文档库 最新最全的文档下载
当前位置:文档库 › 高一数学指数运算及指数函数试题有答案

高一数学指数运算及指数函数试题有答案

高一数学指数运算及指数函数试题有答案
高一数学指数运算及指数函数试题有答案

高一数学指数运算及指数函数试题

一.选择题

1.若xlog23=1,则3x+9x的值为( B )

A.3B. 6 C.2D.解:由题意x=,

所以3x==2,

所以9x=4,所以3x+9x=6

故选B

2.若非零实数a、b、c满足,则的值等于( B )A.1B.2C.3D.4

解答:解:∵,

∴设=m,

a=log5m,b=log2m,c=2lgm,

∴=

=2lgm(log m5+log m2)

=2lgm?log m10

=2.

故选B.

3.已知,则a等于()

A.B.C.2D. 4

解:因为所以

解得a=4

故选D

4.若a>1,b>1,p=,则a p等于()

A.1B.b C.

log b a D.

a log

b a

解:由对数的换底公式可以得出p==log a(log b a),

因此,a p等于log b a.

故选C.

5.已知lg2=a,10b=3,则log125可表示为( C )

A.B.C.D.

解:∵lg2=a,10b=3,

∴lg3=b,

∴l og125=

=

=.

故选C.

6.若lgx﹣lgy=2a,则=( C )

A.3a B.C.a D.

解:∵lgx﹣lgy=2a,

∴lg﹣lg=lg﹣lg=(lg﹣lg)

=lg=(lgx﹣lgy)=?2a=a;

故答案为C.

7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b=()

A.﹣2 B.﹣1 C.0D.2

解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0

∵f(a)+f(b﹣2)=0

∴a+(b﹣2)=0

∴a+b=2

故选D.

8.=()

A.1B.C.﹣2 D.

解:原式

=+2×lg2+lg5=+lg2+lg5=+1=,

故选B.

9.设,则=()

A.1B.2C.3D.4解:∵,

∴=

=()+()+()

=

=3

故选C

10.,则实数a的取值区间应为( C )

A.(1,2)B.(2,3)C.(3,4)D.(4,5)

解:=log34+log37=log328

∵3=log327<log328<log381=4

∴实数a的取值区间应为(3,4)

故选C.

11.若lgx﹣lgy=a,则=( A )

A.3a B.C.a D.

解:=3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a

故选A.

12.设,则()

A.0<P<1 B. 1<P<2 C.2<P<3 D.3<P<4 解:

=log112+log113+log114+log115

=log11(2×3×4×5)

=log11120.

∴log1111=1<log11120<log11121=2.

故选B.

13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,A.1B.2C.3D.4

解:∵a,b,c均为正数,且都不等于1,

实数x,y,z满足,

∴设a x=b y=c z=k(k>0),

则x=log a k,y=log b k,z=log c k,

∴=log k a+log k b+log k c=log k abc=0,

∴abc=1.

故选A.

14.化简a2???的结果是( C )

A.a B.C.

a2D.

a3

解:∵a2???

=a2???

=

=a2,

故选C

15.若x,y∈R,且2x=18y=6xy,则x+y为()

A.0B.1C.1或2 D.0或2

解:因为2x=18y=6xy,

(1)当x=y=0时,等式成立,则x+y=0;

(2)当x、y≠0时,由2x=18y=6xy得,

xlg2=ylg18=xylg6,

由xlg2=xylg6,得y=lg2/lg6,

由ylg18=xylg6,得x=lg18/lg6,

则x+y=lg18/lg6+lg2/lg6=(lg18+lg2)/lg6

=lg36/lg6=2lg6/lg6=2.

综上所述,x+y=0,或x+y=2.

故选D.

16.若32x+9=10?3x,那么x2+1的值为( D )

A.1B.2C.5D.1或5

解:令3x=t,(t>0),

原方程转化为:t2﹣10t+9=0,

所以t=1或t=9,即3x=1或3x=9

所以x=0或x=2,所以x2+1=1或5

故选D

17.已知函数f(x)=4x﹣a?2x+a2﹣3,则函数f(x)有两个相异零点的充要条件是(D )A.﹣2<a<2 B.C.D.

解;令t=2x,则t>0

若二次函数f(t)=t2﹣at+a2﹣3在(0,+∞)上有2个不同的零点,

即0=t2﹣at+a2﹣3在(0,+∞)上有2个不同的根

解可得,即

故选D

18.若关于x的方程=3﹣2a有解,则a的围是( A )

A.≤a<B.a≥C.<a<D.a>

解:∵1﹣≤1,函数y=2x在R上是增函数,∴0<≤21=2,

故0<3﹣2a≤2,解得≤a<,

故选A.

二.填空题

19.,则m= 10 .

解:由已知,a=log2m,b=log5m.

∴+=log m2+log m5=log m10=1

∴m=10

故答案为:10.

20.已知x+y=12,xy=9,且x<y,则= .

解:由题设0<x<y

∵xy=9,∴

∴x+y﹣2==12﹣6=6

x+y+2==12+6=18

∴=,=

∴=

故答案为:

21.化简:= (或或).解:

=

=

=

=.

故答案为:(或或).

22.= 1 .

解:

=

=

=1.

故答案为:1.

23.函数在区间[﹣1,2]上的值域是[,8] .

解:令g(x)=x2﹣2x=(x﹣1)2﹣1,对称轴为x=1,

∴g(x)在[﹣1,1]上单调减,在[1,8]上单调递增,

又f(x)=2g(x)为符合函数,

∴f(x)=2g(x)在[﹣1,1]上单调减,在[1,,2]上单调递增,

∴f(x)min=f(1)==;

又f(﹣1)==23=8,f(2)==1,

高中数学完整讲义指数与指数函数1指数基本运算

题型一 指数数与式的运算 【例1】 求下列各式的值: ⑴ 33(5)-;⑵ 2(3)-; ⑶ 335; ⑷ 2()()a b a b -<; ⑸ 4334(3)(3)ππ---.⑹2 3 8;⑺12 25- ;⑻5 12-?? ???;⑼34 1681- ?? ??? . 【例2】 求下列各式的值: ⑴ 44100;⑵ 55 (0.1)-;⑶ 2(4)π-;⑷ 66 ()()x y x y ->. 【例3】 用分数指数幂表示下列各式: (1)3 2x (2)43)(b a +(a +b >0) (3)32 )(n m - (4)4 )(n m -(m >n ) (5) 5 6 q p ?(p >0) (6)m m 3 典例分析 板块一.指数基本运算

【例4】 用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)3 22b a ab + (4)4233)(b a + 【例5】 用分数指数幂的形式表示下列各式(其中0)a >:3a ;2a . 【例6】 用根式的形式表示下列各式(a >0) 15 a ,34 a ,35 a -,23 a - 【例7】 用分数指数幂的形式表示下列各式: 2 a a ,3 3 2a a ,a a (式中a >0) 【例8】 求值:23 8,12 100 -,314-?? ???,3 41681- ?? ??? . 【例9】 求下列各式的值: (1)12 2 (2)1 2 6449- ?? ??? (3)34 10000- (4)23 12527- ?? ???

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

复合函数知识总结及例题

复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

指数运算和指数函数

指数运算和指数函数 一、知识点 1.根式的性质 (1)当n 为奇数时,有a a n n = (2)当n 为偶数时,有???<-≥==) 0(,) 0(,a a a a a a n n (3)负数没有偶次方根 (4)零的任何正次方根都是零 2.幂的有关概念 (1)正整数指数幂:)(.............*∈??=N n a a a a a n n (2)零指数幂)0(10 ≠=a a (3)负整数指数幂 ).0(1 *∈≠= -N p a a a p p (4)正分数指数幂 )1,,,0(>*∈>=n N n m a a a n m n m 且 (5)负分数指数幂 n m n m a a 1= - )1,,,0(>*∈>n N n m a 且 (6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)),,0(,Q s r a a a a s r s r ∈>=?+ (2)),,0(,)(Q s r a a a rs s r ∈>= (3)),0,0(,)(Q r b a a a ab s r r ∈>>?= 4.指数函数定义:函数)10(≠>=a a a y x 且叫做指数函数。 5. 指数函数的图象和性质 x a y = 0 < a < 1 a > 1 图 象 性 质 定义域 R 值域 (0 , +∞) 定点 过定点(0,1),即x = 0时,y = 1 (1)a > 1,当x > 0时,y > 1;当x < 0时,0 < y < 1。 (2)0 < a < 1,当x > 0时,0 < y < 1;当x < 0时,y > 1。 单调性 在R 上是减函数 在R 上是增函数 对称性 x y a =和x y a -=关于y 轴对称

指数函数与对数函数(讲义)

指数函数与对数函数(讲义) ? 知识点睛 1. 指数函数及对数函数的图象和性质: 2. 利用指数函数、对数函数比大小 (1)同底指数函数,利用单调性比较大小; (2)异底指数函数比大小,可采用化同底、商比法、取中间值、图解法; (3)同底数对数函数比大小,直接利用单调性求解;若底数为字母,需分类讨论; (4)异底数对数函数比大小,可化同底(换底公式)、寻找中间量(-1,0,1),或借助图象高低数形结合. 3. 换底公式及常用变形: log log log c a c b b a =(a >0,且a ≠1;c >0,且c ≠1;b >0) 1 log log a b b a = (a >0,且a ≠1;b >0,且b ≠1) log log m n a a n b b m = (a >0,且a ≠1;b >0,且b ≠1) log a b a b =(a >0,且a ≠1;b >0) ? 精讲精练 1. 若a ,b ,c ∈R +,则3a =4b =6c ,则( )

A .b a c 111+= B . b a c 122+= C .b a c 221+= D .b a c 212+= 2. 计算: (1)若集合{lg()}{0||}x xy xy x y =,,,,,则228log ()x y +=_________; (2)设0()ln 0x e x g x x x ?=?>?≤(), ()则1 (())2g g =_____________; (3)若2(3)6()log 6f x x f x x x +

(完整版)高一数学复合函数讲解

1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立。 a是中间变量。 2、复合函数单调性 由引例对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地,当0<a<1时, 是单调递增函数 一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。 有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数; (3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数; (4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域

指数运算、指数函数

§1.4指数运算、指数函数 【复习要点】 1.指数、对数的概念、运算法则; 2.指数函数的概念, 性质和图象. 【知识整理】 1.指数的概念;运算法则:n n n mn n m n m n m b a ab a a a a a ===?+)(,)(, )1,,,0(* >∈>= n N n m a a a n m n m )1,,,0(1 1 * >∈>= = - n N n m a a a a n m n m n m 2.指数函数的概念, 性质和图象如表: 中利用函数的图象来比较大小是一般的方法。 4.会求函数y =a f (x)的单调区间。 5.含参数的指数函数问题,是函数中的难点,应初步熟悉简单的分类讨论。 【基础训练】 1]43 的结果为 ( ) A.5 B.5 C.-5 D.-5 2.将3 22-化为分数指数幂的形式为 ( ) A .21 2- B .31 2- C .2 12 - - D .65 2-

3.下列等式一定成立的是 ( ) A .2 33 1a a ?=a B .2 12 1a a ?- =0 C .(a 3)2=a 9 D .61 3 12 1a a a =÷ 4.下列命题中,正确命题的个数为 ( ) ①n n a =a ②若a ∈R ,则(a 2-a +1)0 =1 ③y x y x +=+34 33 4 ④6 2 3)5(5-=- A .0 B .1 C .2 D .3 5.化简11111321684 2 1212121212-----?????????? +++++ ? ? ? ? ????? ??????,结果是 ( ) A .1 1 321122--? ?- ? ?? B .1 13212--??- ? ?? C .1 3212-- D .1 321 122-??- ??? 6 .4 4 ? ? ? ? 等 于 ( ) A .16 a B .8 a C .4 a D .2a 【例题选讲】 1.设3 2212 ,-==x x a y a y ,其中a >0,a ≠1,问x 为何值时有 (1)y 1=y 2 ? (2)y 1<y 2? 2.比较下列各组数的大小,并说明理由 (1)43 1.1,43 4.1,32 1.1 (2)4 316.0- ,2 35 .0- ,8325.6 (3)53 2 )1(+a ,43 2 )1(+a 3.已知函数3234+?-=x x y 的值域为[7,43],试确定x 的取值范围. 4.设01a <<,解关于x 的不等式2 2 232 223 x x x x a a -++->

高考数学知识点:指数函数、函数奇偶性

高考数学知识点:指数函数、函数奇偶性指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。 可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提是a 大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y 轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。(7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 注图:(1)为奇函数(2)为偶函数

1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理奇函数的图像关于原点成中心对称图表,偶函数的图象

高一数学讲义-指数运算与指数函数

指数运算和指数函数 要求层次重点难点幂的运算 C ①根式的概念 ②有理指数幂 ③实数指数幂 ④幂的运算 ①分数指数幂的概 念和运算性质 ②无理指数幂的理 解 ③实数指数幂的意 义 指数函数的概念 B 在理解实数指数幂 的意义的前提下理 解指数函数 在理解实数指数幂 的意义的前提下理 解指数函数 指数函数的图象和 性质 C ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ③掌握指数函数作 为初等函数与二次 函数、对数函数结 合的综合应用问题 板块一:指数,指数幂的运算 (一)知识内容 1.整数指数 ⑴正整数指数幂:n a a a a =???,是n个a连乘的缩写(N n + ∈),n a叫做a的n次幂,a叫做幂的底数,n叫做幂的指数,这样的幂叫做正整数指数幂. ⑵整数指数幂:规定:01(0) a a =≠, 1 (0,) n n a a n a - + =≠∈N. 高考要求 第4讲 指数运算与指数函数 知识精讲

2.分数指数 ⑴ n 次方根:如果存在实数x ,使得n x a =(R,1,N )a n n +∈>∈,那么x 叫做a 的n 次方根. ⑵ 求a 的n 次方根,叫做a 开n 次方,称做开方运算. ① 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时, a 的n 表示. ② 当n 是偶数时,正数的n 次方根有两个,它们互为相反数.正数a 的正、负n 0)a >. ⑶正数a 的正n 次方根叫做a 的n 次算术根. 负数没有偶次方根.0的任何次方根都是0 0. n 叫做根指数,a 3.根式恒等式: n a =;当n a =;当n ||a a a ?=?-? 0a a <≥. 4.分数指数幂的运算法则 ⑴正分数指数幂可定义为:1(0)n a a > 0,,,)m m n m a a n m n +==>∈N 且 为既约分数 ⑵负分数指数幂可定义为:1(0,,,)m n m n m a a n m n a - += >∈N 且 为既约分数 5.整数指数幂推广到有理指数幂的运算性质: ⑴(0,,Q)r s r s a a a a r s +=>∈ ⑵()(0,,Q)r s rs a a a r s =>∈ ⑶()(0,0,Q)r r r ab a b a b r =>>∈ 6.n 次方根的定义及性质:n 为奇数时 a =,n 为偶数时 a =. 7. m n a = m n a - =(0a >,,*m n N ∈,且1n >) 零的正分数指数幂为0,0的负分数指数幂没有意义. 8.指数的运算性质:r s r s a a a +=,()r r r ab a b =(其中,0a b >,,r s ∈R ) 9.无理数指数幂 ⑴ 无理指数幂(0,a a αα>是无理数)是一个确定的实数. ⑵ 有理数指数幂的运算性质同样适用于无理数指数幂. 10.一般地,当0a >,α为任意实数值时,实数指数幂a α都有意义. 对任意实数α,β,上述有理指数幂的运算法则仍然成立.

人教高一数学指数函数讲义

第四节、指数函数 一、初中根式的概念; 如果一个数的平方等于a ,那么这个数叫做a 的平方根,如果一个数的立方等于a ,那么这个数叫做a 的立方根; (一)指数与指数幂的运算 1.根式的概念 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示。 . 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。 当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0)。 由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n 。 思考:n n a =a 一定成立吗? 结论:当n 是奇数时,a a n n = 当n 是偶数时,???<≥-==) 0()0(||a a a a a a n n 例1、(1)=-+125.08 33-4 1633 (2)7722)(2y x y xy x -+ +-=

2.分数指数幂 正数的分数指数幂的意义 规定: )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(11 *>∈>==-n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a ab =)( ),0,0(Q r b a ∈>>. 无理指数幂:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂. 对于根式的运算,简单的问题可以根据根式的意义直接计算,一般要将根式化为分数指数幂,利用分数指数幂的运算性质来进行计算。 例2、化简(1)=÷?----32 11321 32)(a b b a b a b a (2)=?÷?363342b ab a

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

指数以及指数函数的整理讲义经典-(含答案)

指数与指数函数 一、指数 (一)n 次方根: 1的3次方根是( ) A .2 B .-2 C .±2 D .以上都不对 2、若4 a -2+(a -4)0有意义,则实数a 的取值范围是( ) A .a ≥2 B .a ≥2且a ≠4 C .a ≠2 D .a ≠4 (二)、 n 为奇数,a a n n = n 为偶数,?? ?<-≥==0 ,0 ,a a a a a a n n 1.下列各式正确的是( ) =-3 =a =2 D .a 0=1 2、.(a -b )2+5 (a -b )5的值是( ) A .0 B .2(a -b ) C .0或2(a -b ) D .a -b 3、若xy ≠0,那么等式 4x 2y 2=-2xy y 成立的条件是( ) A .x >0,y >0 B .x >0,y <0 C .x <0,y >0 D .x <0,y <0 4、求下列式子 (1).33 4433)32()23()8(---+- (2)223223--+ (三)、分数指数幂 1、求值 4 3 52 13 2811621258- --?? ? ????? ??;;; 243 的结果为 A 、5 B 、5 C 、-5 D 、-5 3、把下列根式写成分数指数幂的形式: (1)32ab (2)()42 a - (3) 3432x x x (四)、实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 1.对于a >0,b ≠0,m 、n ∈N *,以下运算中正确的是( )

复合函数相关性质和经典例题

定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。 求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行: (1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =; (2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等; (3) 令内层函数A x g u ∈=)(,求出x 的取值范围M ; (4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数 )]([x g f y =的一个单调区间; 若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间; (5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性; (6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤。 (7) 设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (8) (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增. (9) (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (10) (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增. (11) (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减. (12) 结论:同曾异减 (13) 例1. 求函数222)(-+=x x x f 的单调区间. (14) 解题过程: (15) 外层函数:t y 2= (16) 内层函数:22-+=x x t (17) 内层函数的单调增区间:],2 1[+∞-∈x (18) 内层函数的单调减区间:2 1,[--∞∈x (19) 由于外层函数为增函数 (20) 所以,复合函数的增区间为:],2 1[+∞-∈x (21) 复合函数的减区间为: 2 1,[--∞∈x (22) 求函数)23(log 221x x y --=的单调区间. (23) 解 原函数是由外层函数u y 2 1log =和内层函数223x x u --=复合而成的; (24) 易知),0(+∞是外层函数u y 2 1log =的单调减区间; (25) 令0232>--=x x u ,解得x 的取值范围为)1,3(-; (26) 解题过程:

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题 一.选择题 1.若xlog 23=1,则3x+9x的值为(B) A.3B.6C.2D.解:由题意x=, 所以3x==2, 所以9x=4,所以3x+9x=6 故选B 2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4 解答:解:∵, ∴设=m, a=log5m,b=log2m,c=2lgm, ∴= =2lgm(log m5+log m2) =2lgm?log m10 =2. 故选B. 3.已知,则a等于() A.B.C. 2 D. 4 解:因为所以 解得a=4 故选D 4.若a>1,b>1,p=,则a p等于() A.1B.b C.l og b a D.a log b a

解:由对数的换底公式可以得出p==log a(log b a), 因此,a p等于log b a. 故选C. 5.已知lg2=a,10b=3,则log125可表示为(C) A.B.C.D. 解:∵lg2=a,10b=3, ∴lg3=b, ∴log125= = =. 故选C. 6.若lgx﹣lgy=2a,则=(C) A.3a B.C.a D. 解:∵lgx﹣lgy=2a, ∴lg﹣lg=lg﹣lg=(lg﹣lg) =lg=(lgx﹣lgy)=?2a=a; 故答案为C. 7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2 解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0 ∵f(a)+f(b﹣2)=0 ∴a+(b﹣2)=0 ∴a+b=2 故选D.

8.=() A.1B.C.﹣2 D. 解:原式=+2×lg2+lg5=+lg2+lg5=+1=, 故选B. 9.设,则=() A.1B.2C.3D.4解:∵, ∴= =()+()+()= =3 故选C 10.,则实数a的取值区间应为(C) A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328 ∵3=log327<log328<log381=4 ∴实数a的取值区间应为(3,4) 故选C. 11.若lgx﹣lgy=a,则=(A)

高中数学复合函数练习题

第一篇、复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (一)例题剖析: (1)、已知 f x ()的定义域,求[]f g x ()的定义域 思路:设函数 f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范 围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数 f u ()的定义域为(0,1) ,则函数f x (ln )的定义域为_____________。 解析:函数 f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<f x ()的定义域为

指数运算与指数函数(学案)

指数运算与指数函数 高考要求 知识梳理 知识点一:有理数指数幂 1. n 次方根概念与表示 一般地,如果n x =a ,那么x 叫做a 的n 次方根,其中n >1,且*N n . n

2.根式概念 式子a n 叫做根式,这里n 叫做根指数,a 叫做被开方数. 3.根式的性质 ① n a =. ② ||,a n a n ?=??,为奇数为偶数; 4.分数指数幂 正分数指数幂:a m n =√a m n (a >0,m,n ∈N ?,n >1) 负分数指数幂:a ? m n = 1 a m n = √a m n a >0,m,n ∈N ?,n >1) 0的正分数指数幂等于0;0的负分数指数幂没有意义 5.实数指数幂的运算性质 a r a s =a r+s (a >0,s ∈Q ) (a r )s =a rs (a >0,s ∈Q ) (a b )r =a r b r (a >0,s ∈Q ) 知识点二:指数函数的图像和性质 1.指数函数概念: 形如0(>=a a y x 且1≠a )函数叫指数函数,其中x 是自变量,函数定义域为R . 2.指数函数图象与性质 R

知识点三:指数函数性质的运用(比较大小) 指数函数在第一象限按逆时针方向底数依次增大 考点解析 典型习题一:指数幂(根式)的化简与计算 例1、已知当27=x ,64=y 时,化简并计算 例2、已知 01x <<,且1 3x x -+=,求112 2 x x - -的值. 典型习题二:指数函数的图像问题 例1、已知函数2 ()x f x m -=(0m >,且1m ≠)恒过定点(,)a b ,则在直角坐标系中函数 ||1 ()()x b g x a +=的图象为( ) )6 5 )(41(561 312112 13 2-----y x y x y x

完整word版,人教高一数学指数函数讲义

第四节、指数函数 、初中根式的概念; 如果一个数的平方等于a,那么这个数叫做a的平方根,如果一个数的立方等于a,那么这个数叫做a的立方根; (一)指数与指数幕的运算 1.根式的概念 一般地,如果x" a,那么x叫做a的n次方根,其中n >1,且n € N . 当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时,a的n次方根用符号n a表示。 .式子R'a叫做根式,这里n叫做根指数,a叫做被开方数。 当n是偶数时,正数的n次方根有两个,这两个数互为相反数.此时,正数a 的正的n次方根用符号n a表示,负的n次方根用符号一:a表示?正的n次方根与负的n 次方根可以合并成土:a ( a>0)。 由此可得:负数没有偶次方根;0的任何次方根都是0,记作n0 0 思考:x a n=a 一定成立吗? 结当n是奇数时,n a n a 当n是偶数时,n a n| a | a (a 0) a (a 0) (2) . x2 2xy .(x y)7=

2 ?分数指数幕 正数的分数指数幕的意义 规定: m a n Va m (a 0, m, n N *, n 1) -1 1 * a n r 尸帛 (a °, m,n N ,n 1) a 7 va 0的正分数指数幕等于0, 0的负分数指数幕没有意义 指出:规定了分数指数幕的意义后,指数的概念就从整数指数推广到了有理 数指数,那么整数指数幕的运算性质也同样可以推广到有理数指数幕. 3 ?有理指数幕的运算性质 (1) r r a ?a s a (a 0,r,s Q) ; (2) r s (a ) rs a (a 0,r,s Q) ; (3) r (ab) r s a a (a 0,b 0,r 无理指数幕:-般地,无理数指数幕a (a 0,是无理数)是一个确定的 实数?有理数指数幕的运算性质同样适用于无理数指数幕. 对于根式的运算,简单的问题可以根据根式的意义直接计算, 一般要将根式化为 分数指数幕,利用分数指数幕的运算性质来进行计算。 2 例2、化简(1)丰匚(旦 a 2?V b 2 (2) 2?3a a ?2 , x 0 x (, a R ), 若 f[ f ( 1)] 1,则 a=( 2 x ,x 0 例 3 、已知函数 f ( x )

高一数学指数函数知识点及练习题含答案

指 数函数 2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质

2.1指数函数练习 1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 3433)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( )

相关文档
相关文档 最新文档