文档库 最新最全的文档下载
当前位置:文档库 › 时钟问题

时钟问题

时钟问题
时钟问题

1、科技馆里有一只奇妙的钟表,一圈一共有20个格。每过1分钟,指针就跳一次,每跳一次就要跳过9个格,今天早晨8点整的时候,指针恰好从0跳到了9,问昨天晚上8点整的时候指针指着几?

2、把一个钟改装成一个玩具钟,使得时针每转一圈,分针转16圈。秒针转36圈。开始时三针重合。问在时针旋转一周的过程中,三针重合了几次?(不计算起始和终止的位置)

3、甲、乙两个时钟都不准确,甲钟每走24小时,恰好快了1分钟,乙钟每走24小时,恰好慢了1分钟,假定今天下午三点钟的时侯,将甲、乙两个钟都调好,指在准确的时间上,任其不停地走下去,问下一次这两只钟表都同样指在三点时,要隔多少天?

4、下午当钟表的时针和分针重合,秒针指在49秒附近时,钟表表示的时间是多少(精确到秒)?

5、李叔叔下午要到工厂上3点的班.他估计快到上班时间了,到屋里看钟,可是钟早在12点10分就停了.他上足发条后忘了拨针,匆匆离家,到工厂一看离上班时间还有10分钟.8小时工作后夜里11点下班,李叔叔回到家里,一看钟才9点整.假定他上班和下班在路上用的时间相同,那么他家的钟停了多长时间?

6、在9点与10点之间的什么时刻,分针与时针在一条直线上?

①分针与时针的夹角为180°角

②分针与时针的夹角为0°,即分针与时针重合

7、小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间?

8、一只钟的时针与分针均指在4与6之间,且钟面上的“5”字恰好在时针与分针的正中央,问这时是什么时刻?

分析由于现在可以是4点多,也可以是5点多,所以分两种情况进行讨论:

①先设此时是4点多

②再设此时是5点多

9、在6点和7点之间,两针什么时刻重合?

10、现在是2点15分,再过几分钟,时针和分针第一次重合?

11、在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°?

12、李叔叔下午要到工厂上3点的班.他估计快到上班时间了,到屋里看钟,可是钟早在12点10分就停了.他上足发条后忘了拨针,匆匆离家,到工厂一看离上班时间还有10分钟.8小时工作后夜里11点下班,李叔叔回到家里,一看钟才9点整.假定他上班和下班在路上用的时间相同,那么他家的钟停了多长时间?

13、一旧钟钟面上的两针每66分钟重合一次,这只旧钟在标准时间的一天中快或慢几分钟

时间同步系统的要求

4.3.12时间同步系统的要求 4.3.12.1总的要求 4.3.12.1.1 时间同步系统的构成 1)时间同步系统由一级主时钟和时钟扩展装置组成。 2)一级主时钟用于接收卫星或上游时间基准信号,并为各时间扩展装置提供时间信号。3)一级主时钟与时钟扩展装置均配置时间保持单元,保证在输入信号中断的情况下,依然不间断地提供高精度的输出信号。 4.3.12.1.2时间同步系统的布置 根据本期工程情况,将配置1面主时钟装置屏和2面时钟扩展装置屏。主时钟本体装置屏安装在集控楼内,主时钟屏配置的2台主时钟为整个时间同步系统提供2路冗余的时间基准信号输出。机组保护室和网络继电器室各设1面时钟扩展装置屏,主时钟装置与时钟扩展装置之间采用光纤连接。时间同步系统天线安装在集控楼楼顶上。 4.3.12.1.3时间同步系统的运行条件 1)电源要求 同步时钟装置(一级主时钟和二级扩展)采用两路AC220V电源供电,投标方应配置双电源自动切换装置(美国ASCO 7000系列产品)实现双电源自动切换。 2)工作环境 工作温度: -10~+55℃ 贮存温度: -40~+55℃ 湿度: 5%~95%(不结露)。 所有设备均可放置在无屏蔽、无防静电措施的机房内。 4.3.12.1.4 时间同步系统的电磁兼容性 时间同步系统在集控楼的电磁场环境下能正常工作,符合“GB/T13926-1992 工业过程测量和控制装置的电磁兼容性”中有关规定的要求,并达到Ш级及以上标准。 4.3.12.2功能要求 4.3.12.2.1 时间同步系统配置的主时钟及时间同步信号扩展装置对厂内DCS、SIS、电气控制装置及其他需要时钟同步的设备进行时间同步,并应能提供满足这些设备需要的各种时间同步信号及接口(含接口装置、通讯电缆等设备)。 4.3.12.2.2时间同步系统两台主时钟的时间信号接收单元应能独立接收GPS卫星和我国北斗卫星发送的无线时间信号作为主外部时间基准信号。当某一主时钟的时间接收单元发生故

六年级(时钟问题)(汇总).doc

六年级(时钟问题) 【知识概述】 时钟上的时针和分针的运动是有规律的,时钟问题一般都是围绕时针、分针和秒针的重合、垂直、成直线或夹角的度数等问题来进行研究的。 钟面上一圈分为60个小格,分针每小时走60小格,时针每小时走5小格,时针的速度是分针的121,分针每分钟比时针多走1-121=12 11小格,还可以把钟面按“度”来分,分针1小时走一圈是360°,每分钟走360°÷60=6°,时针60分钟走30°,所以时针每分钟走30°÷60=0.5°。分针每分钟比时针多走6°-0.5°=5.5°。 解时钟问题时,可以把它转化为行程问题中的“追及问题”来解答,基本的关系式是:路程差÷速度差=追及时间。 【例题精学】 例1、从时针指向4点开始,再过多长时间,时针正好与分针重合? 【思路点拨】 先将本题转化为追及问题,4点时针指向“4”,分针指向“12”,时针与分针相距20小格,本题就转化为,时针与分针相距20小格,时针在前,分针在后,分针每分钟比时针多走 12 11,时针与分针同时出发,分针要用多少分钟可以追上时针?路程差是20小格,速度差是1211小格,根据“路程差÷速度差=追及时间”求出追及时间。

1、中午12时以后,时针与分针第一次重合时,表示的时间是几时几分? 2、5点以后经过多长时间,时针与分针第一次重合,第二次重合? 3、现在是6点多钟,时针与分针恰好重合,再过多长时间,时针与分针第一次位于同一直线上? 例2、7点多少分的时候,分针落后于时针100°? 【思路点拔】 本题就转化为,分针每分钟走6°,时针每分钟走0.5°,7点多少分的时候,分针落后于时针100°?7点整,分针落后于时针210°,题目要求“分针落后于时针100°”也就是说分针要追上时针210°-100°=110°,路程差是110°,速度差是6°-0.5°=5.5°,110°÷5.5°=20(分)

时钟同步系统施工方案

时钟同步系统施工方案

施工方案审批表 审核单位:审核意见:审核人: 日期:监理单位:监理意见:监理人: 日期:批准单位:审批意见:审批人: 日期:

目录 一、施工方案综述............................................................................................... - 3 - 二、工程概况及特点........................................................................................... - 4 - 三、施工步骤....................................................................................................... - 5 - 四、风险分析..................................................................................................... - 14 - 五、生产安全及文明施工................................................................................. - 14 - 一、施工方案综述 根据中韩(武汉)石油化工有限公司PLC系统的改造技术要求和我公司对改造要求的理解来编制施工方案。

时钟和延迟的一些定义

时钟和延迟 1:周期与最高频率 图1所示电路的最小时钟周期 t CLK= Microt CO+t LOGIC+t NET+Microt SU-t CLK_SKEW 其中,t CLK_SKEW=t CD1-t CD2 ?t CLK 时钟的最小周期 ?Microt CO 寄存器固有的时钟输出延迟 ?t LOGIC 同步元件之间的组合逻辑延迟 ?t NET 线网延迟 ?Microt SU 寄存器固有的时钟建立时间 ?t CLK_SKEW 时钟偏斜 t LOGIC 图1 时钟周期的计算 公式中最小时钟周期的倒数即最高频率,用f MAX表示: f MAX=1/t CLK f MAX能综合体现设计的时序性能,是最重要的时序指标之一。 2:时钟建立时间 时钟建立时间(Clock Setup Time)常用t SU表示。想要正确采样数据,就必须使数据和使能信号在有效时钟沿到达前就准备好。所谓时钟建立时间就是指时钟到达前,数据和使能信号已经准备好的最小时间间隔。 图2所示电路的t SU为; t SU= Data Delay-Clock Delay+Microt SU 式中Microt SU指的是触发器内部的固有建立时间,是触发器的国有属性,典型值一般小于1ns。 图2 时钟建立时间

3:时钟保持时间 时钟保持时间(Clock Hold Time)常用t H表示。时钟的保持时间是指能保证有效时钟沿正确采样数据和使能信号在时钟沿之后的最小稳定时间。 t H= Clock Delay- Data Delay+ Microt H 式中Microt H指的是触发器内部的固有建立时间,是触发器的国有属性,典型值一般小于1ns。 图3 时钟保持时间 4:时钟输出延迟 时钟输出延迟(Clock to Output Delay)常用t CO表示。它指的是在时钟有效沿到数据有效的最大时间间隔。 t CO= Clock Delay+ Data Delay+ Microt CO 式中Microt CO也是一个寄存器的固有属性,指的是寄存器相应时钟有效沿,将数据送到输出端口的内部延迟参数,典型值一般小于1ns。 图4 时钟输出延迟 5:引脚到引脚的延迟 引脚到引脚的延迟(Pin to Pin Delay)常用t PD表示。指信号从输入管脚进来,穿过纯组合逻辑,到达输出管脚的延迟。由于FPGA的布线矩阵长度固定,所以常用最大t PD标志FPGA的速度等级。 6:Slack Slack是表示设计是否满足时序的一个称谓:正的Slack表示满足时序(时序的余量),负的Slack表示不满足时序(时序的缺量)。 Slack= Required Clock period- Actual Clock Period Slack= Slack Clock period- Microt CO+ Data Delay+ Microt SU Slack的计算方法如下图

GPS时钟同步装置K用户手册(C型D型)

一、概述 随着计算机网络的迅猛发展,网络应用已经非常普遍,如电力、金融、通信、交通、广电、安防、石化、冶金、水利、国防、医疗、教育、政府机关、IT等领域的网络系统需要在大范围保持计算机的时间同步和时间准确,因此有一个好的标准时间校时器是非常必要的。为了适应这些领域对于时间越来越精密的要求,锐呈公司精心设计、自主研发了K系列NTP网络时间服务器。该装置以美国全球定位系统(GPS)为时间基准,内嵌国际流行的NTP-SERVER服务,以NTP/SNTP协议同步网络中的所有计算机、控制器等设备,实现网络授时。 K806卫星同步时钟-C型、D型(GPS时间服务器、NTP时间服务器、时间服务器、GPS 网络同步时钟、网络时钟、GPS网络时间服务器、NTP网络时间服务器)采用SMT表面贴装技术生产,以高速芯片进行控制,无硬盘和风扇设计,精度高、稳定性好、功能强、无积累误差、不受地域气候等环境条件限制、性价比高、操作简单、全自动智能化运行,免操作维护,适合无人值守。该产品可以为计算机网络、计算机应用系统、流程控制管理系统、电子商务系统、网上B2B系统以及数据库的保存维护等系统提供精密的标准时间信号和时间戳服务。 二、安全须知 1.使用本装置之前,请您仔细阅读用户手册和装置随带的其它用户说明。 2.非专业人员请勿随意打开机箱,不能改动任何跳线设置,以免影响装置正常工作。3.避免金属线头(丝)或其它金属物落入机箱内,以防止短路或其它故障的发生。4.装置运行过程中,非专业人员不可随意按动装置前面板的按键。 5.装置使用之前,请将装置后面板上的接地端可靠接地。 6.在接电源之前,请确认装置后面板和用户手册上的电源要求,按要求接入电源。7.不同类型的对时信号输出的信号电压、电流幅值不同,在将信号接入被对时设备前请确认所接对时信号类型是否正确,以免损坏被对时设备接口。 三、装置的特点 1.精度高,同步快。

数学应用之经典时钟问题讲解

数学应用之经典时钟问题讲解 1.时针与分针 分针每分钟走1 格,时针每60 分钟5 格,则时针每分钟走1/12 格,每分钟时针比分针少走11/12 格。 例:现在是2 点,什么时候时针与分针第一次重合? 析:2 点时候,时针处在第10 格位置,分针处于第0 格,相差10 格,则需经过10 / 11/12分钟的时间。 例:中午12 点,时针与分针完全重合,那么到下次12 点时,时针与分针重合多少次? 析:时针与分针重合后再追随上,只可能分针追及了60 格,则分针追赶时针一次,耗时60 /11/12 =720/11 分钟,而12 小时能追随及12*60 分钟/ 720/11 分钟/次=11 次,第11 次时,时针与分针又完全重合在12 点。如果不算中午12 点第一次重合的次数,应为11 次。如果题目是到下次12 点之前,重合几次,应为11-1 次,因为不算最后一次重合的次数。 2.分针与秒针 秒针每秒钟走一格,分针每60 秒钟走一格,则分针每秒钟走1/60 格,每秒钟秒针比分针多走59/60 格 例:中午12 点,秒针与分针完全重合,那么到下午1 点时,两针重合多少次? 析:秒针与分针重合,秒针走比分针快,重合后再追上,只可能秒针追赶了60 格,则秒针追分针一次耗时,60 格/ 59/60 格/秒= 3600/59 秒。而到1 点时,总共有时间3600 秒,则能追赶,3600 秒/ 3600/59 秒/次=59 次。第59 次时,共追赶了,59 次*3600/59 秒/次=3600 秒,分针走了60 格,即经过1 小时后,两针又重合在12 点。则重合了59 次。 3.时针与秒针 秒针每秒走一格,时针3600 秒走5格,则时针每秒走1/720 格,每秒钟秒针比时针多走719/720格。 例:中午12 点,秒针与时针完全重合,那么到下次12 点时,时针与秒针重合了多少次? 析:重合后再追上,只可能是秒针追赶了时针60 格,每秒钟追719/720 格,则要一次要追60 /720=43200/719 秒。而12 个小时有12*3600 秒时间,则可以追12*3600/43200/719=710次。此时重合在12 点位置上,即重合了719 次。

STM8教程-第十六章 CCO 时钟输出

第十六章CCO 时钟输出 作为STM8S207 的一个特别功能,时钟输出功能CCO 是可配置的时钟输出功能。使用CCO 可以在CCO 引脚上输出指定的时钟。 16.1 CCO 简介 可配置的时钟输出功能使用户可在外部引脚CCO 上输出指定的时钟。用户可选择下面6 种时钟信号之一作为CCO 的时钟: f_HSE f_HSI f_HSIDIV f_LSI f_master f_cpu 16.2 可配置时钟输出寄存器CLK_CCOR CCOBSY:可配置时钟输出忙。由硬件置位或清除,用于指示所选的CCO 时钟源正处于切换状态或者稳定状态。当CCOBSY 为1 时,CCOSEL 位将被写保护。CCOBSY 保存为1 直至CCO 时钟被使能。 0:CCO 时钟闲 1:CCO 时钟忙 CCORDY:可配置时钟输出准备就绪。由硬件置位或清除,用于指示CCO 时钟的状态0:CCO 时钟可用 1:CCO 时钟不可用 CCOSEL:可配置时钟输出源选择。当CCOBSY=1 时,该位被写保护 0000:f_HSIDIV 0001:f_LSI 0010:f_HSE 0011:Reserved 0100:f_cpu 0101:f_cpu/2 0110:f_cpu/4 0111:f_cpu/8 1000:f_cpu/16 1001:f_cpu/32 1010:f_cpu/64 1011:f_HSI 1100:f_master 1101:f_cpu 1110:f_cpu

1111:f_cpu CCOEN:可配置时钟输出使能 0:禁止CCO 时钟输出 1:使能CCO 时钟输出 16.3 关于CCO 的说明 用户需为指定的IO 引脚PE0 选择期望输出的时钟。此IO 口必须通过配置寄存器PE_CR1 对应的位为1 来设置为上拉输入或推挽输出模式。 一旦可配置时钟输出寄存器CLK_CCOR 的位CCOEN=1,就开始输入所选定的时钟信号。 如果CCOBSY 为1,则表明可配置时钟输出系统正在工作。只要CCOBSY 为1,CCOSEL 位就会被写保护。 如果需要,CCO 可自动激活目标振荡器。当所选时钟就绪时,CCORDY 被置位。 用户可通过清除CCOEN 位来禁用时钟输出功能。CCOBSY 位和CCORDY 位都将保持为1 直到禁用操作结束。从清除CCOEN 位到这两个标志位被复位之间的时间可能会很长,例如当所选的输出时钟相对于fCPU 频率很低时。 16.4 CCO 模块基础应用实例 本节通过一个简单实例,说明CCO 模块的使用和编程方法。 由于时钟频率都较高,所以为了验证实验的正确性,这里采用了蜂鸣器作为验证效果。由于人耳听到的频率在20KHz 范围内,所以为了便于验证,尽量把CCP 的频率降低。实验中采用了HIS 经过HSI8 分频后作为f_master,因此f_maser = 2MHz,再经过16 分频后CPU 的频率为125KHz。最后CCO 采用64 分频后输出的频率约等于2KHz,在人耳的敏感区。验证的时候把PE0 引脚和PD4 引脚短接就OK 了。 程序代码 #include "iostm8s207rb.h" int main( void ) { PE_CR1_C10 = 1; //推挽输出或者上拉输入 //CLK_CKDIVR = 0x1C; CLK_CKDIVR_HSIDIV = 3; CLK_CKDIVR_CPUDIV = 4; //CPU 16分频 //f_cpu = 16M/8/16 = 125KHz CLK_CCOR_CCOSEL = 0x0A; //CCO 输出f_cpu/64 = 1.95KHz CLK_CCOR_CCOEN = 1; //使能CCO输出 while(1); } 使用万用表测到频率为1.9KHz,用导线把PE0 和PD4 口连接在一起就可以听到蜂鸣器的声音。

DCS时钟故障分析

一、前言 DCS在国内大型火力发电机组上应用始于上世纪八十年代后期,到目前为止只有十几年的运行经验。华能国际电力股份有限公司整套引进350MW机组,投资建设的南通、上安、大连、福州电厂是国内最早应用DCS的电厂。 随着火力发电机组自动化水平的不断提高,单元机组DCS系统的功能范围不断扩大。近两年新建和改造机组的单元控制室内除用于紧急停机、停炉用的后备手操外,其余操作全部依赖于DCS。因而,由于DCS本身故障引起的跳机现象时有发生。所以,如何提高DCS 的可靠性作为一个重要课题摆在了从事热工自动化工作的各位人士的面前。 由于工作关系,有机会到过三十多家火电厂收资、交流或验收,接触到应用DCS的100~700MW单元机组近八十台,几乎覆盖了国内应用过的所有类型的DCS,对各种类型的DCS 发生的故障有较多的了解,无论是进口DCS,还是国产DCS,尽管在原理、结构上迥异,包含的子系统也不一样多,但都或多或少地出现过一些相类似的故障,通过对典型故障进行深入细致地分析,找出故障的真正原因,举一反三,制定出防范措施,并正确地实施,可以很好地防止此类DCS故障的重复发生。本文列举了几个典型的DCS故障案例,供从事热工技术管理及检修人员参考。 二、案例一控制器重启引发机组跳闸 2.1 事件经过 2001年11月1日,A电厂4号机组停机前有功负荷270MW,无功96MV ar,A、B励磁调节器自动并列运行,手动50Hz柜跟踪备用。 14时26分,事故音响发出,发电机出口开关、励磁开关跳闸,"调节器A柜退出运行"、"调节器B柜退出运行"等报警信号发出,机组解列。对ECS控制系统检查、试验,发现#14控制器发生故障已离线,与之冗余的#34控制器发生重启,更换了#14和#34控制器主机板后,机组重新启动,不久,发变组与系统并列。 2.2原因分析 根据历时数据分析,13时31分,#14控制器硬件故障而离线运行,热备用的#34控制器自动由辅控切为主控。14时26分,#34控制器由于通讯阻塞引起"WATCHDOG"误判断,致使控制器重启。由于控制器控制励磁调节器的方式为长信号,没有断点保护功能,#34控制器重启后,不能自动回到断点前的状态,导致A、B调节器自动退出运行,手动50Hz柜自动投入。由于发电机失磁,发电机端电压下降,导致厂用电源电压降低,手动50Hz柜输出电压继续降低,手动50Hz柜投入后发电机没有脱离失磁状态,直至切除励磁装置,造成发电机失磁保护动作,发电机出口开关跳闸。 #14控制器和#34控制器控制发变组设备,包括厂用电切换的备自投继电器接点BK,#34控制器重启后,BK自动复位,继电器接点断开,BK投到退出位置,造成6KV电源开关6410、6420开关自投不成功。 2.3防范措施 2.3.1将故障控制器更换。后来制造厂确认这一批主板晶振存在问题,同意免费更换,利用停机机会更换4号机组所有控制器主板。 2.3.2增加任一控制器、I/O卡、通讯卡离线报警功能。 2.3.3程序内部"WATCHDOG"的时间设置太短,易造成误判断,对所有控制器进行软件升级。 2.3.4调节器AQK、BQK方式开关和厂用电备自投BK开关组态图增加断点保护功能,防止控制器自启动后,励磁调节器和厂用电自投开关退出运行。 2.3.5检查ECS系统的所有组态,对存在以上问题的逻辑进行修改。 2.3.6联系调节器厂家,使调节器内部可以作到运行状态自保持,将控制器控制调节器的方

简易时钟设计讲解

等级: HUNAN INSTITUTE OF ENGINEERING 课程设计 课程名称_______ 单片机原理与应用课程设计__________ 课题名称______________ 简易时钟设计_______________ 专业_____________ 电子信息工程_______________ 班级______________ 电信1301班 _______________ 学号__________________ 31 ___________________ 姓名_________________ 彭颗___________________ 指导老师___________________ 林国汉_________________ 2016年3月25日

电气信息学院 课程设计任务书 课题名称 ________________________________ 简易时钟设计_________________________________ 姓名彭颗专业电子信息工程班级1301 学号01 指导老师 _____________________________________ 林国汉 __________________________________ 课程设计时间 ____________ 2016年3月14日-2016年3月25日(3、4周) _________________ 教研室意见意见:审核人: ____________________ 一、任务及要求 设计任务: 本课题要求以MCS-51系列单片机为核心,设计一个数字时钟。 (1)具有时钟和跑表功能,用LED或者液晶显示器进行显示;(2) 具有时钟调整功能 (3)具有闹钟功能,(4) *能将闹钟时间在AT24C02保存(5) *其它功能设计要求: (1)确定系统设计方案;(2)进行系统的硬件设计;(3)完成应用程序设计; (4)应用系统的硬件和软件的调试。 二、进度安排 第一周: 周一:集中布置课程设计任务和相关事宜,查资料确定系统总体方案。 周二?周三:完成硬件设计和电路连接 周四?周日:完成软件设计 第二周: 周一?周三:程序调试 周四?周五:设计报告撰写。周五进行答辩和设计结果检查。 三、参考资料 1、51单片机C语言教程郭天祥编著电子工业出版社 2、单片机原理与应用第2版王迎旭主编机械工业出版社 3单片机原理与应用及C51程序设计杨加国清华大学出版社,2009

电力时钟同步系统解决方案

电力GPS时钟同步系统解决方案 北京创想京典科技发展有限公司 科 技 领先铸就最佳

什么是时间? 时间是一个较为抽象的概念,爱因斯坦在相对论中提出:不能把时间、空间、物质三者分开解释,"时"是对物质运动过程的描述,"间"是指人为的划分。时间是思维对物质运动过程的分割、划分。 在相对论中,时间与空间一起组成四维时空,构成宇宙的基本结构。时间与空间都不是绝对的,观察者在不同的相对速度或不同时空结构的测量点,所测量到时间的流逝是不同的。广义相对论预测质量产生的重力场将造成扭曲的时空结构,并且在大质量(例如:黑洞)附近的时钟之时间流逝比在距离大质量较远的地方的时钟之时间流逝要慢。现有的仪器已经证实了这些相对论关于时间所做精确的预测,并且其成果已经应用于全球定位系统。另外,狭义相对论中有“时间膨胀”效应:在观察者看来,一个具有相对运动的时钟之时间流逝比自己参考系的(静止的)时钟之时间流逝慢。 就今天的物理理论来说时间是连续的,不间断的,也没有量子特性。但一些至今还没有被证实的,试图将相对论与量子力学结合起来的理论,如量子重力理论,弦理论,M理论,预言时间是间断的,有量子特性的。一些理论猜测普朗克时间可能是时间的最小单位。

什么是时间? 根据斯蒂芬·威廉·霍金(Stephen William Hawking)所解出广义相对论中的爱因斯坦方程式,显示宇宙的时间是有一个起始点,由大霹雳(或称大爆炸)开始的,在此之前的时间是毫无意义的。而物质与时空必须一起并存,没有物质存在,时间也无意义。

卫星时钟系统为什么含有精确的时间信息? 地球本身是一个不规则的圆,加上地球自转和公转的误差,如果仅仅依靠经度、纬度、海拔高度三个参数来定位的偏差会很大,所以 引入了一个时间参数,每个卫星都内置了一个高稳定度的原子钟!

时序分析中建立时间,保持时间,时钟到输出,PIN到PIN延时的说明

时序分析中建立时间,保持时间,时钟到输出,PIN到PIN延时的说明 Clock Setup Time (tsu) 要想正确采样数据,就必须使数据和使能信号在有效时钟沿到达前就准备好,所谓时钟建立时间就是指时钟到达前,数据和使能已经准备好的最小时间间隔。如下图所示: 这里定义Setup时间是站在同步时序整个路径上的,需要区别的是另一个概念Micro tsu。Micro tsu指的是一个触发器内部的建立时间,它是触发器的固有属性,一般典型值小于1~2ns。在Xilinx等的时序概念中,称Altera的Micro tsu为setup时间,用Tsetup表示,请大家区分一下。回到Altera的时序概念,Altera的tsu定义如下:tsu = Data Delay – Clock Delay + Micro tsu Clock Hold Time (tH)时钟保持时间是只能保证有效时钟沿正确采用的数据和使能信号的最小稳定时间。其定义如下图所示: tH示意图 定义的公式为:tH= Clock Delay – Data Delay + Micro tH 注:其中Micro tH是指寄存器内部的固有保持时间,同样是寄存器的一个固有参数,典型

值小于1~2ns。 Clock-to-Output Delay(tco)这个时间指的是当时钟有效沿变化后,将数据推倒同步时序路径的输出端的最小时间间隔。如下图所示: tco示意图 其中Micor tco也是一个寄存器的固有属性,指的是寄存器相应时钟有效沿,将数据送到输出端口的内部时间参数。它与Xilinx的时序定义中,有一个概念叫T cko是同一个概念。 Pin to Pin Delay (tpd)tpd指输入管脚通过纯组合逻辑到达输出管脚这段路径的延时,特别需要说明的是,要求输入到输出之间只有组合逻辑,才是tpd延时。 Slack是表示设计是否满足时序的一个称谓,正的slack表示满足时序(时序的余量),负的slack表示不满足时序(时序的欠缺量)。slack的定义和图形如下图所示。 Slack = Required clock period – Actual clock period Slack = Slack clock period – (Micro tCO+ Data Delay + Micro tSU) Clock Skew指一个同源时钟到达两个不同的寄存器时钟端的时间偏移,如下图所示。

钟表问题(一)

钟面上的数学问题(一) 【问题1】3时多少分时,时针与分针重合? 想:这个问题实际上就是行程问题中的追及问题,3时分针指着12,时针指着3。 分针与时针相距5×3=15小格。分针每分钟走1小格,时针每分钟走1 12 小格。要使分 针与时针重合,分针要比时针多走15小格。根据追及问题中的追及时间=路程差÷速度差列式即可。 解:15÷(1-1 12)=16 4 11 (分) 答:3时164 11 分时,时针与分针重合。 【试一试】 1、某钟面的指针指在2点整,再过多少分钟时针和分针第一次重合? 2、钟面上8点整,再过多少分钟时针与分针首次重合? 【问题2】在7点与8点之间,时针与分针在什么时刻相互垂直? 想:7点时分针指向12,时针指向7,分针在时针后面5×7=35(格)。时针与分针垂直,即时针与分针相差15格,在7点与8点之间,有两种情况: (1)顺时针方向看,分针在时针后面15格。从7点开始,分针要比时针多走35-15=20(格); (2)顺时针方向看,分针在时针前面15格。从7点开始,分针要比时针多走35+15=50(格)。 解:(35-15)÷(1-1 12)=21 9 11 (分)

(35+15)÷(1-1 12)=54 6 11 (分) 答:在7点219 11分和54 6 11 分时,时针与分针相互垂直。 【试一试】 1、在10点与11点之间,钟面上时针和分针在什么时侯相互垂直? 2、在3点与4点之间,钟面上时针和分针在什么时侯相互垂直? 【问题3】在3点与4点之间,时针和分针在什么时候反向成一直线? 想:3点时分针指向12,时针指向3,分针在时针后面5×3=15(格)。时针与分针反向成一直线,即时针与分针成180°角。从3点开始,分针要比时针多走15+30=45小格。 解:(15+30)÷(1-1 12)=49 1 11 (分) 答:3点491 11 分,时针和分针反向成一直线。 【试一试】 1、6时以后,分针与时针再一次反向成一直线是在什么时候? 2、钟面上9点整,再过多少分钟两指针反向成一直线?

最新数字时钟说课讲解

单片机课程设计报告 系部:机电工程系 班级组别:二班四组 组长:邹建华_ 成员:邹建华杨云冲王国庆 设计题目:数字时钟 指导教师:龙芬 设计日期:二零一二年十二月十日至十六日

一设计要求 1、课程设计内容 综合运用51单片机知识设计一个具备校准功能的时钟。(其中用到定时器、中断、按键、数码管、液晶、时钟芯片) 设计题目1——数字钟的设计与制作 设计并制作出具有如下功能的数字钟: 1)自动计时,由4位LED显示器显示时、分。第二个数码管的小数点每隔1s闪烁一次,表示秒。 2)具备校准功能,可以设置当前时间。 二.系统方案选择 STC89C52 STC89C52是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统

可编程Flash 存储器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。具有以下标准功能: 8k字节Flash,512字节RAM, 32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,2个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口。另外 STC89X52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。最高运作频率35MHz,6T/12T可选。 STC89C52RC单片机: 8K字节程序存储空间; 512字节数据存储空间;存储空间; 内带2K字节EEPROM 可直接使用串口下载; AT89S52单片机: 8K字节程序存储空间; 256字节数据存储空间; 没有内带EEPROM存储空间; 3.编辑本段参数: 1. 增强型8051 单片机,6 时钟/机器周期和12 时钟/机器周期可以任意选择,指令代码完全兼容传统8051.[1] 2. 工作电压:5.5V~ 3.3V(5V 单片机)/3.8V~2.0V(3V 单片机) 3. 工作频率范围:0~40MHz,相当于普通8051 的0~80MHz,实际工作频率可达48MHz 4. 用户应用程序空间为8K 字节 5. 片上集成512 字节RAM 6. 通用I/O 口(32 个),复位后为:P0/P1/P2/P3 是准双向口/弱上拉, P0 口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为 I/O 口用时,需加上拉电阻。 7. ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程序,数秒即可完成一片 8. 具有EEPROM 功能 9. 具有看门狗功能

GPS时钟系统(GPS同步时钟)技术方案(1)

GPS 时钟系统(GPS 同步时钟技术方案 技术分类:通信 | 2010-11-08 维库 在电力系统、 CDMA2000、 DVB 、 DMB 等系统中 , 高精度的 GPS 时钟系统(GPS 同步时钟对维持系统正常运转有至关重要的意义。 那如何利用 GPS OEM来进行二次开发 , 产生高精度时钟发生器是一个研究的热点问题。如在 DVB-T 单频网 (SFN中 , 对于时间同步的要求 , 同步精度达到几十个 ns, 对于这样高精度高稳定性的系统 , 如何进行商业级设计 ? 一、引言 在电力系统的许多领域,诸如时间顺序记录、继电保护、故障测距、电能计费、实时信息采集等等都需要有一个统一的、高精度的时间基准。利用 GPS 卫星信号进行对时是常用的方法之一。 目前, 市场上各种类型的 GPS-OEM 板很多, 价格适中, 具有实用化的条件。利用 GPS-OEM 板进行二次开发,可以精确获得 GPS 时间信息的 GPS时钟系统 (GPS 同步时钟。本文就是以加拿大马可尼公司生产的 SUPERSTAR GPS OEM板为例介绍如何开发应用于电力系统的的 GPS 时钟系统(GPS 同步时钟。 二、 GPS 授时模块 GPS 时钟系统 (GPS 同步时钟采用 SUPERSTAR GPS OEM 板作为 GPS 接受模块, SUPERSTAR GPS OEM 板为并行 12跟踪通道,全视野 GPS 接受模块。 OEM 板具有可充电锂电池。 L1频率为 1575.42MHz ,提供伪距及载波相位观测值的输出和 1PPS (1 PULSE PER SECOND脉冲输出。 OEM 板提供两个输入输出串行口,一个用作主通信口,可通过此串行口对 OEM 板进行设置,也可从此串口读取国际标准时间、日期、所处方位等信息。另一个串行口用于 RTCM 格式的差分数据的输出,当无差分信号或仅用于 GPS 授时,此串行口可不用。 1PPS 脉冲是标准的 TTL 逻辑

传输系统中的时钟同步技术

传输系统中的时钟同步技术同步模块是每个系统的心脏,它为系统中的其他每个模块馈送正确的时钟信号。因此需要对同步模块的设计和实现给予特别关注。本文对影响系统设计的时钟特性进行了考察,并对信号恶化的原因进行了评估。本文还分析了同步恶化的影响,并对标准化组织为确保传输质量和各种传输设备的互操作性而制定的标准要求进行了探讨。摘要:网络同步和时钟产生是高速传输系统设计的重要方面。为了通过降低发射和接收错误来提高网络效率,必须使系统的各个阶段都要使用的时钟的质量保持特定的等级。网络标准定义同步网络的体系结构及其在标准接口上的预期性能,以保证传输质量和传输设备的无缝集成。有大量的同步问题,系统设计人员在建立系统体系结构时必须十分清楚。本文论述了时钟恶化的各种来源,如抖动和漂移。本文还讨论了传输系统中时钟恶化的原因和影响,并分析了标准要求,提出了各种实现技巧。基本概念:抖动和漂移抖动的一般定义可以是“一个事件对其理想出现的短暂偏离”。在数字传输系统中,抖动被定义为数字信号的重要时刻在时间上偏离其理想位置的短暂变动。重要时刻可以是一个周期为 T1 的位流的最佳采样时刻。虽然希望各个位在 T 的整数倍位置出现,但实际上会有所不同。这种脉冲位置调制被认为是一种抖动。这也被称为数字信号的相位噪声。在下图中,实际信号边沿在理想信号边沿附近作周期性移动,演示了周期性抖动的概念。图 1.抖动示意抖动,不同于相位噪声,它以单位间隔 (UI) 为单位来表示。一个单位间隔相当于一个信号周期 (T),等于 360 度。假设事件为 E,第 n 次出现表示为 tE[n] 。则瞬时抖动可以表示为:一组包括 N 个抖动测量的峰到峰抖动值使用最小和最大瞬时抖动测量计算如下:漂移是低频抖动。两者之间的典型划分点为 10 Hz。抖动和漂移所导致的影响会显现在传输系统的不同但特定的区域。抖动类型根据产生原因,抖动可分成两种主要类型:随机抖动和确定性抖动。随机抖动,正如其名,是不可预测的,由随机的噪声影响如热噪声等引起。随机抖动通常发生在数字信号的边沿转换期间,造成随机的区间交叉。毫无疑问,随机抖动具有高斯概率密度函数 (PDF),由其均值 (μ) 和均方根值 (rms) (σ) 决定。由于高斯函数的尾在均值的两侧无限延伸,瞬时抖动和峰到峰抖动可以是无限值。因此随机抖动通常采用其均方根值来表示和测量。图 2.以高斯概率密度函数表示的随机抖动对抖动余量来讲,峰到峰抖动比均方根抖动更为有用,因此需要把随机抖动的均方根值转换成峰到峰值。为将均方根抖动转换成峰到峰抖动,定义了随机抖动高斯函数的任意极限 (arbitrary limit)。误码率 (BER) 是这种转换中的一个有用参数,其假设高斯函数中的瞬时抖动一旦落在其强制极限之外即出现误码。通过下面两个公式,就可以得到均方根抖动到峰到峰抖动的换算。 3[!--empirenews.page--] 由公式可得到下表,表中峰到峰抖动对应不同的 BER 值。确定性抖动是有界的,因此可以预测,且具有确定的幅度极限。考虑集成电路 (IC) 系统,有大量的工艺、器件和系统级因素将会影响确定性抖动。占空比失真 (DCD) 和脉冲宽度失真(PWD) 会造成数字信号的失真,使过零区间偏离理想位置,向上或向下移动。这些失真通常是由信号的上升沿和下降沿之间时序不同而造成。如果非平衡系统中存在地电位漂移、差分输入之间存在电压偏移、信号的上升和下降时间出现变化等,也可能造成这种失真。图 3,总抖动的双模表示数据相关抖动 (DDJ) 和符号间干扰 (ISI) 致使信号具有不同的过零区间电平,导致每种唯一的位型出现不同的信号转换。这也称为模式相关抖动 (PDJ)。信号路径的低频截止点和高频带宽将影响 DDJ。当信号路径的带宽可与信号的带宽进行比较时,位就会延伸到相邻位时间内,造成符号间干扰 (ISI)。低频截止点会使低频器件的信号出现失真,而系统的高频带宽限制将使高频器件性能下降。7 正弦抖动以正弦模式调制信号边沿。这可能是由于供给整个系统的电源或者甚至系统中的其他振荡造成。接地反弹和其他电源变动也可能造成正弦抖动。正弦抖动广泛用于抖动环境的测试和仿真。不相关抖动可能由电源噪声或串扰和其他电磁干扰造成。考虑抖动对数字信号的影响时,需要将整个确定性抖动和随机抖动考虑在内。确定性抖动和随机抖动的总计结果将产生另外一种概率分布

时钟问题.讲义

知识点拨 时钟问题知识点说明 时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分 针和时针。 我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。 时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小 时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。 分针速度:每分钟走1小格,每分钟走6度 时针速度:每分钟走 1 12 小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每 分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。 要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。另外,在解时钟的快慢问题中,要学会十字交叉法。 例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为 5 65 11 分。 【例 1】当时钟表示1点45分时,时针和分针所成的钝角是多少度? 【巩固】在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度. 【例 2】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?

【巩固】现在是3点,什么时候时针与分针第一次重合? 【例 3】钟表的时针与分针在8点多少分第一次垂直? 【巩固】2点钟以后,什么时刻分针与时针第一次成直角? 【例 4】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?

时间同步系统在线监测可行性研究报告

衡水电网智能调度技术支持系统时间同步系统在线监测 技术改造(设备大修)项目 可行性研究报告模板 项目名称: 项目单位: 编制: 审核: 批准: 编制单位: 设计、勘测证书号: 年月日

1.总论 时间同步系统在线监测功能,将时钟、被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。时间同步系统在线监测的数据来源分为两大类:设备状态自检数据和对时状态测量数据。设备状态自检主要是被监测设备自身基于可预见故障设置的策略,快速侦测自身的故障点。对时状态测量则是从被监测设备外部对其自身不可预见的故障产生的结果进行侦测,这两种方法较为完整的保证了时间同步系统监测的性能和可靠性。 1.1设计依据 2013年4月,国调中心专门下发了〔2013〕82号文《国调中心关于加强电力系统时间同步运行管理工作的通知》 1.2主要设计原则 通过在原系统上建立一套通讯技术及软件来实现系统级的时间同步状态在线监测功能。采用低建设成本、低管理成本、低技术风险的手段,解决当前自动化系统时间同步体系处于开环状态,缺乏反馈,无法获知工作状态紧迫现状,使时钟和被对时设备形成闭环监测,减少因对时错误引起的事件顺序记录无效,甚至导致设备死机等运行事故,并在此前提下尽可能的提高监测性能,减少复杂度。

1.3设计水平年 系统模块使用年限10年。 1.4设计范围及建设规模 智能调度技术支持系统(主站)针对时钟同步检测功能修改主要涉及前置应用,前置应用以104 或476 规约与变电站自动化系进行过乒乓原理对时,根据对时结果来检测各变电站时钟对时的准确性,从而保证全网时钟同步的准确性。同时,以告警直传方式接收变电站时间同步监测结果,包含设备状态自检数据和对时状态测量数据。 1.5经济分析 时间同步系统在线监测功能将时间同步装置、时间源服务器和被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。提高电力系统时间同步的准确性,保障电力系统运行控制和故障分析的重要基础。后期经济效益明显 2.项目必要性 2.1工程概况 智能电网调度技术支持系统及各变电站都以天文时钟作为自己的时间源,正常情况下实现了全网时间的一致。 2.2存在主要问题

时钟电路基本原理

1时钟供电组成 时钟电路主要由时钟发生器(时钟芯片)、、、和等组成。 ● 时钟芯片时钟芯片主要有S. Winbond、 PhaseLink. C-Medi a、IC. IMI等几个品牌,主板上见得最多的是ICS和Winbond两种,如图6-1、图6-2所示。 ● 晶振 时钟芯片通常使用的晶振,如图6-3所示。 晶振与组成一个谐振回路,从晶振的两脚之问产生的输入到时钟芯片,如图6-4所示。 判断品振是否工作,可以用测量晶振两脚分别对地是否有(以上),这是晶振工作的前提条件,再用示波器测量晶振任意一脚是否有与标称频率相同的振荡正弦波输出(这是最准确的方法)。在没有示波器的情况下,可以直接更换新的晶振和谐振电容,用替换法来排除故障。 2 时钟电路工作原理 时钟电路的1=作原理图,如图6-5所示。 时钟芯片有电压输入后(有的时钟芯片还有一组电压),再有一个好信号,表示主板各部位所有的供电止常,于是时钟芯片开始工作。 晶振两脚产生的基本频率输入到时钟芯片内部的,从振荡器出来的基本频率经过“频率扩展锁相网路”进行频率扩展后输入到各个,

最后得到不同频率的时钟输出。 初始默认输出频率由频率选择锁存器输入引脚FS(4:0)设置,之后可以通过IIC总线再进行设置。 多数时钟芯片都支持IIC总线控制,通过一根双向的数据线(SD ATA)和一根时钟线( SCLK)对芯片的时钟输出频率进行设置。 图6-5中: 48MHz USB与48MHz DOT为固定48MHz时钟输出;3V66(3:1)共3组为的66MHz时钟输出: CPUCLKT (2:0)共3组为CPU时钟输出;CPUCLKC (2:0)共3组为CPU时钟输出,与CPUCLKT互为;CLK (6:0)共7组为 33MHz 的PCI时钟输出,输出到PCI插槽,有多少个PCI插槽就使用多少组。 主板的时钟分布如图6-6所示,内存总线时钟由北桥供给,部分主板电路设计有独立的内存时钟发生器,如图中虚线所示。 外频进入CPU后,乘以CPU的就是CPU实际的运行频率。例如外频是200MHz,CPU的倍频是14,那么CPU的实际运行频率是:200MHz ×14=。前端总线的频率是外频的整倍数。例如外频足133MHz,CPU 需要使用的前端总线频率是533MHz,那么就必须将133MHz外频4倍扩展,即133MHz×4=532MHz≈533MHz。 3 时钟电路故障检测 时钟电路故障通常足:全部无时钟,部分无时钟,时钟信号幅值(最高点电压)偏低。 其表现是开机无显示或不能开机。 诊断卡只能诊断PCI插槽或插槽有无时钟信号,并不代表主板其他部分的时钟就正常。最好使用示波器测量各个插槽的时钟输入脚或时钟芯片的各个时钟输出脚,看其频率和幅值是否符合,这是最准确的方法。 现在的CPU外频都已达到200MHz或更高,所以要测量CPU外频,要求示波器的带宽应在200MHz以上。

相关文档