MSS5图像和第七波段MSS 7图像,分别配以兰、绿、红色的彩色合成图像上的彩色。并称此种合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅兰色(浅水),冰雪为白色等。 541 XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、 TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。 543 例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、

相关文档
相关文档 最新文档