文档库 最新最全的文档下载
当前位置:文档库 › 机器人腕关节所用球面齿轮传动

机器人腕关节所用球面齿轮传动

机器人腕关节所用球面齿轮传动
机器人腕关节所用球面齿轮传动

嚣袢精“机§^Ro晰

i●■{l…{{6……●m%

机器人腕关节所用球面齿轮传动

刘鹄转车元君

t…ⅢⅢt㈨|loor?'

■lIⅢ女T口自自¥∞口nm∞■Ⅲ*#*∞Ⅲ■Ⅱ自口』^E-*w"Ⅲ…}m”T"**#mTm#4目目#∞口口口*※月Ⅲ镕#-*{*t#■Ⅲ*m☆hT■m^Ⅲ#s*¥n《日t一女**∞工榴廑自■mhtIz

£■*t●¥■m目*

中Ⅲ骨l目:T~●i■#n日:B

l…自

4Ⅲ*t*m*^**∞∞**目#,∞

lⅥI*i“日十^H#o∞#≈#**mⅢ.

“nM十#&∞#0”目#十n.&W十nm

r"Ⅷ¥£*】比W“日☆白勺0☆#∞*∞mm

目Ⅲ*#*#

Ⅷ☆n*■Ⅲ,#Ⅲ*#∞日*☆Ⅳ目*

目#☆*自目^☆*《**■口**¥&“

m##E镕Ⅲmm∞∞i.*tmmH#*Ⅱ

Ⅲ0☆自Ⅻ自☆∞自ⅡiI=i女iMfz]%

m一#**m-Ⅻ“目镕mR*Ⅻ#**Ⅲb☆*Ⅲ^n☆☆《∞*mT“Ⅱ*Ⅲ*M"#女《.m口**目∞mI£女.*“¨mⅢ*月mInⅢm&m^#mT十i*mrq☆mB¥月日t《H{Ⅲ镕**月t*g*¥±£H∞I6*《*B々X,c%∞∞目-BH&#b女目m£*.p*nm∞^镕¥mt}“mg.MmW±一十#■■Ⅲ日∞*T0

2目镕*口齿∞^*计算Ⅱ齿廓女#

Ⅲ**月∞*m*n∞Ⅲ*m*%-##tⅢ“m2*i镕*口*∞*目*AJJI'Dfn^☆**∥*mⅢ.☆m口々tHte-~nh☆“N}&々月H∞&K^smA

o”-一√卜‘:”一}噼IJl口Ⅲ《Ⅲ小jⅫ自q*Wj《

J-’“^m6—0’n.T…nf:jt#日ii+■-Ⅳ

 万方数据

第22卷第5期刘鹄然:机器^腕关节所用球面齿轮传动

4¨

故‰。。一一(o,O。)c。sa+以■二i歹五。而同理“一=一(o’oI)c。s口+ ̄/尺}。一(o,o。)zsinz口

“Ⅻ≤“≤U…

3坐标系的设置(3)(4)(5)

传捌比为1的球面齿轮传动,实质上相当于两个等大的节球在空问作对滚.而凹齿和凸齿沿节曲面经线方向的啮合就相当于一对传动比为1的平面齿轮的啮台.可以用平面啮合时的齿廓求法求凸齿齿形.

如图3所示,1、2为半径相同的两个节圆,P为节点,两节圆中心分别为0:0。,中心距为。一ZR,坐标系0,z-Y,z,与坐轮1固联,坐标系0237。J。≈。与齿轮2固联,XPY为固定坐标系,初始位置Yty:Y三轴重合.坐标变换关系

臣]一F季;I善;9‘司F]cs,

亭]一I;--c苫si,n9一RRcsin。qs’司昏1

『。一“』“,01]c,,

=l—1(7)

LJj1

为便于观察凸齿齿廓,在轮2节圆上再建立局部坐标系0,%j,。

㈤≤-刊圈㈦

l?jloo1jLIj

围2锥形凹齿4啮合条件与对应凸齿齿廓凹齿齿廓法矢

啮台条件式

一X

图3坐标系设置

(9)渗

 万方数据

机器人2000年9月

代入式(i0),整理得进一步整理得

菇.6‘Ⅲ=0

㈣=茁m×≠m一巧一五

口<2)一苗(2’×≯‘。)一一[西一(y一口)+](yn,一JEn,)一Rn:一0

c。s(n一妒一—(O—'O—O]cros—a一+u

每给出一个U,即可由上式确定一个P,将凹齿1上的齿廓变换到凸齿2上,便为凸齿齿廓

z』一。2一。lcos2妒一Y1sin29+asin{o

“一一y2一R一一。1sin29一,lcos29+acosP—R

将此曲线绕齿对称轴线旋转一周.即为凸齿齿柱回转面.

5凸齿的根切检验

设在与构件1相固联的坐标系s,中给出了第一齿面(母面)的齿廊方程

F(01,y1)=0

啮合条件总可写成

,(而。Y咖;0

当第二齿面(生成面)上发生根切时,其上的啮合速度

髓3’一0

或群”+6“”一0

式中,彰”——母面上的啮合速度;6“”——两齿面啮合接触点的相对速度.式(15)在坐标系S。里表示则为

靖’+西”1—0

写成分量形式,得

螋’一一以12’

喝?一一吲2’

螋?=一《12’

将啮台条件式(14)对f求导

苦鲁+襄孥+面3f五dg一_0

缸,出’封,出。却df

考虑到垫dt=嘏:,孥一w爿,鬈破为1,得

章:21+釉:2)一一苗

即为根切条件判别式.由前面推导

∥12’一∞一2y,2x)

变换到坐标系S.中

O(121:f妇一缸)“P十孙却]

L-(Ⅱ一2y)sin9+2xcos刮(10)(12)(13)(14)(15)(16)(17)(18)

 万方数据

第22卷第5期刘鹄然:机器人腕关节所用球面齿轮传动413再将z.y均用x,Y。表示,得

由i1讲”’一0,得

p}:2’=acosP一2y1

u{:21一一asin9+2xl

dCOS(口一曲=2(y1COSa+而sina)

(20)

(21)

∥⑥重合度一?+骂鬟襻(25)

 万方数据

414机器人2000年9月式中双齿啮台弧(重叠弧)表示前一对齿轮进人啮合到后一对齿轮退出啮合之间的啮合弧.

7计算实例

设两个球面齿轮节球半径R一36mm.中心距为72mm,模数m一3.齿的分布如图4所示,口一∥’一15。对应第一条纬线,口一目”k30。对应第二条纬线.综合考虑齿轮啮合时的重台度、齿形干涉、齿顶变尖等因素,经计算a—l3。、S一8.573mm较合适.取球面凸齿轮的齿顶球半径见z=42.9mm,齿根球半径尺,2—35.25mm,球面凹齿轮的齿顶球半径R。一36mm,齿根球半径Rtl一28.35mm.

根据式(3),可求出“。,一17.79ram,根据式(24),可求出在根切界限点处“,一i7.90mm.

由于“,>“一,故凸齿无根切现象.

根据式(25)经计算,球面齿轮从中心齿到第一圈齿沿着经线OD方向啮合时的重合度‰。一1.0344,球面齿轮从第一圈齿到第二圈齿沿经线OD方向啮合时的重合度钮一1.234,重合度数值均大于1,故该对球面齿轮可沿任一经线方向连续转动.

8结论

(1)通过对圆锥形凹齿球面齿轮的齿形、根切与重合度等方面的分析和计算,证明该种球面齿轮的结构是合理的.

(2)该种球面齿轮具有加工工艺性好,易于提高加工精度和简化加工工艺等优点.

参考文献

l郭吉丰.机器人秉性手腕球面传动的原理与设计.哈尔滨工业大学学位论文.1989

2LiuZhiquanResearchtoCone’FoothSphericalGearTransmissionofRobotFlexibleJoint.TheASME?1990?26:419—422

SPHERICALGEARWITHCoNCAVECONETEETHAND

ITSAPPLICATIoNINRoBoTJoINT

LIUGuranI.IYuan—jun

(Southern(■ntrolUnive,sity410075)

surfaceAbstract:Thedrivingprincipleandthemanufacturingmethodforsphericalgearwithconcavecone

teethareputforward.TheDrofileofcovexteethofthiskindofgearisanalyzedandcalculatedThe

ratioandundercut?11theoreticalIeasihilityofthiskindofgearisprovenbytheanalysisofprofile,contact

makesthEDrocessofmanufacturingeasierandcanimprovethemanufacturingprecisionandsimplifythemanufacturingprocess.

Keywords:Conetooth,sphericalgear

作者简介:

埘矗燕(1954.),男,博士后,教授.研究顿域:机器人机构学.多刚体置机嚣人动力学,齿轮传动学,机械制 万方数据

造等.

机器人腕关节所用球面齿轮传动

作者:刘鹄然, 李元君, LIU Gu-ran, LI Yuan-jun

作者单位:中南大学长沙铁道学院机电系 410075

刊名:

机器人

英文刊名:ROBOT

年,卷(期):2000,22(5)

引用次数:3次

参考文献(2条)

1.郭吉丰机器人柔性手腕球面传动的原理与设计[学位论文] 1987

2.Liu Zhiquan Research to Cone Tooth Spherical Gear Transmission of Robot Flexible Joint 1990相似文献(0条)

引证文献(4条)

1.秦虎.朱小浩.张有兵.邵立康球齿轮研究发展综述[期刊论文]-现代制造工程 2008(9)

2.LI Xiao.LI Qing-kai.LI Xiao-fang.ZHAO Yong-qiang Design and dynamic simulation for the transmission mechanism of drum-shaped gear with ring-involute teeth[期刊论文]-哈尔滨工业大学学报(英文版) 2007(02)

3.李笑.李瑰贤.赵永强.刘福利轨道式爬楼机械装置设计原理与动力学仿真[期刊论文]-哈尔滨工业大学学报 2006(04)

4.赵永强轨道式爬楼机械装置的关键技术研究[学位论文]硕士 2005

本文链接:https://www.wendangku.net/doc/6b1525055.html,/Periodical_jqr200005013.aspx

下载时间:2010年2月26日

工业领域中一般多用6关节型机器人(精)

工业领域中一般多用6关节型机器人,根据所学内容谈谈该种机器人都有哪些部件组成,每个部件的工作原理及选择该部件的依据 图例 六关节型机器人,又称之为“六自由度型机器人”。是我们大型工业生产中,使用相当广泛的一种机器人类型。如图所示的,为一个基本的六关节型机器人,亦是最常见的六关节型机器人。其基本结构为由六个转轴,组成的空间六杆开链结构机器人。由七个部件和六个关节连结而成的,拥有六个自由度,每个自由度均为旋转关节,具有与外界交互性能良好的开式结构。 由此例,我们可以得出,该类机器人的机械结构部件由主要是以三个主要部件所组成:机身部件、手臂部件、手腕及手部部件所组成的。 绝大多数的六关节型机器人都是以机座回转式的机身部件为基础,他的作用是直接连接、支承和传动机器人的主要运动机构。而六关节类的机器人通常是用在汽车或者其他较大型设备的生产流水线里,需要一套运动范围相对较大且可以有效率的进行生产的机器人设备,这也是六关节机器人通常使用回转式机座型机身的原因。 连结在机身上进行承载传动的,则是该类机器人最主要的部分,亦是关节使用最多的运动机构,通常为机械臂形式的手臂部件。通常手臂部件是由与机身部件相连接的大臂带动的第二关节、第三关节和小臂与手部组成的第四关节所形成的,手臂部件的作用是支承腕部和手部,并带动它们在空间运动。

手臂部件(简称“臂部”),在六关节类的机器人身上,比较常使用的是“转动伸缩型臂部结构”。该类臂部的好处,是使得机器人的工作范围大适应性广,配合其大角度大范围的手腕活动,使它工作时位置的适应性很强。是在实际生产中,对于大幅度提高大型设备的生产效率,起到了一个良好的基础作用。 而在整套机械结构末端的,是其腕部及其手部部件,主要是由腕部与臂部连结的第四关节和手部自身旋转或者夹持所用到的第五、第六关节所组成的。它的主要作用是确定手部的作业方向,而多数将腕部结构的驱动部分安排在小臂上。 要确定手部的作业方向,一般需要三个自由度,这三个回转方向为:(1 臂转:绕小臂轴线方向的旋转。(第四关节的旋转)(2手转:使手部绕自身的轴线方向旋转。(第五关节的旋转)(3腕摆:使手部相对于臂进行摆动。(第六关节的旋转) 在实际的生产中,这套部件决定了该类型机器人在操作流水线上的生产方式,机器人的手部是最重要的执行机构,是实际生产中最重要的一个环节,他决定了产品生产的效率和质量。在工业生产中用到的六关节类机器人,通过运用不同类型的手部,进行着各种直接的生产操作。 总体而言,六关节型机器人其第一关节旋转轴(基座旋转轴)、第四关节旋转轴、第六关节旋转轴(手腕端部法兰安装盘的旋转中心)在同一个平面内;第二关节旋转轴、第三关节旋转轴以及第五关节旋转轴互相平行,而且与前面提到到平面垂直;另外,还需要保证第四关节旋转轴线、第五关节旋转轴线以及第六关节旋转轴线相交于一点。采用该种结构的工业机器人可以使得其运动学算法最为简单可靠。

六轴关节机器人机械结构

六轴关节机器人机械结构 e y . <7>J4 akis motor <8>J5 axis / tiKi呂motor 说uation Mdr / Flhaw -U 」£: □nis rritx r crc .inTi * 12;、JE处也mn空 < 13 ■ J6 axis red jction gear ■ S J3 axi reduct ken / \<1t)〉J5 酣仪timi啊belt i < / /<1 1>J5 3ME Wrist hoqsine/ / r也[juGlidn 営凸mr <2>J1 axis n'dijnt rm 3" J? miG irctci: <4>J2 axis rrdi.nt nn £rn^ 上图为常见的六轴关节机器人的机械结构,六个伺服电机直接通过谐波减速器、同步带 轮等驱动六个关节轴的旋转,注意观察一、二、三、四轴的结构,关节一至关节四的驱动电机为空心结构,关节机器人的驱动电机采用空心轴结构应该不常见,空心轴结构的电机一般 较大。采用空心轴电机的优点是:机器人各种控制管线可以从电机中心直接穿过,无论关节轴怎么旋转,管线不会随着旋转,即使旋转,管线由于布置在旋转轴线上,所以具有最小的 旋转半径。此种结构较好的解决了工业机器人的管线布局问题。对于工业机器人的机械结构 设计来说,管线布局是难点之一,怎样合理的在狭小的机械臂空间中布置各种管线(六个电机的驱动线、编码器线、刹车线、气管、电磁阀控制线、传感器线等),使其不受关节轴旋 转的影响,是一个值得深入考虑的问题。 机器人的腕部结构常见有如下几种结构

?3RS 在这三种手腕部的结构中,以第一种(RBR型)结构应用最为广泛,它适应于各种工作场合,后两种结构应用范围相对较窄,比如说3R型的手腕结构主要应用在喷涂行业等关节设计: 对于国外的工业机器人主要制造国家来说,六轴关节机器人的研发设计及制造已经有好几十 年的历史了,整个工业机器人的研发制造体系较为完善,他们的技术相对来说比较成熟,他们 在相互竞争中可以相互模仿、改善、不断推陈出新,他们的技术对于国内来说,近乎完美?而 国内目前这个行业还处在黎明前的黑暗阶段,虽然有不少公司有这个研发意图,或者正在研发途中,不管怎么说,浮出水面公布自己正在研发或者研发成功的公司应该说是极少数,即使宣布自己研发成功,也只是初步试验成功,真正产业化、商品化还有一段相当漫长的路要走?而更多的公司还停留在项目立项、技术评估、投入风险分析的阶段?由于国内做这个行业的 很少,相关的结构也没有什么可参考的,技术储备不足,少数的单位或个人有机会能够拆拆别 人的机器,拆个一知半解,更多的人只能在旁边看看了(比如说我,想拆都没机会A_A),还好了,网络资源丰富,今搜集到不少机械结构方面的图片,分享给大家参考,希望咱们做机械设计的(我应该也算是个机械工程师啊A_A毕竟我也是做机械的)少走点弯路,做出更好的机器? 六轴关节机器人的腕部关节设计较为复杂,因为在腕部同时集成了三种运动?小型的六轴关 节机器人的腕部关节主要采用谐波减速器?下面的图片较为详细的描述了常见的六轴关节机 器人的腕部结构?

机器人腕部毕业设计(机械毕业设计)

机器人技术是综合了许多学科的知识,例如计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当今研究领域十分重视的课题,机器人在很多领域都得到广泛应用。机器人的应用情况,是一个国家工业自动化水平的重要标志,因而受到各先进工业国家的重视,投入大量人力物力加以研究和应用。 本文的主要任务和要解决的问题,是设计一台六自由度的机器人,在已有的技术资料的基础上,通过分析,确定腕部的传动系统,然后假设腕部末端的结构,确定腕部的输出功率,然后计算出腕部所需的电机。在确定电机和传动机构的基础上,对锥齿轮和传动中所需的带轮以及同步齿形带进行设计,并且对它们进行校核,确定所设计的腕部结构能够配合机器人的其他结构进行喷漆动作。并用CAD软件完成从建模到运动学分析、应力分析的全过程。需要全面理解机械原理、机械设计、机械系统设计以及CAD制图标准等相关的知识,并考虑其可靠性、实用性、经济性等性能。 本课设在已有理论基础上,针对以往研究的不足,根据实际使用要求,确定采用六自由度的关节型机器人结构方案;由于机器人结构复杂,构件繁多,需要用高端软件配合进行建模,装配的工作,而我们现有的材料相当有限,所以本课设只是设计了机器人的腕部结构;并采用CAD绘制了其装备和零件图,并对其中某些零件的强度进行了校核,使腕部的整体结构能够满足工作的要求。 关键词:机器人腕部

1绪论 (1) 1.1机器人的组成 (2) 1.1.1驱动装置 (2) 1.1.2控制系统 (2) 1.1.3执行机构 (2) 1.2机器人分类 (4) 1.2.1按用途分类 (4) 1.2.2按控制形式分类 (4) 1.2.3按驱动方式分类 (4) 1.3腕部结构选形 (5) 1.3.1单自由度手腕 (6) 1.3.2两自由度手腕 (7) 1.3.3三自由度手腕 (8) 1.3.4装配机器人腕部结构选型 (9) 1.4机器人设计 (11) 2末端执行器 (12) 2.1夹持器 (12) 2. 2拟手指型执行器 (13) 2. 3吸式执行器 (13) 3腕部设计 (15) 3.1手腕结构的选择 (15) 3.2传动装置的运动和动力参数计算 (17) 3.2.1选择电机 (17) 3.2.2分配系统传动比和动力参数的设计 (19)

关节型机器人腕部结构结构设计说明

关节型机器人腕部结构结构设计 1绪论 1.1 选题背景及其意义 本题设计的是关节型机器人腕部结构,主要是整体方案设计和手腕的结构设计及控制系统设计,此课题来源于实际生产,对于目前手工电弧焊接效率低,操作环境差,而且对操作员技术熟练成都要求高,因此采用机器人技术,实现焊接生产操作的柔性自动化,提高产品质量与劳动生产力,实现生产过程自动化, 改善劳动条件。题目要求是:动作范围:手腕回转ο150,摆动ο90,旋转ο360。各 轴最大速度要求:s /30ο。额定载荷kg 5,最大速度s m /3。2、腕部最大负荷: 5kg 。机器人是近30年发展起来的一种典型的、机电一体化的、独立的自动化生产工具。在制造工业中,应用工业机器人技术是提高生产过程自动化,改善劳动条件,提高产品质量和生产效率的有效手段之一,也是新技术革命的一个重要内容。自古以来,人们所设想的机器人一般是一种在外形和功能上均能模拟人类智能的机器。特别是在20世纪20年代前后,捷克和美国的一些科幻作家创作了一批关于未来机器人与人类共处中可能发生的故事之类的文学作品,更使机器人在人们的思想中成为一种无所不能的“超人”。在现实生活中,一些民间工匠根据这些文学描绘,也制造出一些仿人或仿生的机器人。然而在当时的科技条件下,要使机器人具有某种特殊的“智能”而成为“超人”,显然是不可能的。美国的戴沃尔设想了一种可控制的机械手,他首先突破了对机器人的传统观点,提出机器人并不一定必须像人,但是必须能做一些人的工作。1954年,他依据这一想法设计制作了世界上第一台机器人实验装置,发表了《适用于重复作业的通用性工业机器人》一文,并获得了美国专利。戴沃尔将遥控操纵器的关节型连杆机构与数控机床的伺服轴联结在一起,预定的机械手动作一经编程输入后,机械等就可以离开人的辅助而独立运行。这种机器人也可以接受示教而完成各种简单任务。示教过程中操作者用手带动机械手依次通过工作任务的各个位置,这些位置序列记录在数字存储器中,任务的执行过程中,机器人的各个关节在伺服驱动下再现出那些位置序列。 1.2 文献综述(国内外研究现状与发展趋势) 随着全球能源短缺、环境污染以及温室效应等问题的日益突显。寻找可持续

关节机械手腕部设计

第一章绪论 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 机械手是近代自动控制领域中出现的一项新技术,并已成为现代机械制造中的一个重要组成部分。机器人显著地提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。尤其在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用得更为广泛。因而受到各先进工业国家的重视,投入大量人力物力加以研究和应用。 机械手一般分为三类。第一类是不需要人工操作的通用机械手,统称为机器人。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定操作。它的特点是除了具备普通机械的物理性能之外,还具备通用机械、记忆智能的三元机械。它可以灵活运用在工业上的各个方面,如喷漆、焊接、搬运等。第二类是需要人工操作的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机器人来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件传送。这种机器人在国外称为“Mechanical Hand ",它是为主机服务的,由主机驱动;除少数外,工作程序一般是固定的,采用机械编程。因此是专用的。 本课题通过对通用机器人smart6.50R 的结构进行分析和研究,完成对其腕部的设计,最终期望腕部与小臂、手部、大臂能够协调工作,能够完成各种现代工业加工过程中所要求的动作。 本课题的设计思路是:借助已有的通用机器人的腕部设计思想和方法,综合考虑腕部机构在机器人运动中所起的作用和机器人的整体技术参数。

机器人腕部结构

1、定义:腕部是臂部和手部的连接件,起支承手部和改变手部姿态的作用。 2、手腕的自由度: ?为了使手部能处于空间任意方向,要求腕部能实现对空间三个坐标轴X、Y、Z的旋 转运动。这便是腕部运动的三个自由度,分别称为翻转R(Roll)、俯仰P(Pitch)和偏转Y(Yaw)。 ?并不是所有的手腕都必须具备三个自由度,而是根据实际使用的工作性能要求来确 定。 腕部坐标系手腕的偏转 手腕的仰俯手腕的回转 3、手腕的设计要求 ?结构紧凑、重量轻; ?动作灵活、平稳,定位精度高; ?强度、刚度高; ?与臂部及手部的连接部位的合理连接结构,传感器和驱动装置的合理布局及安装等。 4、手腕的分类 (1)二自由度手腕: 可以由一个R关节和一个B关节联合构成BR关节实现,或由两个B关节组成BB关节实现,但不能由两个RR关节构成二自由度手腕,因为两个R关节的功能是重复的,实际上只起到单自由度的作用。

BR手腕BB手腕 RR手腕(属于单自由度) (2)三自由度手腕: 有R关节和B关节的组合构成的三自由度手腕可以有多种型式,实现翻转、俯仰和偏转功能。 BBR手腕BRR手腕 5.按手腕的驱动方式分: ?直接驱动手腕: ?驱动源直接装在手腕上。这种直接驱动手腕的关键是能否设计和加工出尺寸 小、重量轻而驱动扭矩大、驱动性能好的驱动电机或液压马达。 ?远距离传动手腕: ?有时为了保证具有足够大的驱动力,驱动装置又不能做得足够小,同时也为 了减轻手腕的重量,采用远距离的驱动方式,可以实现三个自由度的运动。

液压直接驱动BBR手腕图例 远距离传动手腕图例 6、典型结构 (1)摆动液压缸(又称回转液压缸): ?结构: ?由缸体、隔板、叶片、花键套等主要部件构成。其中叶片7固定在转子上, 用花键将转子与驱动轴连接,用螺栓2将隔板与缸体连接。 ?工作原理: ?在密封的缸体,隔板与活动叶片之间围成两个油腔,相当油缸中的无杆腔和 有杆腔。液压力作用在活动叶片的端面上,对传动轴中心产生力矩使被驱动

6关节机器人介绍

BONMET ROBOT 在当今高度竞争的全球市场,工业实体必须快速增长才能满足其市场需求。这意味着,制造企业所承受的压力日益增大,既要应付低成本国家的对手,还要面临发达国家的劲敌,二后者为增强竞争力,往往不惜重金改良制造技术,扩大生产能力。 自动化的优势 机器人自动化一系列广受好评的优势,可参见”投资机器人的10大理由”。许多行业尤其是工程、食品等传统行业,普遍面临劳动力老龄化、对年轻人缺乏吸引力的问题。引入机器人解决方案之后,可减轻对传统技术人员的依赖,充分发挥IT、计数机等新兴技术的优势,相关人才也更容易在年轻一代中物色。 改善困难的工作条件与安全性 在高温、腐蚀等高危环境中,高柔性的自动化系统能够代替工作

人员勇挑重担。工作人员从事高度重复性的操作,稍有不慎就会造成经济或质量损失等。而实现自动化作业之后,工作人员便可以转调到对技能要求更高的岗位,工作成就感也将随之上升。恻然解决了招人难、留人难、老龄化这些问题。 优质稳定的产品与工艺降低生产成本 高度柔性的机器人自动化系统能根据市场需求的波动灵活性增减产量;每逢订单激增,即可安排夜班或周末班,而只负担有限的加班成本。机器人自动化还能加快产品转换,在确保品质恒定如一的同时,实现小批量、短周期、多频次供货,从而提升服务水准。自动化系统的重复定位精度与一致性俱优,加工公差更小,工艺控制更严,能长期确保优异的产品质量、最大限度降低生产和劳动力成本。 提高生产效率 机器人是开源节流的得利助手,能有效降低单位制造成本。只要给定输入成值,机器人就可确保生产工艺和产品质量的恒定一致,显著提高产量。自动化将人类从枯燥繁重的重复性劳动中解放出来,让人类的聪明才智和应变能力得以释放,从而生产更大的经济回报。

最新六轴关节机器人机械结构(精品收藏)

六轴关节机器人机械结构 上图为常见的六轴关节机器人的机械结构,六个伺服电机直接通过谐波减速器、同步带轮等驱动六个关节轴的旋转,注意观察一、二、三、四轴的结构,关节一至关节四的驱动电机为空心结构,关节机器人的驱动电机采用空心轴结构应该不常见,空心轴结构的电机一般较大.采用空心轴电机的优点是:机器人各种控制管线可以从电机

中心直接穿过,无论关节轴怎么旋转,管线不会随着旋转,即使旋转,管线由于布置在旋转轴线上,所以具有最小的旋转半径。此种结构较好的解决了工业机器人的管线布局问题。对于工业机器人的机械结构设计来说,管线布局是难点之一,怎样合理的在狭小的机械臂空间中布置各种管线(六个电机的驱动线、编码器线、刹车线、气管、电磁阀控制线、传感器线等),使其不受关节轴旋转的影响,是一个值得深入考虑的问题.?机器人的腕部结构常见有如下几种结构:?

在这三种手腕部的结构中,以第一种(RBR型)结构应用最为广泛,它适应于各种工作场合,后两种结构应用范围相对较窄,比如说3R型的手腕结构主要应用在喷涂行业等。?关节设计:?对于国外的工业机器人主要制造国家来说,六轴关节机器人的研发设计及制造已经有好几十年的历史了,

整个工业机器人的研发制造体系较为完善,他们的技术相对来说比较成熟,他们在相互竞争中可以相互模仿、改善、不断推陈出新,他们的技术对于国内来说,近乎完美。而国内目前这个行业还处在黎明前的黑暗阶段,虽然有不少公司有这个研发意图,或者正在研发途中,不管怎么说,浮出水面公布自己正在研发或者研发成功的公司应该说是极少数,即使宣布自己研发成功,也只是初步试验成功,真正产业化、商品化还有一段相当漫长的路要走.而更多的公司还停留在项目立项、技术评估、投入风险分析的阶段.由于国内做这个行业的很少,相关的结构也没有什么可参考的,技术储备不足,少数的单位或个人有机会能够拆拆别人的机器,拆个一知半解,更多的人只能在旁边看看了(比如说我,想拆都没机会^_^),还好了,网络资源丰富,今搜集到不少机械结构方面的图片,分享给大家参考,希望咱们做机械设计的(我应该也算是个机械工程师啊^_^毕竟我也是做机械的)少走点弯路,做出更好的机器.?六轴关节机器人的腕部关节设计较为复杂,因为在腕部同时集成了三种运动.小型的六轴关节机器人的腕部关节主要采用谐波减速器。下面的图片较为详

机器人的结构形式及各类结构的特点

机器人的结构形式及各类结构的特点 摘要:如今机器人已被广泛应用于机械、印刷机械、汽车工业、食品生产工业、药品生产工业、电子工业、机器制造业和化妆品生产等行业,不同领域因其需要的多样性和特殊性,也导致机器人在结构形式上存在多样性和特殊性。 关键字:结构形式,结构坐标系 2011302590173 刘亚辉 遥感信息工程学院

一、引言 机器人按ISO 8373定义为:位置可以固定或移动,能够实现自动控制、可重复编程、多功能多用处、末端操作器的位置要在3个或3个以上自由度内可编程的工业自动化设备。这里自由度就是指可运动或转动的轴。工业机器人按其结构形式及编程坐标系主要分类为关节型机器人、移动机器人、水下机器人和直角坐标机器人等。按主要功能特征及应用分为移动机器人、水下机器人、洁净机器人、直角坐标机器人、焊接机器人、手术机器人和军用机器人等。机器人学涉及到机器人结构,机器人视觉,机器人运动规划,机器人传感器,机器人通讯和人工智能等许多方面,不同用处的机器人涉及到不同的学科,下面仅对这些机器人的结构和应用进行简单介绍。 机器人按照结构坐标系特点方式分类可分为:直角坐标机器人,圆柱坐标型机器人,极坐标机器人,多关节机器人等。 机器人按照机身结构特点可分为:升降回转型机身结构,俯仰型机身结构,直移型机身结构,类人机器人机身结构等。 二、各种结构坐标系 1、直角坐标系机器人 直角坐标型机器人结构如图所示,它主要是以直线运动轴为主,各个运动轴通常对应直角坐标系中的X轴,Y轴和Z轴,一般X轴和Y轴是水平面内运动轴,Z轴是上下运动轴。在一些应用中Z轴上带有一个旋转轴,或带有一个摆动轴和一个旋转轴。在绝大多数情况下直角坐标机器人的各个直线运动轴间的夹角为直角。 直角坐标型机械手可以在三个互相垂直的方向上作直线伸缩运动,这类机械手各个方向的运动是独立的,计算和控制比较方便,但占地面积大,限于特定的应用场合,有较多的局限性。 2、圆柱坐标机器人 圆柱坐标型机器人的结构如下图所示,R、θ和x为坐标系的三个坐标,其中R、是手臂的径向长度,θ是手臂的角位置,x是垂直方向上手臂的位置。如果机器人手臂的径向坐标R保持不变,机器人手臂的运动将形成一个圆柱表面。

六关节型机器人

六关节型机器人,又称之为“六自由度型机器人”。是我们大型工业生产中,使用相当广泛的一种机器人 如图所示的,为一个基本的六关节型机器人,亦是最常见的六关节型机器人。其基本结构为由六个转轴,组成的空间六杆开链结构机器人。由七个部件和六个关节连结而成的,拥有六个自由度,每个自由度均为旋转关节,具有与外界交互性能良好的开式结构。 由此例,我们可以得出,该类机器人的机械结构部件由主要是以三个主要部件所组成: 机身部件、手臂部件、手腕及手部部件所组成的。绝大多数的六关节型机器人都是以机座回转式的机身部件为基础,他的作用是直接连接、支承和传动机器人的主要运动机构。 而六关节类的机器人通常是用在汽车或者其他较大型设备的生产流水线里,需要一套运动范围相对较大且可以有效率的进行生产的机器人设备,这也是六关节机器人通常使用回转式机座型机身的原因。 连结在机身上进行承载传动的,则是该类机器人最主要的部分,亦是关节使用最多的运动机构,通常为机械臂形式的手臂部件。通常手臂部件是由与机身部件相连接的大臂带动的第二关节、第三关节和小臂与手部组成的第四关节所形成的,手臂部件的作用是支承腕部和、手部,并带动它们在空间运动。 手臂部件(简称“臂部”),在六关节类的机器人身上,比较常使用的是“转动伸缩型臂 部结构”。该类臂部的好处,是使得机器人的工作范围大适应性广,配合其大角度大范围的手腕活动,使它工作时位置的适应性很强。是在实际生产中,对于大幅度提高大型设备的生产效率,起到了一个良好的基础作用。 而在整套机械结构末端的,是其腕部及其手部部件,主要是由腕部与臂部连结的第四关节和手部自身旋转或者夹持所用到的第五、第六关节所组成的。它的主要作用是确定手部的作业方向,而多数将腕部结构的驱动部分安排在小臂上。要确定手部的作业方向,一般需要三个自由度,这三个回转方向为: (1) 臂转:绕小臂轴线方向的旋转。 (第四关节的旋转) (2)手转:使手部绕自身的轴线方向旋转。 (第五关节的旋转) (3)腕摆:使手部相对于臂进行摆动。 (第六关节的旋转) 在实际的生产中,这套部件决定了该类型机器人在操作流水线上的生产方式,机器人的 手部是最重要的执行机构,是实际生产中最重要的一个环节,他决定了产品生产的效率和质量。在工业生产中用到的六关节类机器人,通过运用不同类型的手部进行着各种直接的生产操作。 总体而言,六关节型机器人其第一关节旋转轴(基座旋转轴)、第四关节旋转轴、第六关节

关节型机器人腕部结构设计(全套,CAD有图)Word

1前言 1.1机器人的概念 机器人是一个在三维空间中具有较多自由度,并能实现较多拟人动作和功能的机器,而工业机器人则是在工业生产上应用的机器人。美国机器人工业协会提出的工业机器人定义为:“机器人是一种可重复编程和多功能的,用来搬运材料、零件、工具的操作机”。英国和日本机器人协会也采用了类似的定义。我国的国家标准GB/T12643-90将工业机器人定义为:“机器人是一种能自动定位控制、可重复编程的、多功能的、多自由度的操作机。能搬运材料、零件或操持工具,用以完成各种作业”。而将操作机定义为:“具有和人手臂相似的动作功能,可在空间抓放物体或进行其它操作的机械装置”。 机器人系统一般由操作机、驱动单元、控制装置和为使机器人进行作业而要求的外部设备组成。 1.1.1操作机 操作机是机器人完成作业的实体,它具有和人手臂相似的动作功能。通常由下列部分组成: a.末端执行器又称手部,是机器人直接执行工作的装置,并可设置夹持器、工具、传感器等,是工业机器人直接与工作对象接触以完成作业的机构。 b. 手腕是支承和调整末端执行器姿态的部件,主要用来确定和改变末端执行器的方位和扩大手臂的动作范围,一般有2~3个回转自由度以调整末端执行器的姿态。有些专用机器人可以没有手腕而直接将末端执行器安装在手臂的端部。 c. 手臂它由机器人的动力关节和连接杆件等构成,是用于支承和调整手腕和末端执行器位置的部件。手臂有时包括肘关节和肩关节,即手臂与手臂间。手臂与机座间用关节连接,因而扩大了末端执行器姿态的变化范围和运动范围。 d. 机座有时称为立柱,是工业机器人机构中相对固定并承受相应的力的基础部件。可分固定式和移动式两类。 1.1.2驱动单元 它是由驱动器、检测单元等组成的部件,是用来为操作机各部件提供动力和运动的装置。 1.1.3控制装置 它是由人对机器人的启动、停机及示教进行操作的一种装置,它指挥机器人按规定的要求动作。 1.1.4人工智能系统

关节型机器人机械臂结构设计

《认识平行四边形》说课稿 大家好!今天我要为大家讲的课题是《认识平行四边形》。首先,我对本节教材进行简单分析: 一、说教材 1、教材地位分析 《认识平行四边形》是义务教育课程标准实验教科书(苏教版)数学四年级下册的内容,是“平行四边形和梯形”的第一课时。这节课是在学生已经直观认识平行四边形,初步掌握了长方形、正方形的特征及垂直概念的基础上,通过一系列的探究实践活动继续认识平行四边形的特性、底和高,为以后学习平行四边形面积打基础,有利于提高学生动手能力,增强创新意识,进一步发展学生对“空间与图形”的学习兴趣。 2、教学目标 根据上述教材分析,考虑到学生已有的认知结构心理特征,我将本课的教学目标定为以下几点: 知识目标:使学生在图形具体的活动中认识平行四边形,知道它的基本特征;能正确判断平行四边形;认识平行四边形的底和高,能正确测量和画出它的高。 能力目标:使学生在观察、操作、比较、判断等活动中,经历探索平行四边形的基本特征的过程,进一步积累认识图形的经验,发展空间观念。 情感目标:使学生体会平行四边形在生活中的广泛应用,培养数学应用意识,增强认识平面图形的兴趣。 3、重点,难点 本着课程标准,在吃透教材的基础上,我确立了如下的教学重点、难点: 重点:掌握平行四边形的特征;认识平行四边形的底和高;会测量平行四边形底所对应的高。 难点:会画平行四边形底所对应的高。 二、说教法 新课标指出教无定法,贵在得法,就是教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。因此本节课,我将以学生为主体,发挥教师的组织、引导与合作的作用,运用以下教法组织教学: 1 1、直观演示法。 凡是需要知道的事物,都要通过事物本身来进行教学,由于小学阶段的学生的逻辑思维仍须以具体形象为支柱,所以在教学中我选用了长方形框架教具演示长方形渐变为平行四边形的过程、用各种生活中常见的图片使学生感知平行四边形。这样不仅把数学的抽象概念形象化了,而且还发展了学生的观察能力和思维能力。 2、活动体验法。 《课标》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”学生只有亲身经历知识的形成,才能真正理解知识和运用知识。在本节课中,通过“感知-猜想-操作-测量-演示-验证-结论”等一系列“做数学”的活动,让学生在体验中学会探究、学会创造。既锻炼了学生的动手操作能力,也使学生在学到数学知识的同时还体验到了成功的喜悦。 三、说学法

六轴关节机器人机械结构

六轴关节机器人机械结构 欧阳学文 上图为常见的六轴关节机器人的机械结构,六个伺服电机直接通过谐波减速器、同步带轮等驱动六个关节轴的旋转,注意观察一、二、三、四轴的结构,关节一至关节四的驱动

电机为空心结构,关节机器人的驱动电机采用空心轴结构应该不常见,空心轴结构的电机一般较大。采用空心轴电机的优点是:机器人各种控制管线可以从电机中心直接穿过,无论关节轴怎么旋转,管线不会随着旋转,即使旋转,管线由于布置在旋转轴线上,所以具有最小的旋转半径。此种结构较好的解决了工业机器人的管线布局问题。对于工业机器人的机械结构设计来说,管线布局是难点之一,怎样合理的在狭小的机械臂空间中布置各种管线(六个电机的驱动线、编码器线、刹车线、气管、电磁阀控制线、传感器线等),使其不受关节轴旋转的影响,是一个值得深入考虑的问题。机器人的腕部结构常见有如下几种结构:

在这三种手腕部的结构中,以第一种(RBR型)结构应用最为广泛,它适应于各种工作场合,后两种结构应用范围相对较窄,比如说3R型的手腕结构主要应用在喷涂行业等.关节设计:对于国外的工业机器人主要制造国家来说,六轴关节机器人的研发设计及制造已经有好几十年的历史了,整个工业机器人的研发制造体系较为完善,他们的技术相对来说比较成熟,他们在相互竞争中可以相互模仿、改善、不断推陈出新,他们的技术对于国内来说,近乎完美.而国内目前这个行业还处在黎明前的黑暗阶段,虽然有不少公司有这个研发意图,或者正在研发途中,不管怎么说,浮出水面公布自己正在研发或者研发成功的公司应该说是极少数,即使宣布自己研发成功,也只是

初步试验成功,真正产业化、商品化还有一段相当漫长的路要走.而更多的公司还停留在项目立项、技术评估、投入风险分析的阶段.由于国内做这个行业的很少,相关的结构也没有什么可参考的,技术储备不足,少数的单位或个人有机会能够拆拆别人的机器,拆个一知半解,更多的人只能在旁边看看了(比如说我,想拆都没机会^_^),还好了,网络资源丰富,今搜集到不少机械结构方面的图片,分享给大家参考,希望咱们做机械设计的(我应该也算是个机械工程师啊^_^毕竟我也是做机械的)少走点弯路,做出更好的机器.六轴关节机器人的腕部关节设计较为复杂,因为在腕部同时集成了三种运动.小型的六轴关节机器人的腕部关节主要采用谐波减速器.下面的图片较为详细的描述了常见的六轴关节机器人的腕部结构.

行星齿轮传动原理

行星齿轮传动原理 每一部汽车上都有行星齿轮,少了它们,汽车就不能自由行走。汽车上的行星齿轮主要用在两个地方,一是驱动桥减速器、二是自动变速器。很多网友都想知道,行星齿轮有什么功能,为什么汽车少不了它。 我们熟知的齿轮绝大部分都是转动轴线固定的齿轮。例如机械式钟表,上面所有的齿轮尽管都在做转动,但是它们的转动中心(与圆心位置重合)往往通过轴承安装在机壳上,因此,它们的转动轴都是相对机壳固定的,因而也被称为"定轴齿轮"。有定必有动,对应地,有一类不那么为人熟知的称为"行星齿轮"的齿轮,它们的转动轴线是不固定的,而是安装在一个可以转动的支架(蓝色)上(图1中黑色部分是壳体,黄色表示轴承)。行星齿轮(绿色)除了能象定轴齿轮那样围绕着自己的转动轴(B-B)转动之外,它们的转动轴还随着蓝色的支架(称为行星架)绕其它齿轮的轴线(A-A)转动。绕自己轴线的转动称为"自转",绕其它齿轮轴线的转动称为"公转",就象太阳系中的行星那样,因此得名。 也如太阳系一样,成为行星齿轮公转中心的那些轴线固定的齿轮被称为"太阳轮",如图2中红色的齿轮。在一个行星齿轮上、或者在两个互相固连的行星齿轮上通常有两个啮合点,分别与两个太阳轮发生关系。如右图中,灰色的内齿轮轴线与红色的外齿轮轴线重合,也是太阳轮。 轴线固定的齿轮传动原理很简单,在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里传入,另一个齿轮作为从动轮,动力从它往外输出。也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过。 在包含行星齿轮的齿轮系统中,情形就不同了。由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合: 动力从其中一个太阳轮输入,从另外一个太阳轮输出,行星架通过刹车机构刹死;动力从其中一个太阳轮输入,从行星架输出,另外一个太阳轮刹死; 动力从行星架输入,从其中一个太阳轮输出,另外一个太阳轮刹死; 两股动力分别从两个太阳轮输入,合成后从行星架输出; 两股动力分别从行星架和其中一个太阳轮输入,合成后从另外一个太阳轮输出;动力从其中一个太阳轮输入,从另外一个太阳轮和行星架分两路输出; 动力从行星架输入,分两路从两个太阳轮输出; 我们知道,汽车发动机只有一个,而车轮有四个。发动机的转速扭矩等特性与路面行驶需求大相径庭。要把发动机的功率适当地分配到驱动轮,可以利用行星齿轮的上述特性。如自动变速器,也是利用行星齿轮的这些特性,通过离合器和制动器改变各个构件的相对运动关系而获得不同的传动比

机器人腕部结构设计说明书

摘要 为了提高生产效率,满足一些特定的工作要求,本题设计的关节型机器人的手腕用于焊接、喷漆等方面。通过合理的设计计算,拟定了手腕的传动路径,选用直流电动机,合理布置了电机、轴和齿轮,设计了齿轮和轴的结构,实现了摆腕、转腕和提腕的三个自由度的要求。设计中大多采用了标准件和常用件,降低了设计和制造成本。 关键词:自由度,关节型机器人,手腕 ABSRACT In order to improve production efficiency and meet some of the specific requirements, design of ontology of robot wrist joints used for welding, paint, etc. Through the reasonable design calculation, the transmission path, choose the wrist, reasonable decorate a dc motor, gear axle and gear axle, design and realization of the structure, the pendulum wrist, turn the wrist and wrist three degrees of freedom. In the design of the standard and common people, the design and manufacturing cost. Keywords:freedom, Joint robot, The wrist

关节型机器人机械臂结构设计

本科毕业论文 关节型机器人 机械臂结构设计 姓名 学院机械工程学院 专业机械设计制造及其自动化指导教师 完成日期2012年5月

全日制本科生毕业设计(论文)承诺书 本人郑重承诺:所呈交的毕业设计(论文)关节型机器人机械臂结构设计是在导师的指导下,严格按照学校和学院的有关规定由本人独立完成。文中所引用的观点和参考资料均已标注并加以注释。论文研究过程中不存在抄袭他人研究成果和伪造相关数据等行为。如若出现任何侵犯他人知识产权等问题,本人愿意承担相关法律责任。 承诺人(签名): 日期:

关节型机器人机械臂结构设计 摘要 随着现代科学技术的发展,机器人技术越来越受到广泛关注,在工业生产日益现代化的今天,机器人的使用变得越来越普及。因此,对于机器人技术的研究也变得越来越迫切,尤其是工业机器人方面。本论文针对工业机器人的工作领域特点,设计了一款拥有6个自由度的机械人,尤其针对机器人机械臂进行详细的设计,确定了其传动结构图,选择合适的电机,齿轮,液压缸,等各零部件。以及对各关节传动轴的设计和进行齿轮计算和校核完成其设计,该机器人具有刚性好,位置精度高、运行平稳的特点。 关键词:关节型机器人,6自由度,传动设计,零件计算校核

ARTICULATED ROBOT MANIPULATOR STRUCTURE DESIGN ABSTRACT With the development of modern science and technology, robotics, more and more attention in an increasingly modernized industrial production, the use of robots becoming more and more popular. Therefore, robotics has become increasingly urgent, especially industrial robots. For this area, the authors designed a robot with 6 degrees of freedom,especially for the detailed design of the robot arm,determine the transmission chart,thus select the appropriate motor,gear,hydraulic cylinder,and so on.And the design of the joint drive shaft and gear calculation and verification of completion of its design,the robot has a good rigidity,high positional accuracy and smooth run characteristics. KEYWORDS:articulated robot; 6 degrees of freedom; transmission design; parts calculation checking

详解机器人手腕结构图

详解机器人手腕结构图

————————————————————————————————作者:————————————————————————————————日期:

【详解】机器人手腕结构图 机器人手腕是连接末端操作器和手臂的部件,它的作用是调节或改变工件的方位, 因而它具有独立的自由度,以 使机器人末端操作器适应复杂的动作要求。工业机器人一般需要6个自由度才能使手部达到目标位置并处于期望的姿态。为了使手部能处于空间任意方向, 要求腕部能实现对空间三个坐标轴x、y、z的转动,即具有翻转、俯仰和偏转三个自由度,如图2.31所示。通常也把手腕的翻转叫做Roll,用R表示;把手腕的俯仰叫做Pitch,用P表示; 把手腕的偏转叫Yaw,用Y表示。 图2.31 手腕的自由度(a)绕z轴转动; (b)绕y轴转动; (c) 绕x轴转动;(d) 绕x、y、z轴转动 手腕的分类 1.按自由度数目来分手腕按自由度数目来分, 可分为单自由度手腕、2自由度手腕和3自由度手腕。 (1)单自由度手腕,如图2.32所示。图(a)是一种翻转(Roll)关节, 它把手臂纵轴线和手腕关节轴线构成共轴形式。这种R关节旋转角度大, 可达到360°以上。图(b)、(c)是一种折曲(Bend)关节(简称B关节), 关节轴线与前后两个连接件的轴线相垂直。这种B关节因为受到结构上的干涉, 旋转角度小,大大限制了方向角。图(d)所示为移动关节。

图2.32单自由度手腕(a) R手腕;(b) B手腕;(c)Y手腕;(d) T手腕 (2) 2自由度手腕,如图2.33所示。2自由度手腕可以由一个R关节和一个B关节组成BR手腕(见图2.33(a)),也可以由两个B关节组成BB手腕(见图2.33(b))。但是,不能由两个R关节组成RR手腕,因为两个R共轴线,所以退化了一个自由度, 实际只构成了单自由度手腕,见图2.33(c)。图2.33 二自由度手腕(a) BR手腕; (b) BB手腕; (c) RR手腕 (3)3自由度手腕,如图2.34所示。3自由度手腕可以由B 关节和R关节组成许多种形式。图2.34(a)所示是通常见到的BBR手腕,使手部具有俯仰、偏转和翻转运动, 即RP Y运动。图2.34(b)所示是一个B关节和两个R关节组成的BRR手腕,为了不使自由度退化,使手部产生RPY运动,第一个R关节必须进行如图所示的偏置。图2.34(c)所示是三个R关节组成的RRR手腕,它也可以实现手部RPY运动。 图2.34(d)所示是BBB手腕, 很明显,它已退化为二自由度手腕,只有PY运动,实际上不采用这种手腕。此外,B关节和R关节排列的次序不同,也会产生不同的效果,同时产生了其它形式的三自由度手腕。为了使手腕结构紧凑,通常把两个B关节安装在一个十字接头上, 这对于BBR手腕来说,大

用于焊接的关节型机器人腰部结构的设计

关节型机器人腰部结构设计 摘要:为了提高生产效率和产品的焊接质量,满足实际工作需要,本课题设计了用于焊接的关节型机器人。根据机器人的工作要求和结构特点,进行了机器人的总体设计,确定了机器人的外形尺寸和工作空间,拟定了机器人各关节的总体传动方案,对机器人腰关节结构进行了详细设计,合理布置了电机和齿轮,确定了各级传动参数,进行了齿轮、轴和轴承的设计计算和校核。利用齐次变换矩阵法建立了六自由度关节机器人的正运动学模型,求出机器人末端相对于各自参考坐标系的齐次坐标值,建立了在直角坐标空间内机器人末端执行器的位置和姿态与关节变量值的对应关系。基于几何投影原理推导出相应的逆运动学模型,求出了各个关节的角度值,建立了机器人关节空间与世界空间的映射关系。该机器人具有刚性好,位置精度高、运行平稳的特点。 关键词:关节型机器人;位姿分析;总体设计;腰部结构设计

The waist structural design of articulated robot Abstract :In order to improve the efficiency of production and welding quality of products and meet real work's needs, this subject has designed the articulated robot used for welding . According to the job requirements for the robot and structure characteristic , I have carried on the overall design of the robot, confirmed the external dimension and workspace of the robot, drafted the overall transmission scheme of every joint of the robot. I have designed the waist structure of the robot in detail, assigned the electrical machinery and gear wheel rationally, confirmed at all level transmission parameters , carried on the design and calculating of gear wheels , shafts and bearings and checking them.The kinematic model of robot system has been built up by means of the homogenous transformation of matrix in this thesis and deduces the robot's homogenous coordinate which is relative to its reference coordinate. We also make up the position relationship between the robot's end effector and the variable friable of every joint. The inverse kinematic model is deduced which based on the projection principle of geometry and the value of angle is worked out. What’s more, the relationship is built up between the joint space of robot and the world space. This robot has the characteristics of fine rigidity , position precision high , that operate steadily. Key words:Articulated robot; Appearance analysis in the location; Design overallly; Waist articulated structural design of the robot

相关文档
相关文档 最新文档