文档库 最新最全的文档下载
当前位置:文档库 › 高炉技术简介

高炉技术简介

钢铁厂高炉喷煤操作

高炉喷煤 一、喷吹煤粉已成为小高炉炼铁的当务之急 i.当前,钢铁冶金行业遭遇到全球性的原料价格上涨,焦炭、矿石的 价格涨幅惊人,冶炼成本普遍提高,这给小高炉炼铁业带来更大的 困难。因此,降低冶炼成本成了小高炉作业的重要目标。其中,降 低焦化,尤其重要。 b)从50年代起,人们就在努力向高炉内喷吹相对廉价的煤粉,以部分替代 价格相对昂贵的焦炭。经过半个世纪的努力,在喷煤技术方面取得了巨 大的成功,喷煤技术日趋成熟。但是,成功的喷煤作业绝大部分都是在 大高炉完成的,高炉喷煤技术还有待推广和完善。 二、高炉喷吹煤粉降低焦比的原理 i.焦炭在高炉内主要有三大作用:还原剂和料柱骨架。焦炭生产过程 相对复杂,对于原料有特殊要求,由于资源和设备投资方面的因素, 这些年来焦炭价格不断上涨,成为炼铁成本上升的主要原因。从高 炉风口向高炉的内喷吹煤粉,由于具有和焦炭同样的碳素,可以部 分替代焦炭低廉许多,从而可以在很大程度上降低生铁生产成本。 三、喷吹煤粉的技术效果 i.高炉喷煤后,除了焦比大幅度降低外,还给高炉操作增加了一个调 剂手段,高炉操作人员可以利用控制喷煤量来控制高炉的热状态; 喷煤后,由于煤比焦炭具有更多的挥发分,从而增加了煤气中氢的 含量,煤气还原能力增强,有利于发展间接还原,这实际上也是降 低焦比的原因之一。 四、高炉喷煤的特点

高炉喷煤之后,高炉压差并没有显著增加,也就是说,对于高炉透气性的影响不如大高炉那样明显。高炉由于整体能耗水平较高,喷煤后 效果比较明显,置换比好于大高炉,接近1.0。高炉采用球式热风炉,风 温相对较高,有利于喷煤。此外,小高炉喷煤的实践表明:喷煤后高炉 炉况进一步稳定,炉缸工作状态改善,普遍顺行。 五、重要意义 i.高炉喷煤对现代高炉炼铁技术来说是具有革命性的重大措施。它 是高炉炼铁能否与其他炼铁方法竞争,继续生存和发展的关键技 术,其意义具体表现为: b)以价格低廉的煤粉部分替代价格昂贵而日趋匮乏的冶金焦炭,使高炉 炼铁焦比降低,生铁成本下降; c)喷煤是调剂炉况热制度的有效手段; d)喷煤可改善高炉炉缸工作状态,使高炉稳定顺行; e)喷吹的煤粉在风口前气化燃烧会降低理论燃烧温度,为维持高炉冶炼 所必需的动力,需要补偿,这就为高炉使用高风温和富氧鼓风创造了 条件; f)喷吹煤粉气化过程中放出比焦炭多的氢气,提高了煤气的还原能力和 穿透扩散能力,有利于矿石还原和高炉操作指标的改善; g)喷吹煤粉替代部分冶金焦炭,既缓和了焦煤的需求,也减少了炼焦设 施,可节约基建投资,尤其是部分运转时间已达30年需要大修的焦 炉,由于以煤粉替代焦炭而减少焦炭需求量,需大修的焦炉可停产而 废弃; h)喷煤粉代替焦炭,减少焦炉炉座数和生产的焦炭量,从而可降低炼焦 生产对环境的污染。 六、工艺组成 高炉喷煤工艺系统主要由原煤贮运、煤粉制备、煤粉输送、煤粉喷吹、干燥气体制备和供气动力系统组成。 七、工艺模式 从煤粉制备和喷吹设施的配置上来分,高炉喷煤工艺有两种模式,即间接喷吹模式和直接喷吹模式。制粉系统和喷吹系统结合在一起直接向高炉喷吹的工艺叫直接喷吹工艺;制粉系统和喷吹系统分开,通过罐车或气动输送管道将煤粉从制粉车间送到靠近高炉的喷吹站,再向高炉喷吹煤粉的工艺

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、 直接还原法、熔融还原法等,其 原理是矿石在特定的气氛中(还 原物质CO、H2、C;适宜温度 等)通过物化反应获取还原后的 生铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主 要方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧

化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

国外钢铁企业的高炉喷煤技术

2 国外钢铁企业的高炉喷煤技术 2.1浦项光阳厂和阿塞勒Gijon厂 近年来,浦项公司和阿塞勒公司的高炉生产者一直计划改进现有的喷煤装置,并对其静力分配器系统提出两种改进方案。改进现有喷煤装置的主要原因如下:1)焦炭的价格提高,质量较差,改进喷煤系统后,可以减少焦炭的使用量;2)寻求一种更经济、更稳定的高炉操作方式;3)高炉中修后,铁水生产能力提高;4)多年来的喷煤实践证明,喷吹煤粉可以实现高炉工艺最佳化,高煤比操作是可行的;5)原有喷煤装置的计量精度无法满足更高煤比的要求,即高煤比时不能保证稳定喷吹。 要想对原有的喷煤装置进行改进,有两个问题必须解决:首先,提高喷煤装置喷吹能力,应额外增加1台喷吹罐或优化喷吹罐的倒罐循环次序;其次,须检测煤粉总流量和流量精度。 对于单管流量控制系统或采用分配器的喷吹系统以及流量均衡喷嘴的系统,在安装测量和控制设备后,一般能够达到所要求精度,为了达到今后所必需的高精度,须改进喷煤装置。 2.1.1 单管流量控制 计划用一台喷吹罐取代静力分配器。喷吹罐后序的喷吹管线将安装煤粉流量的测量装置和煤粉流量控制阀,以对高炉各个风口煤粉喷吹过程实现闭环控制。喷吹罐前序的输送罐将用于向喷吹罐送煤。输送煤的载气一部分用于维持喷吹罐内的压力,另一部分通过布袋收粉器释放掉。布袋收粉器出口处的压力控制阀用于控制喷吹罐内的压力。这套方案具有单管流量控制装置的所有优点,如在喷吹管路中,煤粉流量精度的偏差小于1%、总流量控制偏差小于0.5%以及带入高炉的氮气量少等。实际上,由于喷吹罐的位置靠近高炉,因此喷吹罐内的喷吹压力较低,可实现高浓相输送。 此外,由于输送系统(输送罐到喷吹罐)与喷吹系统是分开的,所以总流量的波动不会影响喷吹流量。对简单分配器进行的第一套改进方案已在韩国浦项公司光阳厂的1号高炉成功实施,其原理见图1-1所示。

高炉喷煤基本知识

高炉喷煤基本知识 一、喷吹煤粉对高炉的影响: 1、炉缸煤气量增加,鼓风动能增加,燃烧带扩大。煤粉含碳氢化合 物高,在风口前气化后产生大量H2,使炉缸煤气量增加,煤气中的H/C比值越高,增加的幅度越大,无疑也将增大燃烧带; H2的粘度和密度均小,穿透能力大于CO,部分煤粉在风管和风口内就开始脱气分解和燃烧,所形成的高温混合气流其流速和动能远大于全焦冶炼时的风速和动能,故喷吹煤粉后,风口面积应适当扩大,以保持适宜的煤气流分布。 2、理论燃烧温度下降,而炉缸中心温度均匀并略有上升。理论燃烧 温度下降的原因:①喷入煤粉量冷态进入燃烧带;②煤粉中碳氢化合物在高温作用下先分解再燃烧,分解反应吸收热量;③燃烧生成的煤气量增加。 炉缸中心温度上升的原因:①煤气及动能增加炉缸径向温度梯度缩小;②上部还原得到改善,热支出减少;③高炉热交换改善。 3、料柱阻损增加,压差升高。①喷吹后煤气量增加流速加快;②料 柱中的矿/焦比值越大。 4、间接还原发展。①煤气中还原成份(CO+H2)浓度增加;②H2 的数量和浓度显著提高,炉内温度场变化。 二、喷吹燃料“热补偿” 喷吹燃料以常温态进入高炉要消耗部分热量需进行热补偿,经验

表明:喷煤量增加,50kg/t ·Fe 需补偿风温均80℃。 三、 热滞后: 煤粉在炉缸分解吸热增加,初期使炉缸温度降低直到新增加喷吹量带来的煤气量和还原气体浓度(尤其是H 2量)的改变而改善了矿石的加热和还原下到炉缸后,开始提高炉缸温度比过程所经历的时间为“热滞后”时间,即炉料从H 2代替C 参加还原的区域(炉身温度1100~1200℃处)下降到炉缸所经过的时间,一般滞后时间在2—4h 。 估算热滞后时间 ·V 13 V 2—每批料的体积m 3 N —下料批数 批/h 四、 煤粉喷入高炉后的去向: 风口前燃烧 煤粉 未燃煤粉 随煤气逸出炉外 五、 置换比煤粉的置换比常为0.7—0.9,一般取0.8。 六、 喷煤高炉操作 1、 应固定风温调剂煤量,用调节喷吹量来保持料速的基本稳定。 2、 喷煤纠正炉温波动的效能,随喷煤量的增加而减弱。

高炉炼铁生产工艺流程简介(一)

高炉炼铁生产工艺流程简介(一) 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。高炉:炼铁一般是在高炉里连续进行的。高炉又叫鼓风炉,这是因为要把热空气吹入炉中使原料不断加热而得名的。这些原料是铁矿石、石灰石及焦炭。因为碳比铁的性质活泼,所以它能从铁矿石中把氧夺走,而把金属铁留下。 高炉的主要组成部分高炉炉壳:现代化高炉广泛使用焊接的钢板炉壳,只有极少数最小的土高炉才用钢箍加固的砖壳。炉壳的作用是固定冷却设备,保证高炉砌体牢固,密封炉体,有的还承受炉顶载荷。炉壳除承受巨大的重力外,还要承受热应力和部的煤气压力,有时要抵抗崩料、坐料甚至可能发生的煤气爆炸的突然冲击,因此要有足够的强度。炉壳外形尺寸应与高炉型、炉体各部厚度、冷却设备结构形式相适应。炉喉:高炉本体的最上部分,呈圆筒形。炉喉既是炉料的加入口,也是煤气的导出口。它对炉料和煤气的上部分布起控制和调节作用。炉喉直径应和炉缸直径、炉腰直径及大钟直径比例适当。炉喉高度要允许装一批以上的料,以能起到控制炉料和煤气流分布为限。炉身:高炉铁矿石间接还原的主要区域,呈圆锥台简称圆台形,由上向下逐渐扩大,用以使炉料在遇热发生体积膨胀后不致形

成料拱,并减小炉料下降阻找力。炉身角的大小对炉料下降和煤气流分布有很大影响。炉腰:高炉直径最大的部位。它使炉身和炉腹得以合理过渡。由于在炉腰部位有炉渣形成,并且粘稠的初成渣会使炉料透气性恶化,为减小煤气流的阻力,在渣量大时可适当扩大炉腰直径,但仍要使它和其他部位尺寸保持合适的比例关系,比值以取上限为宜。炉腰高度对高炉冶炼过程影响不很显著,一般只在很小围变动。炉腹:高炉熔化和造渣的主要区段,呈倒锥台形。为适应炉料熔化后体积收缩的特点,其直径自上而下逐渐缩小,形成一定的炉腹角。炉腹的存在,使燃烧带处于合适位置,有利于气流均匀分布。炉腹高度随高炉容积大小而定,但不能过高或过低,一般为3.0~3.6m。炉腹角一般为79~82 ;过大,不利于煤气流分布;过小,则不利于炉料顺行。炉缸:高炉燃料燃烧、渣铁反应和贮存及排放区域,呈圆筒形。出铁口、渣口和风口都设在炉缸部位,因此它也是承受高温煤气及渣铁物理和化学侵蚀最剧烈的部位,对高炉煤气的初始分布、热制度、生铁质量和品种都有极重要的影响。炉底:高炉炉底砌体不仅要承受炉料、渣液及铁水的静压力,而且受到1400~4600℃的高温、机械和化学侵蚀、其侵蚀程度决定着高炉的一代寿命。只有砌体表面温度降低到它所接触的渣铁凝固温度,并且表面生成渣皮(或铁壳),才能阻止其进一步受到侵蚀,所以必需对炉底进行冷却。通常采用

我国高炉喷煤技术的现状及发展趋势

邯钢1000m3高炉提高喷煤比的探索 刘伟,樊泽安,王飞,徐俊杰 (河北钢铁集团邯郸钢铁公司炼铁部,河北邯郸056015) 摘要:邯钢4#高炉(有效容积1000m3)经过不断探索,加强原燃料管理、高炉的操作和维护,使喷煤比逐月提高、焦比和综合焦比不断下降。喷煤比由2008年的130.6 kg/t提高到2009年6月的163.1 kg/t,焦比由361kg/t下降到了305kg/t,综合焦比由524kg/t下降到了500kg/t,取得了良好的经济效益。 关键词:高炉;喷煤比;探索 引言 邯钢4#高炉有效容积917m3,2007年、2008年虽然炉况长期稳定顺行,但由于燃料变化比较大,有时甚至一天就变换数次焦炭,各项指标未达到最好水平,平均日产2600t上下,一级品率70%,焦比361kg/t,煤比130kg/t,焦丁比16kg/t风温1100℃,平均[Si]0.61%。进入2009年以来,4#高炉以“低耗高产”举措应对当前市场挑战,进一步探索好的经济技术指标成效显著,通过监督改善原燃料质量、适时调整煤气流分布、降低入炉焦比、提高富氧、增加喷煤、高风温协调互补、适当提高炉渣碱度等措施,基本实现了全捣固焦冶炼的长期稳定顺行,并实施了低硅冶炼,取得了很好的经济技术指标。2009年4月以来,平均日产达到2700t以上,利用系数达到3.0,一级品率93.45%,焦比降到305kg/t,煤(全无烟煤)比达到160kg/t以上,中焦比达到18kg/t,焦丁比达到16kg/t,风温达到1135℃,平均[Si]达到0.43%以下。通过优化高炉操作技术经过不断实践和探索,在喷吹全无烟煤的情况下煤比达到160kg/t以上实属难得(见表1)。 表1 4高炉生产指标 利用系/t. (m-2. d-1) 煤 比 /kg.t-1 入 炉焦比 /kg.d-1 焦 丁比 /kg.d-1 中 焦比 /kg.d-1 风 温/℃ R 2 [ Si]/% 20 08 2.88 6 1 30.6 361 14 20 1 107 1 .15 .61 20 09.4 3.0 1 51.7 327 16 18 1 132 1 .13 .44 20 3.001308 17 18 110

高炉喷煤制粉控制方案(王宏伟)

高炉喷煤控制系统 技术方案 辽宁中新自动控制有限公司 2003-2-17

目录 一、概述 二、高炉喷煤工艺流程及主要部分自动化控制说明 三、自动化系统硬件组成 四、控制策略 五、控制系统的监控与操作

一、概述 近年来,我国的高炉喷煤取得了巨大的成绩,已经形成了具有特色的、成熟配套的喷煤技术和工艺流程。在高炉炼铁过程中采用富氧大喷煤可以节省大量焦炭,能够较大幅度地降低炼铁成本。例如采用先进的配煤技术,能够把不同性能的煤种进行混合,以提高其燃烧率;采用中速磨进行煤粉制备,大幅度降低电耗和噪音污染;采用热风炉烟气做载气和干燥气,既节约了能耗又起到了防爆作用;采用布袋一次收粉,取消了一级、二级旋风收粉装置;采用一级风机,实现全负压操作;采用直接喷吹工艺,喷吹系统和制粉系统设在同一厂房内;喷吹罐可采用串联或并联方式,采用流化罐上出料及浓相输送技术,可以使出煤均匀,防止脉动和减少对输煤管道的磨损;采用总管加分配器工艺将煤粉送至高炉的各个风口;采用电容流量计进行总管及支管煤粉计量,配合其它设备可以形成闭环煤量自动控制;采用氧煤枪进行局部富氧以提高煤粉燃烧率;采用供氧及安全控制系统以防止氧气泄露。因此,如何在保证控制安全可靠的前提下,实现低成本自动化,是喷煤自动控制设计者主要考虑的问题。 二、高炉喷煤工艺流程及主要部分自动化控制说明 从工艺角度来讲,整个系统可分为制粉和喷吹两个子系统,制粉工艺系统又分为原料控制系统、干燥系统、磨煤系统,喷吹工艺系统又分为布袋除尘、喷吹系统、动力系统。如下面高炉喷煤主工艺图。其工艺流程见图

高炉喷煤工艺主流程图 1:排烟风机入口调节阀,2:布袋除尘事故充氮阀,3:布袋反吹阀,4:中速磨事故充氮阀,5:煤粉仓事故充氮阀,6:均压阀,7:煤粉仓流化阀,8、9:喷吹罐放散阀,10、11:蝶阀,12、13:球阀,14、15:充压阀,16、25:补压阀,17、18:喷吹罐流化阀,19、22:补气调节阀,20、23:出煤阀,24、快切阀,26:氮气空气切换阀,27:安全用氮减压阀,28:氮气总管调节阀电气控制主要设备: a、制粉系统: 圆盘给料机、胶带机、检铁器、犁式卸料器、定量给料机、热风炉废气引风机,助燃风机,中速磨(密封电机、液压电机、慢传电机、加热器、润滑泵)、排煤风机。 各种阀:热风炉废气放散阀,冷风阀、干燥剂放散阀,中速磨事故充氮阀,快切阀,输煤阀等。 b、喷吹系统: 主排烟风机、布袋叶轮给煤机 各种阀:排烟风机入口调节阀,布袋除尘事故充氮阀,布袋反吹阀,煤粉仓脉冲阀、停风阀、煤粉仓事故充氮阀,煤粉仓流化阀,均压阀,喷吹罐放散阀,蝶阀,球阀,充压阀,补压阀,喷吹罐流化阀,补气调节阀,出煤阀,快切阀,氮气空气切换阀,安全用氮减压阀,

高炉喷煤技术方案 2

1 概述 上世纪60年代初,我国高炉喷煤试验获得成功后,高炉喷煤技术在我国逐渐推广应用。进入90年代,特别是经过“八五”“氧煤强化炼铁”项目攻关后,我国高炉喷煤技术发展跃上了一个新的台阶,已经赶上了世界先进水平,吨铁喷煤量和覆盖率大幅度增加。2002年全国54家重点(原重点和地方骨干)联合钢铁企业吨铁喷煤量已达到125kg/t,企业喷煤覆盖率达到85%以上。高炉喷吹煤粉及提高喷煤量已经成为现代高炉炼铁技术的发展方向,同时也是降低生产成本最直接和最有效的手段之一。当前我国炼铁生产规模正在迅速扩大,生产效率也在不断提高,对焦炭的需求量日益增加,导致冶金焦价格高,资源紧缺,高炉大量喷煤是解决这一矛盾的最佳措施。 贵公司现有两座高炉450立方米的高炉。年产生铁约126万吨。如两座高炉采用全焦冶炼,每年需要焦炭约70万吨。高炉生产成本较高,采用高炉喷煤技术,不但在很大程度上可以缓解焦炭的供需矛盾,减轻焦炭质量波动对高炉操作的影响,而且也会进一步降低炼铁生产成本,同时也为高炉操作增加了下部调节手段,有利于改善高炉生产的技术经济指标。 鉴于上述情况,以及着眼于贵公司长期的发展战略目标,拟建设高炉喷煤工程,工程建设指标为喷煤工艺及设备能力正常XX kg/t,最大达到XXX kg/t喷煤比能力,喷吹煤种为无烟煤浓相输送设计。置换比按X计算,可以代替约X万吨焦炭。

2.喷煤设计工艺要求 2.1 喷煤量 根据贵公司对喷煤工程的要求,和参照国内外喷煤技术的发展…。 2.2 设计条件 喷吹用煤…。 2.3工艺流程 设计采用…方案,以节省投资和占地面积。…本喷煤工程包括…高炉。目前高炉喷煤系统有关的工艺参数如表1所示。 表1 喷吹系统有关的基本参数 2.4 喷吹站 喷吹站采用并罐浓相喷吹工艺。 喷吹站的操作全部自动联锁,整个系统各设备既可自动也可手动。 2.5 原煤理化指标

浅谈高炉经济喷煤比

浅谈高炉经济喷煤比 王立杰尹焕岭赵杨 (唐钢不锈钢) 摘要:高炉喷煤是降低铁水成本,增加利润的重要手段;同时,直接喷吹煤粉,不经过焦化工艺,减少了环境污染。提高喷煤比应具备的条件是:稳定的原燃料质量、合适的理论燃烧温度、精细的操作和合理煤气分布。高炉提高喷煤比是冶炼技术发展的必然趋势,然而各单位能满足的条件不同,因此各单位的经济煤比也应根据自身条件确定。 关键词:高炉经济喷煤比理论燃烧温度未燃煤粉置换比 0 前言 高炉喷吹煤粉则是部分替代焦炭的“提供热量”及“还原剂和渗碳剂”,即以价格低廉的煤粉部分替代价格日趋昂贵的冶金焦炭,以缓解因炼焦用主焦煤匮乏所造成的冶金焦炭产量渐显不足的矛盾,最终降低高炉炼铁焦比和生铁成本。当前高炉生产的一些习惯性认识和操作,直接影响到高炉喷煤的科学性,且给高炉喷煤效益乃至生铁成本带来不良影响,因此选择合理的喷煤比就是实现企业效益最大化的重要一项。 1 经济喷煤比的概念 所谓经济喷煤比,是在一定的生产条件下(产量、原燃料质量、炉料结构、煤和焦炭的市场价格等),喷煤比最高且稳定、焦比和燃料比最低的操作煤比。可见,经济喷煤比的大小取决于喷煤量水平、煤交置换比和能量消耗利用程度,最终有总燃料消耗、工序成本来确定。喷煤对高炉工序降低值的影响可按下式计算:△J=PCR(P k×R—P m)/1000(1) 式中△J——高炉工序成本降低值,元/t; PCR——喷煤比,kg/t; R——未校正煤焦置换比; P k——焦炭价格,元/t; P m——煤粉工序成本,元/t。 从图1曲线可见,喷煤生产操作中存在经济喷煤比。由于原燃料质量、炉况参数在一定范围内波动,因此经济喷煤比是一个操作范围。 2 提高喷煤比的关键技术 2.1稳定原燃料条件 2.1.1提高焦炭质量,特别是焦炭的热性能,保证高炉必要炉料柱透气性。

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

高炉制粉喷煤技术的研究与应用

高炉制粉喷煤技术的研究与应用 作者:王维乔 1. 技术研发历程 高炉喷吹煤粉可以降低焦炭消耗,减少炼焦污染,调节炉况,促进高炉稳定顺行,强化高炉冶炼。首钢作为我国高炉喷煤技术的开创者和先行者,早在196 3年,就进行了系统的研究与试验,并于1964年在国内率先将其在高炉上进行工业化试验。1966年,首钢在全公司的高炉上进行推广应用,当时的年平均喷煤量达159kg/tHM,最高月平均喷煤量达到279kg/tHM,创造了当时的世界纪录。 1994年,在首钢1726-2536m3四座高炉上应用,采用集中制粉,间接喷吹,串联罐多管路喷煤。2000年,首钢进行重大技术改进,采用中速磨煤机制粉,布袋一级收粉,双系列串联罐直接喷吹,在首钢两座(1780m3、2536m3)高炉上应用,达到国际先进水平。 2004年,首钢国际工程公司设计的湘钢1800m3高炉,采用中速磨制粉,并列罐间接喷吹。2007年,首钢国际工程公司设计的迁钢2号2650m3高炉,采用并列罐直接喷吹,并实现全自动喷煤操作。2009年,首钢国际工程公司设计的京唐1号5500m3高炉,采用并列罐直接喷吹,全自动喷煤操作,并实现浓相输送。2010年,首钢国际工程公司设计的迁钢3号4000m3高炉,采用并列罐直接喷吹,全自动喷煤。2010年,首钢国际工程公司设计的京唐2号5500m3高炉,采用并列罐直接喷吹,浓相输送,全自动喷煤。 经过几十年的发展,首钢国际工程公司不断完善和优化设计,掌握了从原煤料场到煤粉制备和喷吹的全套高炉喷煤工艺设计。近年来,首钢国际工程公司还参与编制了国家标准GB 50607-2010《高炉喷吹煤粉工程设计规范》。 2. 高炉喷吹煤粉技术的主要技术特点 2.1 长距离直接喷吹,紧凑型布局 由首钢国际工程公司设计的首钢2号、3号高炉喷煤工程,完全采用国产化技术和设备,采用紧凑型短流程工艺,实现了煤粉长距离直接喷吹。2号高炉喷煤总管长度达到452m,已被列入第九批《中国企业新记录》。该项工程经有关专家鉴定,达到国际先进水平。 2.2 浓相输送 煤粉喷吹一般按输送浓度可分为稀相输送和浓相输送。稀相输送工艺相对简单,运行比较稳定;而随着煤粉输送浓度的提高,虽然增加了运行不稳定的可能性,但其可以节约大量输送气体的消耗,并且减少了管道磨损,因此其降低了维

高炉炼铁生产工艺流程简介

高炉炼铁生产工艺流程简介 导读]:高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入 高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。【发表建议】 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。 高炉冶炼原理简介: 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉

顶是由料钟与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石 中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生 成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 :高炉冶炼工艺流程简图 [高炉工艺]高炉冶炼过程: 高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批 送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。

高炉喷煤的现状及提高喷煤比的措施

高炉喷煤的现状及提高喷煤比的措施 摘要: 本文介绍了国内高炉喷煤现状, 分析了提高喷煤量的限制因素如炉缸热状态,煤粉燃烧,置换比,以及提高高炉喷煤比的措施,通过提高焦炭质量、改善鼓风质量、采用氧煤喷吹、混合喷吹等技术和工艺措施可有效提高喷煤比。 关键词:喷吹煤粉限制因素措施 1 前言 由于受自然资源和技术条件的限制, 我国在今后相当长的一段时间内仍将采用高炉炼铁工艺生产生铁。这是因为非高炉炼铁技术如直接还原炼铁, 目前只有在天然气资源丰富的国家或地区得到较大发展, 熔融还原炼铁正处于开发和完善阶段, 同时, 现有高炉生产能力很大, 还有大量的存量资产, 对现有的焦炉和高炉进行改造, 所需投资远比利用非高炉炼铁技术新建的炼铁设施要省得多。因此, 高炉炼铁技术在炼铁生产中仍将处于主导地位。但是, 高炉生产目前正受到投资、资源、成本、环保和运输等各方面的巨大压力。如何减轻这些压力是推动高炉炼铁继续生存与向前发展的关键。因此, 大力发展喷煤技术, 提高喷煤量是高炉炼铁技术发展的必然趋势。而高炉喷煤对优化高炉生产, 提高其经济效益有很重要的意义, 它可以扩展风口前的回旋区, 缩小呆滞区; 增加煤气中的氢气含量, 改善还原过程; 增加矿石在炉内停留的时间, 提高一氧化炭的利用率; 有利于提高风温和采用富氧鼓风, 对降低焦比和提高高炉的产量有显著效果; 它可以大量代替价格较高的焦炭, 降低生铁成本, 同时富化高炉煤气, 改善钢铁联合企业的能源供应。 2 高炉喷煤的现状 我国高炉喷煤具有较长的历史。进入90年代后高炉喷煤技术有了快速发展, 主要表现在高炉喷煤的一些重要技术问题取得突破, 如: 大高炉喷煤粉分配技术、串联罐软连接连续计量技术、可调混合器调节喷煤量技术、风口单支管煤粉计量技术流化上出料浓相输送技术等。目前, 重点企业喷煤高炉有51座, 占78%, 地方骨干企业喷煤高炉33座, 占28%。全国高炉喷煤总量从1990年的218万t 增加到1997年的638万t, 重点企业高炉喷煤总量达到489万t, 喷煤比达到84Kg/ t, 地方骨干企业喷煤量达到149万t,通过理论研究和生产实践, 确定了所追求的喷吹煤粉的目标: 吨铁燃料消耗500kg以下, 其中焦炭250kg以下, 煤粉250kg以上, 喷煤率(煤比/燃料比100%)达到50%以上。目前, 上述目标只有个别高炉短期内达到过, 如宝钢1号高炉1999年9月月平均焦比达到249. 7kg/ ,t 煤比260. 6kg/,t但燃料比超过了 500kg/,t 为510. 3kg/ t。该高炉1999年全年平均焦比为264kg/ ,t 煤比238kg/,t燃料比502kg/t。目前, 全球还没有高炉能够达到年平均焦比低于250kg/ ,t 同时煤比高于250kg/t 的。 3 提高喷煤量的限制因素 3.1 炉缸热状态 理论和实践表明, 只要高炉下部热量充沛, 上升的煤气通过热交换就能够保证上部的冶炼过程所要求的温度和热量。因此, 炉缸热状态成为高炉生产的关键。表明炉缸热状态的指标有多种,如风口前燃料燃烧的火焰温度(也称理论燃烧温度T理)、焦炭进入燃烧带时的温度Tc、必要的临界炉缸热贮备量等。世界各国炼铁工作者都把T理作为评价炉缸热状态的参数, 并根据各自的原燃料等操作条件和生产业绩, 统计归纳出各种T理的计算式, 以指导生产。应当指出, 各国的生产条件不同, 操作习惯也不同, 因此经验计算式不是万能的, 不能不顾自身条件随意套用。

高炉炼铁简介

高炉炼铁简介 高炉炉前出铁 高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中不还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。简史和近况早期高炉使用木炭或煤作燃料,18世纪改用焦炭,19世纪中叶改冷风为热风(见冶金史)。20世纪初高炉使用煤气内燃机式和蒸汽涡轮式鼓风机后,高炉炼铁得到迅速发展。20世纪初美国的大型高炉日产生铁量达450吨,焦比1000公斤/吨生铁左右。70年代初,日本建成4197立方米高炉,日产生铁超过1万吨,燃料比低于500公斤/吨生铁。中国在清朝末年开始发展现代钢铁工业。1890年开始筹建汉阳铁厂,1号高炉(248米,日产铁100吨)于1894年5月投产。1908年组成包括大冶铁矿和萍乡煤矿的汉冶萍公司。1980年,中国高炉总容积约8万米,其中1000米以上的26座。1980年全国产铁3802万吨,居世界第四位。 高炉炼铁面临淘汰中国钢铁业急需升级换代 高炉炼铁技术,适合于那些工业化初步发展的国家,生产大路货、初级钢材,但在发达国家,高炉技术正面临淘汰。电炉技术炼钢是当今世界趋势。电炉炼铁可以提升钢材质量和特殊性能,减少原材料和电力等的浪费。在订单经济时代,生产要根据市场需求变化,但高炉炼铁技术周期长,生产产品低级,且生产的产品还需要一道甚至更长的加工链条。电炉炼钢则可缩短钢材冶炼周期,可根据订单安排生产,原材料和动力资源浪费少,不再如高炉炼铁那样存在大量的产品积压情况。当今社会进入材料时代后,市场需要的钢材不再是传统的材料,高炉炼铁生存空间更大为缩小,且附加值很低,以中国钢铁业为例,全国钢铁产业利润还不如开采铁矿的赚钱,原因就是因为高炉炼铁技术低级落后,不能生产高附加值产品。我们固然赞美中国钢铁业对国家的贡献,但不能躺在功劳薄上睡大觉,高炉炼铁技术已经进入死胡同。作为世界上第一钢铁生产大国,世界铁矿第一进口大国,世界钢铁业初级钢材第一出口大国,世界钢铁第一进口大国,世界钢铁产业人数最多的国家,世界钢铁厂最多的国家,中国必须认真思考中国钢铁业的下一步发展战略。不能以推动就业为借口,把钢铁业的发展寄托在国家的巨型投资拉动钢铁业的繁荣,而要认真的思考减少污染,提高产品附加值和适应市场的实际需求,实现钢铁业的产业升级,效益升级。 编辑本段主要产铁国家产量和技术经济指标

高炉喷煤工艺流程的粉吹和喷吹工艺全过程

评定成绩伊犁职业技术学院 系别:机电工程系 专业:机电设备维修与管理班级:09-1 学号:A0903600109 姓名:姚富强 指导教师: 蔡立新 完成时间: 2012-6-20

伊犁职业技术学院 姚富强 摘要 我国的钢铁企业为了节约生产成本,探索了多种节能降耗的手段,而高炉喷煤是钢铁企业降焦比增效益的有效途径。我国对高炉喷煤技术的开发和应用尽管较早,但从近几年的发展情况来看,国家产业政策对高能源消耗进行了限制,高炉要想在激烈的竞争环境中取得生存和发展,只有努力寻求技术创新和进步,着力降低能耗,提高经济效益,减少和控制污染。 关键词:高炉喷煤;工艺流程图;磨煤机;干燥炉

目录 前言 (3) 第一章绪论 (3) 第二章高炉喷煤工艺介绍 (4) 第三章磨煤机. (6) 第四章干燥炉 (9) 前言

高炉喷煤技术始于1840年S.M.Banks关于喷吹焦炭和无烟煤的设想;世界最早的工业应用即是根据这一设想于1840~1845年间在法国博洛涅附近的马恩省炼铁厂实现的。高炉喷吹煤粉是从高炉风口向炉内直接喷吹磨细了的无烟煤粉或烟煤粉或这两者的混合煤粉,以替代焦炭起提供热量和还原剂的作用,从而降低焦比,降低生铁成本,它是现代高炉冶炼的一项重大技术革命。由此背景引出本次毕业设计的题目高炉喷煤工艺流程。课题主要阐述了高炉喷煤工艺流程的粉吹和喷吹工艺全过程。 第一章绪论 1.1课题研究的意义 目前高炉喷煤对现代高炉炼铁技术来说是具有革命性的重大措施。它是高炉炼铁能否与其他炼铁方法竞争,继续生存和发展的关键技术,其意义具体表现: (1)以价格低廉的煤粉部分替代价格昂贵而日趋匮乏的冶金焦炭,使高炉炼铁焦比降低,生铁成本下降; (2)喷煤是调剂炉况热制度的有效手段;喷煤可改善高炉炉缸工作状态,使高炉稳定顺行; 1.2 高炉喷煤技术的现状及发展趋势 高炉喷煤是大幅度降低然比和生铁成本的重大技术措施,是推动炼铁系统技术进步的核心力量。自80年代初高炉喷煤技术在世界范围内广泛开发应用以来,世界各国钢铁厂的高炉喷煤量不断地提高。其中西欧、日本等国发展尤其迅猛,在1993年左右就有部分高炉的喷煤比达到200kg/t铁,在世界处于领先地位,目前部分高炉年均喷煤比已达160~200kg/t铁,最高月平均喷煤比达到210~250kg/t铁。经过最近十年来的研究和实践,高炉喷煤技术水平日益提高,获得

高炉炼铁生产工艺流程简介

高炉炼铁生产工艺流程简介 [导读]:高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。 高炉冶炼原理简介: 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 高炉冶炼工艺流程简图: [高炉工艺]高炉冶炼过程: 高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中, 定期从铁口、渣口放出。 高炉冶炼工艺--炉前操作

21世纪高炉喷煤技术展望

21世纪高炉喷煤技术展望 进入21世纪,随着各行业的高度发展,对能源需求将更加提高。高炉冶炼技术也要适应这种要求,朝着进一步节约能源和减少环境污染的方向发展。以上述要求为中心,对高炉喷煤技术提出了更新更高的要求,建议重点发展以下几项技术: 1.超量喷吹煤粉 近年来,国外一些先进高炉喷煤量已达到200kg/t以上,如荷兰霍高文高炉1997年月平均喷煤量210kg/t,日本钢管福山厂4号高炉(4288m3)1994年10月喷煤量达218kg/t,日本神户制钢加古川1号高炉1998年3月喷煤量已达到254kg/t。我国高炉喷煤量近年来也有较大提高,1998年重点企业高炉平均喷煤量已达到109kg/t,宝钢三座高炉喷煤量已先后达到200kg/t,其中一号高炉已达到250kg/t。但绝大多数高炉喷煤量只有100kg/t左右,距世界先进水平尚有较大差距。按21世纪发展高炉喷煤技术的要求,大部分高炉喷煤量应达到200kg/t,一些条件较好的先进高炉应达到250kg/t以上,使高炉喷煤量等于甚至超过焦炭使用量。达到上述要求,每年可少用焦炭600~700万t(折合焦煤1200~1400万t),相当于少建15~20座大型焦炉,将产生巨大的经济效益和环境效益。要达到这个水平,首先需要改进高炉原燃料质量,提高焦炭强度,降低焦炭灰分,提高入炉矿石品位,降低渣量,改善烧结,球团矿冶炼性能,其次提高喷煤装备和控制水平,改进喷吹工艺,等等。 2.喷吹回收的废旧塑料 随着人们生活水平提高,生活垃圾产生量日益增加。我国仅北京、上海两市每年产生生活垃圾约1000万t,其中废旧塑料约80~100万t,如能从生活垃圾中分离出废塑料,经粉碎后喷入高炉,将为废塑料处理开辟一个新途径。 近年来,德国、日本开始向高炉喷吹废塑料。由于塑料基本上是C-H化合物,塑料中灰分含量<1%、比煤粉灰分(10%~15%)低得多。喷吹1kg废塑料,至少相当于1.2kg煤粉,而且使高炉冶炼每吨铁的渣量降低,喷吹废塑料100kg/t,可降低渣量30~40kg/t。废塑料的发热值与煤粉比较(见表)约高47%。 塑料与煤粉主要成分及发热值比较 %C H O A(灰分)QMJ/kg) 塑料84.312.6 1.20.343.2 煤粉74.1 4.78.510.429.3 大部分废塑料的主要成分为乙烯(C2H4),从风口喷入后,在热风和2000℃的高温下迅速分解,气化为CO和H2,参加高炉内的还原反应。由于高炉自身的热效率高达80%,废塑料喷入高炉其热能利用率达80%,而一般焚烧炉的热效率只有30%~40%。另外,从环境保护方面看,高炉是一个密闭系统,废塑料在高炉内分解、气化和参加还原反应,从炉内排出,产生对环境有害的二恶烷(Dioxine)只有<0.001Ng/m3,远远低于焚烧炉废气中二恶烷含量0.1Ng/m3。因此,将废塑料粉碎后喷入高炉,仅从北京、上海两市城市垃圾中回收废塑料80~100万t,可代替煤粉96~120万t,与焚烧炉处理比较,热效率更高,对环境产生的二次污染最小,可以说是处理废塑料的最佳途径。 1993年以来,德国不来梅钢铁厂先后在两座高炉上试验喷吹废塑料粉,1996年8月喷吹废塑料量已达到5000t/m,德国环保部认为完全符合环保标准的要求。日本钢管公司1996年10月在京浜厂4093m3高炉建成喷吹废塑料装置,喷吹废塑料成功。川崎、神户制钢也在建喷吹废塑料装置,并拟对部分含氯塑料先期处理,脱氯后再喷入

高炉喷煤方案及概算

1、概述 1.1现状 高炉喷煤是冶金企业节焦降耗行之有效的重要途径。我厂目前有750m3高炉两座,120m3高炉四座,均已有喷煤设施。750m3高炉目前平均喷煤量160㎏/t铁,120m3高炉平均喷煤量70㎏/t铁。喷煤车间现有ZGM95型中速磨煤机一台,制粉铭牌出力为36t/h,刚好满足上述高炉喷煤。 2#750m3高炉易地大修投产后,一台ZGM95型中速磨煤机的生产能力已不能满足所有高炉的喷煤要求,须新上制粉设备。喷吹系统也不能满足新高炉的喷煤需要。同时,煤场实际贮煤量只有3640t,当喷吹量都为最大时,煤场贮煤量只能满足2.8 d生产,若都按目前正常喷吹量,则煤场贮煤量能满足3.5 d生产。显然煤场太小,需要扩建。烟气炉的能力也需进一步加大。 1.2设计依据 莱芜钢铁股份有限公司规划部[2001]96号文《关于下达2#750m3高炉大修设计任务计划的通知》。 1.3设计原则 (1)优化设计,做到先进、适用、经济、顺行、高效。 (2)设计中做到总体考虑,合理布局,兼顾将来的进一步发展;尽量不影响现有设施的生产;尽量减少占地、拆迁和工程量。 (3)按照喷吹烟煤设计,制粉系统设气氛保护。 (4)制粉系统采用短流程,用高浓度布袋收粉器作为一级收粉设备,不设旋风收粉器。为减少危险点,布袋与煤粉仓之间不设螺旋输 送机。 (5)喷吹采用浓相输送技术。 (6)考虑检修、备品备件方便,制粉采用ZGM95型中速磨煤机。

(6)严格执行国家有关环保、安全、工业卫生和消防等规定。 1.4设计范围 本工程设计范围包括:原煤场扩建及贮运,烟气系统,制粉系统,喷吹系统。 1.5主要经济技术指标 1.6设计特点及采用的新技术 ⑴按照喷吹烟煤设计,系统设惰性气体保护措施。 ⑵制粉采用以中速磨煤机为核心的短流程工艺,用一级高浓度袋式煤粉收集器收粉。 ⑶节能,每吨煤粉耗电28度。 ⑷煤场的煤仓及圆盘给料机可以适应喷吹烟煤、无烟煤、混合煤各煤种的

相关文档