文档库 最新最全的文档下载
当前位置:文档库 › 基于APD阵列三维成像激光雷达信噪比分析

基于APD阵列三维成像激光雷达信噪比分析

基于APD阵列三维成像激光雷达信噪比分析
基于APD阵列三维成像激光雷达信噪比分析

小面阵三维成像激光雷达原理样机

小面阵三维成像激光雷达原理样机 激光三维成像雷达作为近年来高速发展的新型遥感技术,国内研究单位的热点多集中于点源和线列探测的民用测绘领域,由于受到阵列探测器的渠道制约,面阵探测器的研究未受到重视。本系统试以基于小面阵探测器的高帧频、宽收容的激光三维主动成像雷达为探索目标,研究了实现高帧频、宽收容所涉及的关键技术,完成原理样机系统的搭建。同时,对MEMS摆镜在小型化激光三维成像雷达系统中的应用进行了研究。本文主要围绕小面阵三维成像激光雷达样机的设计要求,提出了用激光分束照明以实现发射光束与探测器像元的配准,同时采用了收发共口径的光学系统,有利于系统的小型化集成。 对于小面阵探测器的高精度激光测距技术,详细分析了激光测距的误差组成,研究了对面阵探测器的温度补偿技术、低噪声回波放大技术、恒比定时技术等,分别基于单元探测器和面阵探测器设计了高精度的测距实验,并对实验结果进行了分析。本文的主要研究成果和创新点归纳如下:(1)利用达曼光栅实现了发射激光束的分束照明,配合收发共口径的光学系统,实现了APD阵列像元和激光探测光斑的配准关系,缩小了光学头部的体积。(2)通过研究低噪声放大技术、自动温度补偿技术、恒比定时技术和峰值保持电路等,解决了小面阵探测器的并行高速处理技术,实现了小面阵探测器的厘米级高精度的测距结果。(3)在国内小面阵APD探测器三维成像工程应用领域,做出了有益的探索,在单束发射脉冲无扫描 的原理样机试验中,得到了探测目标的面阵成像数据,取得了理想的结果。 (4)对MEMS摆镜应用于小型化激光成像雷达的方案做出了分析,提出了配合二次光学扩束系统的收发共轴光学系统。

主动式光学三维成像技术

万方数据

万方数据

万方数据

万方数据

主动式光学三维成像技术 作者:周海波, 任秋实, 李万荣 作者单位:上海交通大学激光与光子生物医学研究所,上海,200030 刊名: 激光与光电子学进展 英文刊名:LASER & OPTOELECTRONICS PROGRESS 年,卷(期):2004,41(10) 被引用次数:6次 参考文献(23条) 1.Noguchi M;Nayar S K Microscopic shape from focus using active illumination[外文会议] 1994(01) 2.Cohen F S;Patel M A A new approach for extracting shape from texture,Intelligent Control,1990 1990 3.Nayar S K;Watanabe M;Noguchi M Real-time focus range sensor[外文期刊] 1996(12) 4.Ghita O;Whelan P F A bin picking system based on depth from defocus[外文期刊] 2003(04) 5.POSDAMER J L;Altschuler M D Surface measurement by space-encoded projected beam systems[外文期刊] 1982(01) 6.WOODHAM R J Photometric method for determining surface orientation from multiple images 1980(01) 7.Miyasaka T;Kuroda K;Hirose M High speed 3-D measurement system using incoherent light source for human performance analysis 2000 8.Carrihill B;Hummel R Experiments with the intensity ratio depth sensor 1985 9.Maruyama M;Abe S Range sensing by projecting multiple slits with random cuts[外文期刊] 1993(06) 10.Caspi D;Kiryati N;Shamir J Range imaging with adaptive color structured light[外文期刊] 1998(05) 11.Horn E;Kiryati N Toward optimal structured light patterns[外文期刊] 1999(02) 12.Rocchini C;Cignoni P;Montani M A low cost 3D scanner based on structured light 2001(03) 13.Inokuchi S;Sato K;Matsuda F Range imaging system for 3-D object recognition 1984 14.Horn B K P;Brooks M Shape from Shading 1989 15.Schubert E Fast 3D object recognition using multiple color coded illumination[外文会议] 1997 16.Pulli K Acquisition and visualization of colored 3D objects[外文会议] 1998 17.Sato K;Inokuchi S Three-dimensional surface measurement by space encoding range imaging 1985(02) 18.Daniel Scharstein;Richard Szeliski High-Accuracy Stereo Depth Maps Using Structured Light[外文会议] 2003 19.Batlle J;Mouaddib E;Salvi J Recent progress in coded structured light as a technique to solve the correspondence problem: a survey[外文期刊] 1998(07) 20.Yoshizawa T The recent trend of moiremetrology 1991(03) 21.Li Zhang;Curless B;Seitz S M Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming[外文会议] 2002 22.Sato T Multispectral pattern projection range finder 1999 23.EL-Hakim S F;Beraldin J A;Blais F A Comparative Evaluation of the Performance of Passive and Active 3-D Vision Systems 1995 本文读者也读过(2条) 1.欧阳俊华.OUYANG Jun-hua近距离三维激光扫描技术[期刊论文]-红外2006,27(3)

探地雷达成像算法研究综述

探地雷达成像算法研究 摘要 探地雷达(Ground Penetrating Radar,简称GPR)集无损检测、穿透能力强、分辨率高等众多优点而成为检测和识别地下目标的一种有效技术手段。性能优良的探地雷达成像方法有助于精确定位地下目标,同时提高对目标的检测和识别能力,从而推动探地雷达在城市质量监控、地质灾害、考古挖掘、高速公路无损检测、地雷探测等各个方面得到更广泛的应用。 本文以中国电波传播研究所的探地雷达LD-2000为实验设备,从中读取探测数据。以MATLAB为软件平台,实现了探地雷达数据的显示、处理、成像几个部分。其中数据显示方式包括数据的波形堆积图,剖面面色阶图以及带数据波形图;数据处理部分包括直达波的去除、背景噪声的去除、振幅增益等;雷达成像算法部分主要采用波前成像算法和投影层析成像算法。

Imaging Algorithm of Ground Penetrating Radar ABSTRACT GPR (Ground Penetrating Radar, referred GPR) set of non-destructive testing, penetration ability, many advantages of high resolution detection and identification of underground and become the target of an effective technical means. Excellent performance GPR imaging approach helps pinpoint underground targets, while increasing the target detection and identification capabilities, thereby promoting the quality of ground penetrating radar surveillance in the city, geological disasters, archaeological excavation, highway nondestructive testing, mine detection, etc. aspects to be more widely used. In this paper, China Institute of Radiowave Propagation GPR LD-2000 for the experimental apparatus, reads probe data. MATLAB as the software platform to achieve a ground-penetrating radar data display, processing, imaging several parts. Wherein the data includes a data waveform display stacked, with a cross-sectional side view and a gradation data waveform; data processing section includes the removal of the direct wave, the background noise removal, the amplitude gain, etc.; radar imaging algorithm some of the major imaging algorithm and the wavefront projection tomography algorithms.

基于三维激光雷达技术的大比例尺地形图项目解决方案

基于三维激光雷达技术的大比例尺地形图解决方案 一激光雷达技术 1.1 综述 激光雷达测量技术(LiDAR)是当今测绘业界先进的遥感测量手段,是继GPS空间定位系统之后又一项测绘技术新突破。自20世纪60年代末世界第一部激光雷达诞生以来,激光雷达技术作为一种重要的航空遥感技术,与成像光谱、成像雷达共同被誉为对地观测三大核心技术。迄今为止,激光雷达的研究与应用均取得了相当大的进展,已成为航空遥感领域主流之一,其应用已超出传统测量、遥感以及近景测量所覆盖的范围,成为一种独特的数据获取方式。LIDAR技术具有高精度、高分辨率、高自动化且高效率的优势,集激光扫描、全球定位系统和惯性导航系统技术于一身,同时配备高分辨率数码相机,可实现对目标的同步测量,生成高密度激光点云数据,已成为世界各国进行大面积地表数据采集的重要主流与趋势。与传统摄影测量技术相比,激光雷达技术生成三维信息更快、更准确,特别能穿透地表覆盖的森林植被快速获取地形信息的能力,具有其他技术无可比拟的优势。采用激光雷达技术获取地面及其覆盖物(植被、电力线等)的精确三维坐标,生成高精度地形信息,可作为土地利用、工程建设规划、城市管理、河海地形、水库大坝、山坡检测、防灾、矿业、农业、林业、公共管理等方面数字化、自动化等应用基础。 1.2 激光雷达技术基本原理 激光雷达是一种有效的主动遥感技术,通过发射激光脉冲及精准的量测回波所经过的时间计算传感器与目标物之间的距离,再结合飞行器姿态信息、位置信息进行相关解算和坐 .下载可编辑.

标转换可以得到高精度的三维数据。机载激光雷达系统主要由飞行平台、激光测距系统、全球定位系统(GPS)、惯性导航系统(INS)以及相关的控制存储单元组成。 激光测距系统是激光雷达的核心组成部分,通过发射、接收激光信号可以精确测量发射器和目标物的距离。激光测距一般采用方式:脉冲测距和连续波的相位差测距。连续波激光器市场上较为少见,因此现有的激光雷达系统多采用脉冲测距的方式。通过激光器发射一束窄脉冲,与目标物接触后产生反射,并通过接收器接收回波信号。由于脉冲的速度已知(光速),接收器可以精确测量脉冲发射到接收到反射信号的时间,从而获得目标物与激光器的距离,其测量精度常常可以达到毫米级。 随着激光雷达技术的发展,激光雷达的飞行平台可以根据需要和实际作业条件进行多种选择,目前常见的搭载平台有小型飞机、固定翼飞机、直升飞机、无人机、动力三角翼、无人飞艇等。 激光雷达系统工作原 .下载可编辑.

合成孔径雷达概述

合成孔径雷达概述 蔡 Beautyhappy521@https://www.wendangku.net/doc/611777949.html, 二OO八年三月二十三

1合成孔径雷达简介 (3) 1.1 合成孔径雷达的概念 (3) 1.2 合成孔径雷达的分类 (4) 1.3 合成孔径雷达(SAR)的特点 (5) 2合成孔径雷达的发展历史 (6) 2.1 国外合成孔径雷达的发展历程及现状 (6) 2.1.1 合成孔径雷达发展历程表 (7) 2.1.2 世界各国的SAR系统 (10) 2.2 我国的发展概况 (12) 2.2.1 我国SAR研究历程表 (12) 2.2.2 国内各单位的研究现状 (13) 2.2.2.1 电子科技大学 (13) 2.2.2.2 中科院电子所 (13) 2.2.2.3 国防科技大学 (14) 2.2.2.4 西安电子科技大学 (14) 3 合成孔径雷达的应用 (14) 4 合成孔径雷达的发展趋势 (15) 4.1 多参数SAR系统 (16) 4.2 聚束SAR (16) 4.3极化干涉SAR(POLINSAR) (17) 4.4合成孔径激光雷达(Synthetic Aperture Ladar) (17) 4.5 小型化成为星载合成孔径雷达发展的主要趋势 (18) 4.6 性能技术指标不断提高 (18) 4.7 多功能、多模式是未来星载SAR的主要特征 (19) 4.8 雷达与可见光卫星的多星组网是主要的使用模式 (19) 4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (19) 4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (20) 4.11 军用和民用卫星的界线越来越不明显 (20) 5 与SAR相关技术的研究动态 (21) 5.1 国内外SAR图像相干斑抑制的研究现状 (21) 5.2 合成孔径雷达干扰技术的现状和发展 (21) 5.3 SAR图像目标检测与识别 (23) 5.4 恒虚警技术的研究现状与发展动向 (26) 5.5 SAR图像变化检测方法 (28) 5.6 干涉合成孔径雷达 (32) 5.7 机载合成孔径雷达技术发展动态 (34) 5.8 SAR图像地理编码技术的发展状况 (36) 5.9 星载SAR天线方向图在轨测试的发展状况 (38) 5.10 逆合成孔径雷达的发展动态 (39) 5.11 干涉合成孔径雷达的发展简史与应用 (39)

激光三维成像关键技术研究

激光三维成像关键技术研究 随着激光成像技术的发展,激光三维成像雷达以其自身独特优势在现代军事防御领域中扮演着愈发重要的角色。本文结合目前我国自主研发的激光三维成像雷达成像数据特点,围绕目标三维可视化和分类识别这一核心问题,对贯穿其中的激光三维成像仿真、曲面光顺、目标表面重建、目标三维特征提取与分类识别等激光三维成像雷达关键数据处理技术开展探索研究工作,具体的研究内容和创新成果如下:(1)激光三维成像仿真研究本文基于激光三维成像理论模型研究,进行激光三维成像仿真研究,开发出两种模拟激光光束与目标表面之间物理交互逻辑的仿真方案,可模拟激光三维成像装置对目标的理想成像过程,获取目标理想三维成像数据——距离图像或三维点云,一方面可用于硬件系统研制初期设计方案的验证与研讨,降低设计错误成本;另一方面可用于后续三维成像数据处理算法预先研究,缩短整套系统研制周期。其中几何法创造性地将光束追踪引入到激光三维成像仿真当中,加以局部搜索,能快速仿真激光三维成像装置对任一目标的三维成像过程。本文使用该激光三维成像雷达仿真方案,模拟国防科大激光三维成像雷达对不同空间位置不同运动状态下的典型空中目标的理想成像过程,并基于仿真成像结果(距离图像或三维点云)开展曲面光顺、目标表面重建等后续算法研究。 (2)曲面光顺算法研究通过曲面光顺算法处理,滤除或减小噪声对目标三维成像数据的影响,是基于目标三维成像数据进行目标表面重建非常重要的预处理环节。目前应用比较广泛的曲面光顺算法是基于双边滤波思想的Fleishman光顺方法,它的核心思想是沿着顶点法向量方向调整顶点位置实现曲面光顺,曲面顶点位置调整大小和调整方向依赖于顶点邻域三角面片顶点和面片法向量。但当激光采样点阵稀疏,顶点法向量计算误差比较大时,这种方法便不能很好地工作了。本文针对我国自主研发的激光三维成像雷达,充分利用其输出距离图像中所包含的目标表面采样点空间拓扑信息,并充分考虑当前流行的双边滤波曲面光顺方法在稀疏点云光顺问题上的局限性,提出采用图像中值和双边组合滤波方式进行二维数据处理实现目标表面光顺,不仅避免了点云法向量估计、空间投影等三维空间计算,而且能在最大程度保持目标表面几何形状的基础上有效滤除测量数据中的孤立噪声点和小幅度噪声,实现目标表面光顺。

基于MATLAB的二维探地雷达三维成像方法与设计方案

本技术公开了一种基于MATLAB的二维探地雷达三维成像方法,包括以下步骤:S1、对二维探地雷达进行组装和调试;S2、对采集路线中的各条车道进行数据采集;S3、三维成像模型建立;S4、对三维成像模型进行外观优化和尺寸调整;S5、三维数据导出;S6、数据格式转换;S7、三维反射电压数据模拟;S8、对最大及最小值的颜色进行设定;S9、将三维数据导入三维成像模型,得到三维成像;S10、对异常位置进行切片化显示,直观地显示出道路深层病害。本技术通过三维模型的建立与优化,形成能够容纳三维雷达数据的成像模型,在将模拟的三维数据导入后,实现三维雷达成像,并具备图像切割功能,以便观察道路内部异常图像。 权利要求书 1.一种基于MATLAB的二维探地雷达三维成像方法,其特征在于,该方法包括以下步骤: S1、准备工作:对二维探地雷达进行组装和调试,将其安装在雷达车上,确认进行数据采集的路段和采集时间,并制定数据采集计划; S2、数据采集:通过雷达车按照采集计划中的采集路线,对采集路线中的各条车道进行数据采集,为让雷达车按直线行驶,在采集左轮迹带时,将左轮轧在车道左标线上;在采集右轮迹带时,将右轮轧在车道右标线上;通过二维探地雷达配套数据处理软件Pavecheck对数据进行数据完整性检查; S3、三维成像模型建立:通过生成超立方体定义域中的数据点矩阵的方法,在MATLAB中建立用于存储三维数据的三维矩阵,作为三维成像模型;S4、模型优化:对三维成像模型进行外观优化和尺寸调整,使其符合道路外形; S5、三维数据导出:通过二维探地雷达配套数据处理软件Pavecheck对数据进行导出; S6、数据格式转换:对导出的数据进行格式转换,转换为MATLAB中三维成像模型能够识别的Excel格式数据; S7、三维反射电压数据模拟:目前采集到的单车道测线为3条,将两条测线间的数据进行线性扩充模拟,每两条测线间的数据扩充4组,提高其分辨率; S8、颜色设定:对最大及最小值的颜色进行设定;

激光雷达与激光成像雷达

激光雷达与激光成像雷达 一、激光雷达与激光成像雷达 一、激光雷达与激光成像雷达 人通过感觉器官感知,认识外部世界的一切。用耳朵听音乐、话音、机器的轰隆声、钟声、铃声等一切通过声音传递的信息;用手感觉温度、物体的硬软以及物质的存在;用眼睛观察外部世界的形状、颜色、运动状态、速度、位置、识别物体的种类等等。人的眼睛之所以可以看见外部世界,是因为太阳光谱中的可见光照射在物体上反射的结果。那么除了“可见光谱”之外还存在别的“不可见的光谱”吗?事实上,广义的光谱按频段的不同,有大家所熟悉的电磁波、远红外、近红外、可见光、紫外光谱,而可见光谱区中,红色的光波长最长,紫色的波长最短。而且人们已经发现不同的物质辐射不同的谱线,在特定的条件下还可以只辐射某一单一波长的谱线,当其人们发现不可见光谱区中的单一的光谱谱线具有可贵的特性的时候,就力图去产生、开发、利用这种单一光谱谱线,由此产生了激光及用于不同场合的激光系统。 视觉引发人们的形象思维,眼睛从外界事物所获取的信息量大,直接而快速,是其他感觉器官所不能代替的,这也就是古人所说的“眼见为实”的深切内涵。正是因为这个道理,人们不愿受限于“可见光”的可见,而想去探求自然光条件下所看不见的东西,如想在漆黑的夜晚,去观察外部世界,就开发出了“夜视仪”。被动“红外热成像仪”也不是依赖于可见光的反射特性去观察变幻莫测的外部世界的,而是依赖于物体本身的热辐射,无论白天或黑夜都可以用以观察人类世界的一切,而且已经是超视距的。目前最新的热成像仪,1ms内热敏成像。红外成像高速测温用来检测来复枪,其射出的弹头在弹道上飞行速度为840m/s,弹头距枪口0.914 4m处的热成像还能分辨出弹头上不同部位摩擦热的温差。 遥感仪则可以依据物体本身的辐射谱线,包括电磁波段与红外光区,远距离成像,把肉眼原本看不见的自然变化,转化为可见,以照片的形式或屏幕显示的图像,甚至动态图像的形式展现出来,这就是当今人们感兴趣的可视化技术。人们力图从各个领域做这方面的研究和开发应用。 通过眼睛人们能够确定方向——定位,作为控制手的动作的依据,当然这是受限于“视距”之内的,通过望远镜可以延伸视距;但是“定位”的精度达不到人们通用目的需要,所谓“差之毫厘,失之千里”。雷达满足了远距离定位和精度的要求,雷达源于英文Radio Detection And Ranging的缩写RADAR,于1935年问世。 当其“激光”这种波长处于红外光谱波段的“激光光源”被研究出来之后,人们自然想到利用微米波段(红外光谱波段)的光波作为信息的载体去探测、获取其他手段难于探测、观测到的目标的信息。激光雷达研制成功后,相继激光成像雷达应运而生。激光雷达的英文名字“LADAR”是Laser Detection And Ranging的缩写。激光雷达的研究是从目标探测和测距入手的,早期(1962~1976年)的研究系统被称为光雷达(Optical RADAR),并命名为LIDAR(Light Detection And Ranging)。可以说军事应用对测量系统精确度的要求日

推荐-三维成像声纳1 精品

三维成像声纳 专业:光电子技术与科学 院校:长春理工大学光电信息学院

目录 摘要 第一章声呐 1.1 声呐的概述 1.2 三维成像技术 1.3 三维成像声呐的发展现状 第二章三维成像声呐的工作原理 第三章三维成像声呐的应用 第四章三维成像声纳的选择 第五章结论和展望 摘要 声纳的发展背景: 海洋蕴藏着丰富的矿产和能源,同时又具有重要的军事地位,海洋开发日益受到人们的重视。首先,全球能源日益紧张,所以开发新的能源和空间十分必要,海洋是个巨大的能源宝库,具有很大的开发潜力。其次,我国海岸线绵长,海域辽阔,了解海域特点、海底地形地貌状况对维护国家安全很有必要。 从上面可以看到成像声纳有着十分广泛的用途,不仅关系到军事方面,而且还关系到国民经济生活发展的很多方面,所以研究和发展成像声纳十分必要和迫切。三维成像声纳所使用的可视化技术,将大量枯燥的数据以生动的立体图形图像的方式表现出来,使人们能够对声纳数据进行更直观的解释和分析,提高水下探测的工作效率。 借助成熟的三维显示技术,三维图形可被缩放、移动和转动、测距,以便工作人员可以从各种视角更好地进行观察和理解,提供准确、科学的依据。 1.1声呐的概述

声呐是英文缩写“SONAR”的音译,其中文全称为:声音导航与测距,Sound Navigation And Ranging”是一种利用声波在水下的传播特性,通过电声转换和信息处理,完成水下探测和通讯任务的电子设备。它有主动式和被动式两种类型,属于声学定位的范畴。声呐是利用水中声波对水下目标进行探测、定位和通信的电子设备,是中应用最广泛、最重要的一种装置。 声呐是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声呐技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。 1.2三维成像技术 通常我们说一个客观的世界是三维的,客观世界的三维图像通过某种技术把它记录下来然后处理、压缩再传输出去,显示出来,最终在人的大脑中再现客观世界的图像,这个过程就是三维成像技术的全过程。 1.3 三位成像声纳的发展现状 三维成像声纳与普通的多波数声纳的区别,在于它具有更高的分辨率,从而可以提供水下目标外形轮廓的更多细节描述。高分辨率成像声纳在对水下目标进行成像时,能够提供非常优秀的图像质量,从而可以对目标进一步地跟踪和识别。目前最前沿的三维成像声纳是以声透镜技术为基础,它能提供目标的实时动态视频图像,质量小、尺寸小,可以装载到各种AUV、ROV上进行水下作业。 声视觉导航:给出目标物尺寸和方位信息 海底地貌检测:提供海底的等高线图和地理参考数据,海图的绘制。 残骸搜索:提供失事船只残骸的详细信息 堤坝的检测:提供堤坝的裂缝信息 管道检测:对海底油气输送管道进行安全检查 桥墩探伤:检测受损桥墩的险情 海港检测:给出水下目标的回声及运动轨迹和速度 海床检测:矿产资源和能源勘探

三维激光成像

激光测距系统是复合光电系统的一个重要单元,将激光测距技术与摄影测量技术相结合,实现三维激光成像,对提高目标识别准确性和观测能力有重要意义。请尽快确定课题完成方式,完善相关技术路线,开展课题调研论证工作。80 三维激光成像 根据有无照明光源,成像系统可以分为主动成像系统和被动成像系统两种。被动成像系统最大的特点就是本身不带光源,依赖于环境或目标的发光,容易受到环境光源的影响。主动成像系统采用一个人造光学辐射源(一般为激光器)和接收器,其接收器用于收集和探测目标景物直接或反射的部分光辐射,具有成像清晰、对比度高,不受坏境光源的影响等优点。 激光由于它有亮度高、单色性和方向性好三个方面的优点,是人们早就渴望得到的理想的测距光源,因此在它出现后不到一年的时间就被用于测距。激光测距系统是复合光电系统的一个重要单元,它虽然经过了多代的更新和变化,且型号繁多,诸如激光测月系统、火炮激光测距系统、测地激光测距系统、测距光雷达等系统,但无论怎么变,其基本原理和技术还是大同小异。 一.激光测距分类 随着激光测距的广泛应用和不断发展,测距系统的种类也愈来愈多样化。按照激光测距的原理区分,大体有如下三类。 1.脉冲测距法 在测距点向被测目标发射一束短而强的激光脉冲,光脉冲发射到目标上后其中一小部分激光反射到测距点被光功能接受器所接收。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t ,那么被测目标的距离R 为: 2ct R = (1) 式中,c 为光速。 当认为光速一定时(不考虑大气中光速的微小变化),测距精度 2t c R ?=? (2) 2.相位测距法 相位法是通过测量单色连续激光的调制波在待测距离上往返传播所发生的相位变化,间接测量时间t 2D 。来计算距离D )2/)(2/()2/(2f c t c D D πΦ== (3) 式中:c 为光速在空气中传播的速度,Ф为调制光信号经过被测距离D 而产生的相位移,f 为信号的调制频率。

空中成像技术原理

空中成像技术原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

360度空中悬浮成像 产品简介 悬浮成像又称空中悬浮成像、360度幻影成像、360度悬浮成像等。空中悬浮成像系统是一项新颖多媒体演示系统,具有三维空间成像的功能,空中悬浮成像是近年来在国际上兴起的一种新型展示技术,该技术可以使立体影像不借助任何屏幕或介质而直接悬浮在设备外的自由空间,观众可以不佩戴任何辅助工具(如立体眼镜、VR头盔等)直接用裸眼观看立体影像,由于影像的清晰度及色彩还真度高,立体感强,因此非常逼真,可以给观众以新奇、玄妙的视觉冲击,激发观众探究欲,并可以起到聚集现场人气、加深参观者印象、提高被展示物知名度的作用。 技术原理 360度幻影成像产品展示系统是以宽银幕的环境、场景模型和灯光的传换,给人以视觉上的冲击。观众可从。由柜体,分光镜,射灯,视频播放设备组成,基于分光镜成像原理,通过对产品实拍构建三维模型的特殊处理,然后把拍摄的产品影像或产品三维模型影像叠加进场景中,构成了动静结合的产品展示系统。最终向观众展示融入实景的产品模型幻影成像效果。 成像原理 半透半反玻璃:就是在玻璃表面通过真空磁控溅射镀膜工艺镀制纳米级的氧化物介质膜层,使玻璃保持较高的透过率(50%—70%)的同时也具有高的反射率(镜面外观)。膜层主要成分是二氧化钛(TiO2)。该玻璃表面硬度高,还具有一定的自洁、防水雾、光催化活性等特性。与普通玻璃相比,半透半反玻璃的光线反射率和直射率相等,因此呈现的虚像较为清晰,所以在幻影成像系统中选用此类玻璃作为成像的介质。

视频发射器将光信号发射到这个锥体中的特殊棱镜上,汇集到一起后形成具有真实维度空间的立体影像。通过表面镜射和反射,观众能从锥形空间里看到自由飘浮的影像和图形。 360度悬浮成像系统由主体模型场景、造型灯光系统、光学成像系统、影视播放系统、计算机多媒体系统、音响系统及控制系统等组成。 实物示例: 应用领域 适合表现细节或内部结构较丰富的个体物品,如名表、名车、珠宝、工业产品、也可表现人物、卡通等,给观众感觉是完全浮现在空气中,具体尺寸可以根据客户的要求灵活设置。适用于科技馆、展览馆、主题公园、文化中心、标志性建筑物内部。 产品优势 全息成像系统整体外形时尚,可以作为新产品展示展览使用,提升品牌形象。整体设计为顶端四面透明,内部为成像画面,其清晰度较高,具有空间感,如同真正实物展示一般。 尺寸灵活——三维全息系统硬件设备分为成像区与工作区两部分,成像尺寸由1.2M 至12M,可根据不同的应用需求进行尺寸选择。 安装便捷——三维全息系统能根据现有的建筑或安装位置空间来修改硬件的体系和结构,有利于在各种建筑和城市空间里永久安装。 内容多样——三维全息系统可根据需求随时更换数字内容。

利用激光雷达点云生成城市级三维道路地图

Computer Science and Application 计算机科学与应用, 2019, 9(6), 1169-1182 Published Online June 2019 in Hans. https://www.wendangku.net/doc/611777949.html,/journal/csa https://https://www.wendangku.net/doc/611777949.html,/10.12677/csa.2019.96132 Combine Laser Scan Data with Open Street Map to Produce a Three-Dimensional Road Map Chenjing Ding, Xingqun Zhao School of Biological and Medical Engineering, Southeast University, Nanjing Jiangsu Received: Jun. 7th, 2019; accepted: Jun. 21st, 2019; published: Jun. 28th, 2019 Abstract With the continuous development of computer technology, the method to acquire spatial data has updated rapidly. Three-dimensional digital map attracts so much attention to be developed. Gene-rating a three-dimensional digital map requires a basic map. Because the Open Street Map (OSM) is open-source and free, it has received widespread attention. However, the height information of the road is very sparse in the OSM, and the mean square error is higher than 5 meters, which makes more and more researchers focus on the generation of high-precision three-dimensional maps. Due to the Light Detection and Ranging (LiDAR) point cloud’s high-precision characteristics whose average square error is about 20 cm, it can extend the OSM to generate high-precision 3D maps. This paper studies the method of OSM combined with LiDAR point cloud to generate a three-dimensional digital map. Due to the sampling characteristics of the airborne LiDAR used in the overhead view, the oc-cluded area cannot be sampled. The method proposed in this paper can solve the challenge of occlu-sion. It is composed of 3 main parts: 1) dealing with indoor area; 2) handling with outdoor area; 3) applied Weighted Hough Transform (WHT) for recalculation. The main steps for dealing with indoor area are as follows: 1) The three-dimensional road surface is projected into a two-dimensional line by orthogonal projection. 2) To find a set of road candidate points, the line is fitted by Hough Transform (HT). 3) Random Sampling the Uniform Sample Consensus (RANSAC) combined with the least squares method (LSM) is used to fit the road plane according to the obtained set of candidate points. This pa-per proposes a method for estimating the height of an indoor road using the height of the associated outdoor channel which is added up with different weights according to their projection distance. For the road with abnormal slope, the Weighted Hough Transform (WHT) is used for recalculation. This paper uses the airborne lidar point cloud (root mean square error is about 20 cm) provided by the municipal government of Cologne, Germany, to establish a three-dimensional road map for the city of Aachen. The results show that compared with the Ordering Points to Identify The Clustering Structure (OPTICS) algorithm, PHT successfully predicts 87% of the scenarios, which is greater than the 13% success rate of the OPTICS algorithm. In conclusion, the accuracy of the PHT algorithm is higher. In addition, PHT is more robust to the occlusion problem, change of point cloud density and the interfe-rence of noise points. Keywords 3D Reconstruction, Lidar, Hough Transform, 3D Map

三维超声成像技术的发展及临床应用

三维超声成像技术的发展及临床应用(1) 自超声技术应用于临床诊断60多年来,随着临床需求和现代电子技术尤其是计算机技术的发展,使超声影像技术,从应用初期的一维A型和M型超声成像 发展到了实时灰阶二维B型超声成像,到目前的全数字能实时回放的三维超声影像系统。超声影像具有无创性,高灵敏度,应用面广,低成本和操作方便等优点,发展速度和普及程度近年已成为医学影像之首。可以预计实时三维(四维)超声成像必将成为二十一世纪医学影像系统临床应用中一项最为有效的诊断工具而造福于人类。 正是由于这种市场需求,世界上许多知名的有远见的厂商竟相投入高科技开发全数字技术的实时三维(四维)超声影像系统。东软数字医疗股份有限公司以独特的视角推出了具有世界领先实时三维(四维)技术和软件技术的NAS-2000a,使超声医学影像与当代计算机尖端技术完美结合,在软件上采用了目前临床要求的最新专业软件,实现了动态三维实时回放、实时三维(四维)成像,简化了本来十分复杂的处理过程,提高了效率。 原理与方法 成像原理: 三维超声成像分为静态三维成像和动态三维成像, 动态三维成像由于把时间的因素加进去, 用整体显像法重建感兴趣区域准确实时活动的三维图像(又称四维)。 1、立体几何构成法:将人体脏器假设为多个不同形态的几何组合,需要大量的几何原型,因而对于描述人体复杂结构的三维形态并不完全适合,现已很少应用。 2、表面轮廓提取法:将三维超声空间中一系列坐标点相互连接,形成若干简单直线来描述脏器的轮廓,曾用于心脏表面的三维重建。该技术所用计算机内存少,运动速度较快。缺点是: (1)需人工对脏器的组织结构勾边,既费时又受操作者主观因素的影响; (2)只能重建左、右心腔结构,不能对心瓣膜和腱索等细小结构进行三维重建; (3)不具灰阶特征,难以显示解剖细节,故未被临床采用。 3、体元模型法:是目前最为理想的动态三维超声成像技术,可对结构的所有组织信息进行重建。 在体元模型法中,三维物体被划分成依次排列的小立方体,一个小立方体就是一个体元。 一定数目的体元按相应的空间位置排列即可构成三维立体图像。 4、随着高档超声仪器软件的不断开发, 三维成像不经过工作站可直接启动设备软件包进行三维重建或三维电影回放来完成。 成像方式:动态三维超声成像原理与静态基本相同。

空中成像技术原理

360度空中悬浮成像 产品简介 悬浮成像又称空中悬浮成像、360度幻影成像、360度悬浮成像等。空中悬浮成像系统是一项新颖多媒体演示系统,具有三维空间成像的功能,空中悬浮成像是近年来在国际上兴起的一种新型展示技术,该技术可以使立体影像不借助任何屏幕或介质而直接悬浮在设备外的自由空间,观众可以不佩戴任何辅助工具(如立体眼镜、VR头盔等)直接用裸眼观看立体影像,由于影像的清晰度及色彩还真度高,立体感强,因此非常逼真,可以给观众以新奇、玄妙的视觉冲击,激发观众探究欲,并可以起到聚集现场人气、加深参观者印象、提高被展示物知名度的作用。 技术原理 360度幻影成像产品展示系统是以宽银幕的环境、场景模型和灯光的传换,给人以视觉上的冲击。观众可从。由柜体,分光镜,射灯,视频播放设备组成,基于分光镜成像原理,通过对产品实拍构建三维模型的特殊处理,然后把拍摄的产品影像或产品三维模型影像叠加进场景中,构成了动静结合的产品展示系统。最终向观众展示融入实景的产品模型幻影成像效果。 成像原理 半透半反玻璃:就是在玻璃表面通过真空磁控溅射镀膜工艺镀制纳米级的氧化物介质膜层,使玻璃保持较高的透过率(50%—70%)的同时也具有高的反射率(镜面外观)。膜层主要成分是二氧化钛(TiO2)。该玻璃表面硬度高,还具有一定的自洁、防水雾、光催化活性等特性。与普通玻璃相比,半透半反玻璃的光线反射率和直射率相等,因此呈现的虚像较为清晰,所以在幻影成像系统中选用此类玻璃作为成像的介质。

视频发射器将光信号发射到这个锥体中的特殊棱镜上,汇集到一起后形成具有真实维度空间的立体影像。通过表面镜射和反射,观众能从锥形空间里看到自由飘浮的影像和图形。 360度悬浮成像系统由主体模型场景、造型灯光系统、光学成像系统、影视播放系统、计算机多媒体系统、音响系统及控制系统等组成。 实物示例: 应用领域 适合表现细节或内部结构较丰富的个体物品,如名表、名车、珠宝、工业产品、也可表现人物、卡通等,给观众感觉是完全浮现在空气中,具体尺寸可以根据客户的要求灵活设置。适用于科技馆、展览馆、主题公园、文化中心、标志性建筑物内部。 产品优势 全息成像系统整体外形时尚,可以作为新产品展示展览使用,提升品牌形象。整体设计为顶端四面透明,内部为成像画面,其清晰度较高,具有空间感,如同真正实物展示一般。 尺寸灵活——三维全息系统硬件设备分为成像区与工作区两部分,成像尺寸由1.2M至12M,可根据不同的应用需求进行尺寸选择。 安装便捷——三维全息系统能根据现有的建筑或安装位置空间来修改硬件的体系和结构,有利于在各种建筑和城市空间里永久安装。 内容多样——三维全息系统可根据需求随时更换数字内容。

相关文档