文档库 最新最全的文档下载
当前位置:文档库 › 超微 大题

超微 大题

超微 大题
超微 大题

肿瘤细胞的超微结构和病理

?重视半薄定位和观察

?密切结合临床资料和手术所见

?密切结合光镜

?重视大超薄切片和低倍电镜的观察

,避免孤立

?低倍到高倍

?细胞与细胞之间的关系,结构或排列方式

?细胞的外形

?细胞表面和相关结构

?细胞基质,细胞器

?核, 核仁

?细胞之间的连接

细胞外或间质的结构

(一) 异型性

1、细胞排列紊乱,极性消失

正常组织细胞排列有序,有一定极向,恶性肿瘤内瘤细胞列杂乱,极向丧失,例如癌细胞方向错乱,核位于近表面,癌细胞与腔面平行,微绒毛面向间质面。

2、细胞外形异常

瘤细胞大小,形状差异较大,

可出现在低分化肿瘤中

也可在分化较高的肿瘤中。

3、细胞核形态异常

①瘤细胞核:奇形怪状。瘤细胞有的分化低,也有的分化较高,有的核膜下陷形成假包含体,也有的染色质分层,外有核膜分隔。

②瘤巨细胞中巨形核,分叶核,多核。

③病理性核分裂出现不对称或多极核分裂。

4、细胞器形态异常

?1、微绒毛:瘤细胞表面微绒毛可出现方向杂乱,长短、粗细不一,胃癌中出现肠型微绒毛。

?2、纤毛:异常部位出现。

?3、细胞连接:桥粒在癌细胞间减少,也可异常增多,或成串出现形成巨形桥粒。

?4、线粒体:形态异常,如细长、圈状。嵴与线粒体长轴平行。巨形线粒体等。

?5、粗面内质网: 粗面内质网呈同心圆排列,即同心圆膜性小体,指纹样排列

细胞间连接的有无、类型和结构对肿瘤类型的识别非常重要。

腺上皮和移行上皮的肿瘤常可见连接复合体。

鳞癌具有典型的带张力丝束的桥粒

(二) 低分化

1、低分化是恶性肿瘤的一个重要特点,癌瘤细胞常常停留在分化较低的阶段,在细胞表

面,细胞内或细胞基质缺少标志一个细胞向特定方向分化的结构,此类肿瘤在光镜下较难判断其组织类型或来源,而在电镜观察下,能找到某些微细的分化特征而能够识别。

2、低分化癌与肉瘤的区分: 有些癌细胞间缺少连接,细胞游离分散,易与肉瘤混淆,电镜下可以发现少量原始连接或细胞内某些特定结构而加以确认。

3、鳞癌与腺癌(含柱状细胞癌)的区分:有些低分化癌癌细胞成片,缺少分化特征,光镜下不易判断是“鳞”或是“腺”。电镜下低分化鳞(瘤) 癌细胞间可见少量桥粒,细胞内有少量张力原纤维。

低分化腺癌(或柱癌): 细胞内管泡系统(粗面内质网及高尔基器)较发达,细胞间有镶嵌状连接,细胞间有原始腺腔,或细胞内带微绒毛的微囊,也有瘤细胞呈鳞腺双向分化,既有“鳞”也有“腺”的分化特点。

4、未分化癌此类癌细胞,胞质内主要是核糖体,很少其他细胞器,细胞间有少量原始连接。

5、低分化肉瘤低分化横纹肌肉瘤在瘤细胞内可见由粗细肌丝组成的束或细胞内有原始肌节,低分化纤维肉瘤细胞内极少粗面内质网,细胞外基质中胶原原纤维也稀少。(三)异常分化:异质性、不同步性、来源不明

恶性肿瘤细胞虽可以呈现出一定程度的分化,但有时这种分化是异常的。

1、多相性分化或异质性分化(heterogeneous differentia- tion)在一个肿瘤细胞内出现两种或两种以上细胞类型的分化,其中最常见的是腺鳞双向分化,一个癌细胞内既有鳞癌特点也有腺癌的特点,可发生多种部位,如鼻咽癌、肺癌、胃癌,肠癌、及宫颈癌,也可以是粘液癌与神经内分泌癌的双向分化,如胃癌及肠癌。

2.不同步分化(unsychronous differentiation)

在同一瘤细胞内各细胞器或结构分化程度不一致,最常见是细胞间连接分化差,少而幼稚,而胞质内细胞结构分化较好。再如慢性粒细胞白血病,瘤细胞内核已明显成熟分叶,但胞质内颗粒无或很少。

3、来源不明的分化

瘤细胞虽表现出一定分化,但从细胞结构仍不能辨认出此种瘤细胞的组织来源,例如腺泡状软组织肉瘤(alveolar soft part tissue sarcoma)。尤文肉瘤(Ewing's sarcoma) 横纹肌样瘤(rhabdomyoid tumor) 及软节原纤维软组织肿瘤(leptomeric fibrils soft fissue tumor)此瘤来源也尚待查明。

(四) 浸润性生长、破坏正常细胞

1、浸润

恶性肿瘤细胞可伸出假足突破基板或周围基质进入间质或完全与瘤组织块分离,单个或多个瘤细胞游离于间质中,白血病细胞可游出血管浸润于组织中。

2、侵入淋巴管或血管

瘤细胞侵入局部淋巴管有时可见瘤细胞进入开放淋巴管,淋巴管管壁内皮细胞也可发生破坏死亡。瘤细胞也可侵入小血管。

3、转移

瘤细胞顺淋巴管中淋巴液流至局部淋巴结内生长或随血流至另一器官生长形成转移瘤。

4、损伤

不论是原发瘤或转移瘤,在浸润性生长过程中,可以损伤机体正常组织,也可损伤局部血管及神经。

(五)与蛋白合成有关结构十分发达

恶性肿瘤生长迅速,蛋白合成机能十分旺盛,据细胞生物学研究,蛋白合成与染色质、核仁、

核内外物质交换,及多聚核糖体等结构的功能状态有关;恶性肿瘤细胞内蛋白合成功能旺盛,在超微结构上可显示出以下特点:

1、核大准确地讲是核浆比例增大。恶性肿瘤细胞核增大是与正常相应细胞相比较核径绝对值增大,癌瘤除少数例外,均有此特点。

2、常染色质明显癌细胞核内常染色质十分明显,说明DNA复制及转录功能处于活跃状态,异染色质也可见到,常小块分散于核中或在核膜邻近处。

3、核仁肥大核仁内有核糖体的前体物质,癌瘤细胞核内不仅核肥大,并可有多种形式,位置也有变化,可紧贴核膜,称核仁边集。数目增多,可有两个或两个以上的核仁。

4、核小体明显出现率增高,体积大,形态多样

5、有时核周隙扩张核孔密集。

6、细胞质内多聚核糖体或粗面内质网十分丰富。

1、炎细胞浸润癌相邻间质可出现各种炎细胞,其中最多见是淋巴细胞。有的淋巴细胞胞质增多,体积增大,胞质中除核糖体外,有丰富的线粒体及清楚的高尔基体,外有假足。此外,可见巨噬细胞,浆细胞,中性粒细胞,酸性粒细胞。

2、成纤维细胞,纤维细胞,胶原原纤维可出现在浸润癌细胞邻近。

3、成肌纤维细胞在浸润癌一侧可见单个或多个排列的成肌纤维细胞。在脑内转移瘤一侧也可见到成肌纤维细胞。

高尔基复合体是动物有核细胞内必备的细胞器之一。一般位于核附近,不同类型细胞的高尔基复合体的结构、大小、分布及数量都有很大的差异,并且随细胞的分泌活动而变化。在分泌蛋白质和吸收功能为主的细胞中,高尔基复合体比较发达,但在神经细胞、肝细胞和大多数植物细胞中,是分散在细胞质的各个部位。一般分化低的细胞内高尔基复合体比较少,成熟细胞内比较多(除红细胞外)。

(一)形态结构

电镜下:高尔基复合体是由一系列平行排列的扁平囊泡、大泡、小泡组成。

1、扁平囊泡:是高尔基复合体中最富特征性的部分,一组高尔基复合体中,一般为3~8层(也有一层的),重叠一起整齐排列。每一个扁平囊的形状像一个扁圆盘,盘底向核一侧凸出,这个面称形成面(又叫未成熟面),凹面向着质膜一侧称分泌面(又叫成熟面)。

形成面的扁平囊腔中央较窄,宽约15纳米,膜厚6纳米。边缘较宽,约30~40纳米,囊腔内充满中等电子密度物质。

分泌面的膜较厚,约8纳米。

2、大囊泡:呈球形,直径约0.1~0.5微米,膜厚约8纳米。多见于扁平囊扩大的末端或成熟面(分泌面)。大泡内的内容物电子密度各异,一般认为与内容物的成分和浓缩程度有关。所以大泡又称分泌泡或浓缩泡。

3、小囊泡:呈球形,是由一层单位膜包绕而成的结构,散布于扁平囊泡周围,常见于形成面。直径约40~80纳米,膜厚约6纳米。

(二)功能

1、主要是参与细胞的分泌活动,完成对细胞分泌物的加工、浓缩、包装和转运的过程。

2、参与多糖合成和溶酶体的形成。

主要是消除细胞内外的内源性和外源性物质以及内源性残余物,以保证细胞的正常结构和功能。

1. 细胞内消化:对高等动物而言细胞的营养物质主要来源于血液中的水分子物质,而一些大分子物质通过内吞作用进入细胞,如内吞低密脂蛋白获得胆固醇,对一些单细胞真核生物,溶酶体的消化作用就更为重要了。

2. 细胞凋亡:个体发生过程中往往涉及组织或器官的改造或重建,如昆虫和蛙类的变态发育等等。这一过程是在基因控制下实现的,溶酶体可清除不需要的细胞。

3. 自体吞噬:清除细胞中无用的生物大分子,衰老的细胞器等,如许多生物大分子的半衰期只有几小时至几天,肝细胞中线粒体的平均寿命约10天左右。

4. 防御作用:如巨噬细胞可吞入病原体,在溶酶体中将病原体杀死和降解。

5. 参与分泌过程的调节,如将甲状腺球蛋白降解成有活性的甲状腺素。

后经研究发现,过氧体普遍存在于某些动植物细胞内,如肝细胞、肾上皮细胞、支气管无纤毛上皮细胞中。过氧体的形状、大小、结构因不同生物和细胞类型而不同。

过氧体结构和性质:是由单位膜包裹的胞质内小体,呈圆形、卵圆形、椭圆形或哑铃形,直径约0.2~0.5微米,一般为0.5微米。过氧体的包膜比其它细胞器膜薄,膜内是中等电子密度的细颗粒状基质,在某些细胞内过氧体均匀无结构,而在有些细胞的过氧体中,如肝细胞、烟草叶细胞,可见到呈类结晶状的致密区,形似细胞核,既核样体、晶样体或类核。(一)、过氧体中含有多种氧化酶,其中含量最多的是过氧化物酶,占总蛋白的40%,所以过氧化物酶被列为:过氧体的标志酶

(二)、过氧体的功能:主要是消除细胞内过多的过氧化物,对防止细胞中毒,起着保护作用。

(三)、过氧体的来源与更新:目前不是很清楚,但认为可能来源于滑面内质网、高尔基体和粗面内质网等。

1.中心体是动物细胞中一种重要的细胞器,每个中心体主要含有两个中心粒。它是细胞分裂时内部活动的中心。动物细胞和低等植物细胞中都有中心体。它总是位于细胞核附近的细胞质中,接近于细胞的中心,因此叫中心体。在电子显微镜下可以看到,每个中心体含有两个中心粒,这两个中心粒相互垂直排列。中心体与细胞的有丝分裂有关。

2.中心体的结构:中心体为圆筒状小体,直径约1~0.5微米,长约0.3~0.7微米,最长可达2.0微米,成对存在、相互垂直。由一对互相垂直排列的中心粒(centri-oles)构成.中心粒的管壁由9组纵行微管有秩序地排列而成。横切面上可见周围9组微管似风车的旋翼,一组挨一组的排列成环状,相邻各组微管相互成40度交角,构成一个螺旋对称体。

在动物细胞中,中心粒随细胞周期完成其本身的发育周期,G1晚期,两个中心粒稍微分开,于S期,在每个母中心粒旁与其垂直的方向长出一个子中心粒,子中心粒不断延长,在G2期,每个中心体内含有两对中心粒,在有丝分裂早期,中心体分成两部分,各自形成两个中心体,并从其周围发出微管形成星状体,星状体不断向两极移动,形成纺锤体的两极。经过有丝分裂期,每个子细胞的中心体各获得一对中心粒。

2.中心体的功能:

可能在超微结构水平上调节着细胞的运动。

普遍存在于各种细胞,是细胞内的一种非膜性结构的细胞器,通常散在于细胞中。当细胞分

裂时,微管不仅增多,且聚集在中心体附近,具有一定的强度和弹性。

1、微管的形态结构

微管呈平直或弯曲状。其外经约为21~27纳米,平均约25纳米,管壁平均厚度为5纳米,其长度变化不定,约几个微米。

电镜下:微管壁是由13根直径为5纳米的细丝排列而成,这些丝又是由直径5纳米的管蛋白分子串成念珠状而构成。

2、微管的类型

微管可分为单联管、二联管、三联管三种类型,大多数细胞质内的微管属单联管型。

单联管结构不稳定,对秋水仙素、长春花碱、低温(0~4度)、静水压敏感,这些因素可以使单联管解聚而消失,但其单体仍然存在,当上序因素消除后,这些单体可重新形成微管。二联管存在于鞭毛内,由A、B两组微管组成。A组微管与单联管相同,是由13根原丝组成。B组是由10根原丝组成,与A组共用三根原丝,并由此相互连接在一起。

三联管存在于中心体和基体中,由A、B、C三组微管组成。

3、微管的功能

①、细胞骨架作用

②、参与细胞内运动

③、对细胞内物质输送起通道作用

心机细胞在分化过程中逐渐伸长时,出现顺长轴走向的微管。

微丝比微管稳定,是普遍存在于细胞质内的细丝状结构,与细胞运动直接相关。可以是单根、成束或网状分布,其含量及分布的情况因细胞而异。

1、微丝的种类及结构:根据直径的粗细分为:细肌丝原丝组成、粗肌丝、中间丝

细微丝:由肌动蛋白、原肌球蛋白和肌原蛋白组成。直径约5~7纳米,长约1.5微米。

粗微丝:由250~300个肌球蛋白分子组成。直径约为10~14纳米,长约1.5微米,含量比细肌丝少。每个肌球蛋白的分子量是48万,形如豆芽,分头、颈、尾三部,头膨大分为两瓣,是两条相同的重链彼此缠绕成的螺旋形结构。主要见于肌细胞中。

中间丝(又称中间纤维或中丝):呈管状,是一种多基因家族,直径约为9—12纳米,一般较长,但长短不一,散在分布在细胞质内。

2、微丝的功能

①、在肌细胞种,维持肌细胞的收缩功能。

②、与细胞膜内增厚的致密区连接,共同组成终末池。

③、参与细胞的有丝分裂。

包含物是指除细胞器外,储积在细胞质内的具有一定形态的各种代谢物质。如糖原、脂类、蛋白质、色素颗粒以及分泌颗粒等。它们的存在与否、含量以及形态,都与细胞的类型和生理状态有关。

1、糖原:是供给细胞能量的一种成分。它的含量随生理和病理状态而变,如肝细胞内的糖原,在吃食后数量增加,饥饿时则减少。

光镜下:用胭脂红或PAS染色,多呈块状或细粒状。

电镜下:糖原颗粒无界膜包绕,电子密度比较高,普遍存在于各种细胞中,其中以肝细胞和肌细胞内最为丰富。

2、蛋白质包含物:常常以颗粒状或晶体状两种形态存在于细胞内。细胞合成的蛋白质被一层厚约9纳米的膜包绕,使之与细胞质中其它成分区别,成为颗粒状蛋白质包含物。如:各

种蛋白分泌颗粒和初级溶酶体。

晶体状包含物:表现为蛋白质分子有规律的排列一般没有膜包绕。如:浆细胞内粗面内质网中的Russell小体、嗜酸性粒细胞特殊颗粒的结晶体等。

3、脂类:多以脂滴的形式存在于细胞内。

电镜下:为大小不等的泡状结构,没有界膜包绕,内容物一般为均质状,各个脂滴的电子密度的程度不一,这与脂滴的大小、内容物的性质以及固定染色的方法有关。

脂滴是细胞的能源和合成细胞内某些物质的原料,但在一些病理情况下,如在肝细胞和心肌细胞内脂滴可大量堆积,形成脂肪性变,另外脂滴有时也可以出现在线粒体、高尔基体、内质网、及溶酶体内。

色素颗粒:一般分为三种:黑色素、脂褐素、含铁血黄素

光镜下:色素颗粒多呈棕色颗粒或杆状。

电镜下:黑色素-呈圆形或椭圆形颗粒,如表皮基地层细胞内的黑色素。

脂褐素-是溶酶体的一种(残余体),在心肌细胞和神经细胞内最易见到,脂褐素随年龄的增长而增多。

含铁血黄素-是直径为9纳米的含铁蛋白质。它是因红细胞被肝、脾及骨髓等处的巨嗜细胞吞噬后,将血红蛋白分解所形成的一种含铁的色素颗粒。

细胞膜是细胞生命的基本结构,位于细胞表面,切面呈线状围绕,细胞膜垂直切面,在高倍镜下成三层结构,两深一浅,即称单位膜(unit membrane),厚约7~10nm。

一、概念:

光镜下:细胞膜是指包围在细胞外表的一层薄膜,又称质膜。

电镜下:细胞膜是指细胞内两个不同部位之间或细胞与相邻细胞以及外环境之间的界膜。

其中构成细胞表面界膜的叫细胞膜,形成各种细胞器之间的膜叫细胞内膜,如线粒体膜、内质网膜、溶酶体膜、核膜等。

二、膜的化学组成:主要由水和有形成分组成,有形成分主要是蛋白质、脂类(主要是磷脂)。

三、膜的结构:“液态镶嵌模型学说”

该学说认为,生物膜是一种流动的、可塑的、不对称的、镶有蛋白质的脂质双分子层的膜状结构。由两层相对排列的脂质分子构成膜的中间部分,蛋白质分子覆盖、镶嵌、贯穿在脂质双分子层表面

电镜下:脂质双分子层由两条约2纳米的暗带,中间夹一条3.5纳米宽的亮带组成。暗带代表蛋白质,亮带代表质类。

三、膜的主要特性:

1、不对称性:无论在结构和功能方面都存在

①、脂质分子层不对称:如红细胞膜外层含胆碱磷脂和鞘磷脂多,而内层则含氨基磷脂多。

②、蛋白质分子位置、分布不对称。

③、功能方面的不对称:如某些物质的载体,在膜的外侧只能接受某种物质,当载体移位和分子变构转向内侧时,则能运出这些物质。

2、膜的流动性:膜平时处于液晶态。

液晶态:是界于固态与液态之间的过渡状态,其分子结构排列有序,又可流动,称液晶态。

四、膜的主要功能

1、通透作用:细胞膜不单纯起着和支架和屏障作用,它还严格的控制着物质的进出,具有选择性的通透作用,是细胞膜最重要的生理特性之一。

通透作用的方式

被动扩散:是指细胞及其周围物质,由高浓度区向低浓度扩散。

主动运输:指一些物质的运输是逆浓度梯度方向进行的。即物质由低浓度------>高浓度转移2、细胞膜受体

细胞膜上的受体,就像“识别器”,它能识别周围环境中的相应信号,并接受有关信号而在细胞内产生某些效应。

3、调节代谢

细胞膜上的酶参与各种生物化学反应,并通过多种途径来调节细胞代谢。

4、免疫作用

细胞膜上的抗原性具有十分重要的实践意义,它涉及到胚胎发生中组织器官的形成,器官的移植、输血、细胞免疫以及肿瘤的发生与发展,所以细胞膜的免疫作用在生物医学研究领域里倍受重视!

细胞外衣又叫细胞衣。它是附着在细胞膜表面,呈丝网状结构,厚约10~20纳米,个别可达0.1~0.5微米,根据细胞膜的现代概念,细胞衣无论从结构或功能上都属于细胞的组成部分,而不是细胞膜表面的附着物。电镜下:为一层分支丝状物。

1、细胞外衣主要成分:是糖蛋白

糖蛋白的合成方式:由粗面内质网上的核糖体形成蛋白质,在高尔基体内与寡糖分子结合成糖蛋白,然后被运输到细胞膜。

从这点看,也可以说-细胞外衣是细胞的一种分泌物。

2、细胞外衣的功能

①、参与免疫作用:实验证明,在细胞衣内有许多与免疫作用有关的膜抗原、特异受体以及与细胞表面活动有关的酶类。

②、保护和通透作用:如小肠上皮细胞表面的细胞衣,在上皮细胞的表面形成一层保护层,以防止致病性损害。另外,小肠上皮细胞外衣还具有选择性通透作用,构成细胞活动的介质和分子筛,尤其与水溶性物质的交换有关。

③、其它作用:当外界刺激伤及细胞外衣时,细胞外衣即很快出现裂隙或部分脱落,以免伤及细胞的结构。

1. 形态:微绒毛是细胞膜呈指状突起,外面包有细胞膜和细胞衣。绒毛的中心为细胞质的—称微绒毛,中心由微丝束组成轴心的—称肠型绒毛。

微绒毛多位于上皮细胞顶部。如:小肠上皮、肾小管上皮,肾小管上皮的微绒毛非常发达,形成光镜下的“纹状缘”和“刷状缘”。

2.微绒毛功能:

①、扩大表面积,增加吸收功能。

②、协助或参与细胞运动。

③、参与细胞分泌活动。

纤毛是位于细胞膜包绕的指套状突起中,横切面呈9+2结构,即中心为2个单微管,周边为9组双微管

1、分布:上皮细胞表面,如上呼吸道上皮细胞、生殖管道上皮细胞、食管膜上皮细胞

2、主要成分:多种蛋白,主要是动力蛋白和微管蛋白等

3、运动的特点:①、具有周期性和节律性;②、有方向性:即始终朝某一方向弯曲(单方向摆动);③、同步性和协调性。

协调性:指在一定运动方向的水平上,纤毛运动的时相不一,使一片纤毛形成波浪状运动

细胞连接是上皮细胞邻接面的细胞膜特化的连接装置。

1、桥粒(desmosome)又称粘合斑

位于中间连接下方,多数为成对的纽扣样结构,两对侧的结构不连续,中间有25~30纳米的间隙,间隙内充满纤维性物质。

2、半桥粒(semidesmosome)

在上皮细胞基底面,细胞膜与基板相邻处可见到半桥粒。

3、紧密连接(tight junction)又称闭锁连接

位于上皮细胞侧面接近游离面的顶端,多数呈带状分布,少数呈点状分布,此处相邻细胞无细胞衣。

4、中间连接(intermediate junction)又称粘合小带

位于紧密连接的下方,在上皮细胞中一般呈连续带状分布,但在某些组织,如心肌闰盘可呈不连续带状分布。

主要特征;在两个相邻细胞间,细胞膜不融合有明显间隙。

5、复合连接(junctional complex)

由紧密连接、中间连接及桥粒组成。一般在柱状上皮细胞间可以见到。

6、缝隙连接(gap junction)又称缝管连接、间隙连接

散在分布于相邻上皮细胞深部的侧面,和肌细胞、神经细胞及某些结缔组织细胞中。

相邻细胞间隙很小,容易误认为“紧密连接”。

7、镶嵌连接(interdigitation)

大多分布在柱形、立方形、多角形细胞靠近基部的侧面。

构成一层膜样物质,称之为基板。。

电镜下:呈丛状细丝样物质。

2、基板组成成分:主要是粘多糖或糖蛋白

基板与细胞衣不同,它不是上皮细胞或某一细胞类型细胞本身所属的结构,它与细胞膜不直接相连。

基板在不同部位的形态不一,有时纤细不连续,有是很厚并连续。一般基板的形态、厚度,随动物不同的年龄、种类、组织、细胞以及病理状况而异。

基板与基膜的区别:基膜是位于上皮细胞与结缔组织相接处的一层均质性的薄膜。

概述:

细胞质在生活状态下呈透明的胶态。

由三部分组成:基质。细胞器。包含物。

基质:是细胞质的液相部分,它构成细胞的内环境,是细胞的可溶相。

包含物:是指贮存在细胞内的糖原、蛋白质结晶和脂肪滴等,以及某些代谢产物。所以又可以称包含物为副质。

细胞器:是指细胞质内具有一定形态结构和某种特殊功能的有形成分。

包括:线粒体、内质网、高尔基体、溶酶体、过氧化物酶体(过氧体)、细胞骨架。

细胞的功能,主要由细胞器完成。各种细胞器之间,细胞器与基质之间,细胞质与细胞膜、细胞核之间,它们的结构和功能都相互联系和制约,构成细胞的统一体。

是细胞的主要细胞器之一,也是细胞储存能量和供给能量的主要场所,所以有把线粒体比做细胞的“动力工厂”之说。

目前已知线粒体内至少有100多种酶,这些酶精确有序的分布在线粒体的各有关部位。

线粒体的形态、大小、数量、分布等,常因细胞的种类和生理状况不同,而有一定的差异和变化。

1、线粒体形态:呈圆形、卵圆形、杆状、丝状,其中以卵圆形为多。

同类细胞的线粒体形态基本保持一定稳定性。但也会因生理机能、营养状况以及所在部位的不同,而有明显的变化。

如:靠近小肠吸收细胞核上区的线粒体呈细丝状,那么位于基部及周边的线粒体多为颗粒状。不同细胞内的线粒体差异则更大。

如:肝细胞内的线粒体多呈圆形,而肾小管上皮细胞内的线粒体多呈杆状或丝状。

光镜下:呈细丝状和细颗粒状。

电镜下:呈长条形或卵圆形,结构造型特殊。

线粒体是一个由双层膜包绕而成的囊状小体,由内膜、外膜和内室、外室组成。两膜虽然都是典型的膜相结构,但功能各异。内外两室不仅有大小之差,且各执行自己区域内的职能。外膜:表面平滑,是一层全封闭的生物膜,厚约6纳米。,是线粒体与周围胞质、基质间的界面。

内膜:略比外膜厚,约7纳米。内膜向内折叠,形成长短、大小、形状不一的线粒体嵴,嵴多为隔板状。

嵴膜折叠层中的间隙—称嵴内间隙或嵴内腔。嵴内间隙与周围间隙相通,两者合称外室。线粒体内室基质的电子密度比一般胞质基质略高,呈均质状。基质中有无定形的致密颗粒分布,这些颗粒称基质颗粒或致密颗粒。直径约20~60纳米,最大可达120纳米,其数目及大小随细胞种类与机能状态而异。

如:在肝细胞、胰腺细胞、小肠上皮细胞以及白细胞等, 线粒体基质颗粒就没有成骨细胞活跃时的基质颗粒多。

线粒体嵴的排列形式,反映了生物的种间差异,以及细胞性质的差别。

排列形式主要有两种:一种是“板层状嵴”,高等动物绝大部分细胞的线粒体嵴为“板层状”。另一种排列方式是“小管状嵴”,原生动物和一些比较低等动物的线粒体嵴为“小管状嵴”。2. 线粒体的大小:线粒体的横经一般为0.1~1 微米,长一般为1~2微米,有的可达7微米。不同种类的细胞, 线粒体的大小不一样,如骨骼肌的线粒体可长达10微米,而成纤维细胞内偶而可见巨型线粒体线粒体。在某些病理情况下还可以出现异常膨大的巨型线粒体。如:病毒性肝炎、肝癌、硬皮病……

3、线粒体的数量:不同细胞的线粒体数量不同,

一般分化比较低、代谢迟缓、功能静止、以及衰退的细胞,线粒体数量不仅比较少,而且结构比较简单。

如:表皮细胞、淋巴细胞、纤维细胞、平滑肌细胞等。

如果是分化高、代谢旺盛、功能活跃的细胞,则线粒体数量丰富。

如:心肌细胞、骨骼肌细胞、肝细胞等。

4.线粒体的分布:大多是均匀分布在细胞内,但某些细胞的线粒体分布与细胞的能量需求有一定的关系。

如:心肌细胞、骨骼肌细胞内的线粒体是沿肌纤维周围分布的,尤其多分布于Z线处。5.线粒体的功能:线粒体是维持细胞呼吸和氧化磷酸化的多酶系统的载体,是细胞的主要能量所在。

6.线粒体的更新:线粒体在细胞内常处于不断更新中,原有的线粒体衰变、固缩、肿胀、崩解,最后被消化分解。

线粒体不断更新形成的途径有三种:

1、可由原来的线粒体分隔、分裂或芽生。

2、由其它细胞内膜衍化而来。

3、在细胞基质内重新合成。

骨膜的组织学特征和超微结构

综述骨膜的组织学特征和超微结构 宋守礼 朱盛修 骨膜通常指骨外膜Κ是覆盖在骨外表面的致密结缔组织膜Λ除骨的关节面、股骨颈、距骨的关节囊下区和某些籽骨表面外Κ骨的外表面都有骨膜Λ目前认为Κ骨膜不仅是一层:限制膜ΦΚ而且具有成骨作用Κ对骨的营养、生长或修复及感受痛觉都很重要Λ临床上Κ利用骨膜移植后能保留骨膜固有的成骨和成软骨的特性Κ已成功地治疗骨折延迟愈合或不愈合、骨和软骨缺损、气管软骨缺损、先天性腭裂和股骨头缺血性坏死等疾病Κ且骨膜移植有血运重建快、成骨量大和对供区创伤小等优点Κ引起了人们对骨膜的兴趣Κ加速了对骨膜组织的结构和成骨机制的研究Λ 一、骨膜的组织学特征 虽然骨膜的组织结构因解剖部位和年龄不同而有差别Κ传统上常将骨膜分为浅表的纤维层;fibrous layerΓ和深面的生发层;cam bium layerΓΚ二层并无截然分界Λ纤维层较厚Κ细胞成分少Κ主要为粗大的胶原纤维束Κ彼此交织成网Κ有些纤维穿入骨质Κ称sharpey 纤维或穿通纤维;perfo rating fiberΓΚ起固定骨膜和韧带的作用Λ生发层紧邻骨外表面Κ其纤维成分少Κ排列疏松Κ血管和细胞丰富Κ有成骨能力Κ故又称成骨层;o s2 teogenic layerΓΚ其细胞成分有骨祖细胞、成骨细胞、破骨细胞和血管内皮细胞Λ生发层的组织成分随年龄和机能活动而变化Λ在胚胎期和出生后的成长期内Κ生发层由数层细胞组成Κ其外层为成纤维细胞样骨祖细胞Κ内层为成骨细胞Κ二者皆有增殖能力Κ与骨膜成骨有关Λ成年后Κ骨处于改建缓慢的相对静止阶段Κ生发层变薄Κ骨祖细胞相对较少Κ不再排列成层Κ而是分散附着于骨的表面Κ继续参与终身缓慢进行的骨改建活动及骨折时的修复活动[1Κ2]Λ骨膜的纤维层剥离后Κ成骨细胞和破骨细胞仍能牢固地附着在骨面上[3]Λ 近年来Κ有作者根据骨膜的功能和解剖学基础提出骨膜分三层的观点Κ即浅表的纤维层、中间的血管性未分化区和深面的生发层[4Κ5]Λ中层组织疏松Κ主要的细胞成分是未分化细胞Κ它能为生发层和纤维层提供祖细胞Λ该层内还有少量单核细胞Κ在骨重建的局部调节中发挥作用Λ细胞外基质中胶原排列有序Κ适于发挥 作者单位Π100853 北京Κ解放军总医院骨科支持作用Κ并且和基质中非胶原成分共同发挥粘弹性作用Κ缓冲生发层内生理范围内的应力变化Λ中层疏松的特性亦有利于生发层在活跃的生长期中有效地转运营养物质和代谢产物Λ因此Κ中层除具有营养作用和供给祖细胞外Κ还是调节骨和周围软组织间相互作用的缓冲带[4]Λ骨膜受到应力作用后Κ通过中层的调节Κ其纤维弹性组织成分;fibroelastic componentΓ离开或靠近生发层Κ结果张力刺激骨膜成骨Κ压力诱导骨吸收Λ成长期的骨膜中层较厚Κ具有理想的结构Κ能迅速而敏感地对应力变化做出反应Κ启动骨表面的适应性重建活动[5]Λ 骨膜的三层结构随年龄发生明显变化Λ出生后Κ生发层的成骨细胞外形细长Μ中层较厚Κ分化差Κ血管极少Λ在快速成长期Κ生发层的成骨细胞呈立方形Μ中层的血管、未分化细胞和单核吞噬细胞发育达高峰Κ血管清晰可见Λ成年后Κ生发层细胞呈扁平的静息状态Μ中层结构开始退化Κ逐渐消失Κ骨膜对应力反应的敏感性随之下降[4]Κ骨膜附着于骨较牢固Κ一般不易剥离ΛSquier等[6]根据骨膜内细胞、纤维和基质的比例Κ提出另一种:三层分法ΦΛ第一层由紧邻骨表面的成骨细胞和其浅面的成纤维细胞样细胞组成的成骨细胞上层;sup ra-o steoblast layerΓ构成Κ后者可能是骨祖细胞Λ第二层为相对透明区Κ毛细血管丰富Κ可能代表传统的生发层Κ骨膜的大多数血管成分位于该层内Λ第三层由胶原纤维和大量成纤维细胞构成Κ相当于传统的纤维层Λ 骨膜除含有丰富的胶原纤维外是否含有弹性纤维Κ目前仍有争论ΛM urakam i和Em ery[7]认为骨膜中有弹性纤维Κ这些纤维由深层的骨祖细胞合成Λ弹性纤维沿骨纵轴平行排列Κ形成5~6层Κ其内侧部分包括在生发层内Κ外侧部分融入纤维层中Λ位于弹性纤维最内侧部分的细胞可能系未分化细胞Κ能分化为成骨细胞或成弹性纤维细胞ΛTonna[8]的电镜观察亦证明骨膜的两层均有弹性纤维Λ但Chong等[9]认为骨膜没有弹性纤维Κ其他作者发现的弹性纤维可能是网状纤维Λ 二、骨膜的超微结构 在光学显微镜下Κ骨膜的纤维层和生发层无明确的分界Μ在超微结构水平Κ两层间有清晰的界线[8]Λ在未 593 中华骨科杂志1996年6月第16卷第6期

内质网病变的超微结构观察

内质网病变的超微结构观察 徐娇等 摘要:电镜技术的应用使人们对细胞的超微结构有了更深入的了解。各种细胞器的结构以及其病理状况时发生的改变为人们判断疾病的发生提供了直观科学的依据。本文主要概述了投射电镜观察下内质网的各种超微病理变化。 关键词:电镜;内质网;病理变化 20世纪30年代,德国的RUSKA第一次发现了电子显微镜,随后利用刚刚形成的电子显微镜技术第一次看到了烟草花叶病毒[1]。随着电子显微镜技术的不断完善和发展,电镜的应用使人们对细胞的研究逐步深入到亚细胞结构,各种细胞器的结构也不断被人们认知。同时,在医学科研和诊断疾病中做出了重要贡献。例如,Gyorkey[2]等在2000例肿瘤诊断中8%要靠电镜帮助诊断。Kuzela[3]等对49例肿瘤的诊断结果分析,11例电镜可进一步提供明确的诊断,占22%,纠正6%的错误诊断,确诊率28%。国内周晓军[4]报道223例肿瘤电镜诊断,电镜确诊135例,占60%,纠正原病例诊断11例,占5%。有诊断价值者占65%。有由此可见,电镜技术在诊断疾病中的应用价值。 电镜分为扫描电镜和投射电镜。由于其分辨率高,放大倍数大,而且使用较为方便,电镜已经成为研究细胞微观结构最有效的方法之一[5]。本文所的总结的内质网超微结构变化主要通过投射电镜来观察。 1 内质网的超微结构及生理功能 内质网(endoplasmic reticulum),ERKR. Porter、A. Claude 和EF. Fullam等人于1945年发现,是细胞质内由膜组成的一系列片状的囊腔和管状的腔,彼此相通形成一个隔离于细胞基质的管道系统,为细胞中的重要细胞器。它实际上是一个连续的膜囊和膜管网,可分为粗面内质网(RER,Rough Endoplasmic Reticulum)和滑面内质网(SER,Smooth Endoplasmic Reticulum)两大部分。粗面内质网上附着有大量核糖体,合成膜蛋白和分泌蛋白;滑面内质网上无核糖体。 内质网是哺乳细胞中一种重要的亚细胞器。膜分泌性蛋白、氨基多糖、磷脂、胆固醇及钙信号等的代谢均与内质网功能直接相关,例如分泌性蛋白的合成与空间折叠、蛋白质糖基化修饰、蛋白质分泌等均在内质网内发生。目前研究认为,胰腺细胞、心肌细胞、神经元细胞等内质网功能障碍可能分别是糖尿病、心脑组织缺血梗塞、退行性神经疾病等发生的重要原因[6-8]。 真核细胞的内质网具有四个主要的生理功能:合成膜蛋白和分泌蛋白;折叠形成蛋白质正确的三维空间构象;储存Ca2+;参与脂质和胆固醇的生物合成[9]。 2 内质网的病理性变化形态观察 2.1内质网增多内质网的多少可以反应细胞病变状况。例如在蛋白质合成及分泌活性高的细胞(如浆细胞、胰腺腺泡细胞、肝细胞等)以及细胞再生和病毒感染时,粗面内质网有增多现象。 李颖智[10]等研究了脊髓损伤后继发骨质疏松的骨组织超微结构,发现进行手术后第11w,胫骨成骨骨细胞核空化,粗面内质网增多。熊娟[11]等观察了锯缘青蟹病毒感染的超微病理变化,发现其胃细胞中粗面内质网肿胀增多。 2.2内质网减少和水祥[12]等用秋水仙素灌大鼠慢性肝损伤大鼠,用电镜观察细胞,发现胞浆内内质网减少。谢学军[13]等研究了糖尿病大鼠视觉系统三级神经元的病理变化,发现糖尿病大鼠视皮质,神经细胞胞浆中,粗面内质网减少且变形。山羊冰川棘豆中毒[14],缺血[15,16]等也可导致细胞内粗面内质网减少。

纳米纤维素超微结构的表征与分析

纳米纤维素超微结构的表征与分析 唐丽荣,黄彪*,李玉华,欧文,陈学榕 【摘要】摘要:采用场发射环境扫描电镜(FEGE-SEM)、场发射透射电镜(FETEM)和原子力显微镜(AFM)等仪器对硫酸水解法制备的纳米纤维素(NCC)进行超微结构的表征与分析。结果表明:NCC在水分散体系中可形成非常稳定的胶状溶液。由FEGE-SEM观察到微晶纤维素(MCC)呈不规则形状,直径约为15μm。通过硫酸水解制得形状较规整的短棒状NCC,直径范围在 2~50 nm之间。FETEM观察结果与AFM成像基本一致,FETEM观察大多数NCC直径约2~24 nm,长度为50~450 nm。AFM观察样品尺寸与FETEM观察相比所测得的样品尺寸偏大,这与其质地较软有关。X射线衍射(XRD)图谱表明 NCC属于纤维素Ⅰ型,与MCC相比,结晶度由 72.25%增大到 77.29%。 【期刊名称】生物质化学工程 【年(卷),期】2010(044)002 【总页数】4 【关键词】关键词:纳米纤维素;超微结构;分析 【文献来源】https://https://www.wendangku.net/doc/671794763.html,/academic-journal-cn_biomass-chemical-engineering_thesis/0201248154894.html 纤维素是自然界中最丰富的天然高分子材料,开发可再生的纤维素资源在当前的形势下具有重要的战略意义。作为一种天然高分子化合物,纤维素在性能上存在强度有限等不足,限制了其应用范围,如果将其制备成纳米材料,就可以在一定程度上优化它的性能。天然纤维素里分布着纳米级的晶体纤维素和无定形的纤维素,它们依靠分子内和分子间的氢键以及范德华力维持着纤维素大分子的聚集态

超微结构检查

生物电镜技术在生物医学领域中的应用 摘要: 随着现代医学细胞超微结构及分子生物学等学科的迅速发展,电子显微镜技术并未像某些人预测的那样随着免疫组化技术的发展而进入了末日。相反,电子显微镜技术也正向超,高分辨率、生物分子及原子水平发展。口述(近年来越来越多的事实证明电镜在人体各种疾病的诊断中仍然发挥着重要的作用。)生物电镜技术在生物和临床医学疾病诊断中作出了巨大的贡献, 并不断开辟着生物医学研究的新领域, 主要从细胞、亚细胞的形态结构上阐明疾病的发生、发展及转归规律, 丰富了传统病理学的知识。口述比如:1.通过对亚细胞结构和病原体的观察, 在生物医学领域利用高性能的电子显微镜观察细胞中各种细胞器正常的和病理的超微结构, 诸如内质网、线粒体、高尔基体、溶酶体、细胞骨架系统等, 对探明病因和治疗疾病有很大帮助。2.通过研究细胞结构和功能的关系, 也可以研究细胞的通讯与运输、分裂与分化、增殖与调控等生命活动的规律, 电子显微镜也可结合各种制样技术观察病毒、细菌、支原体、生物大分子等的超微结构, 是现代生物医学研究不可替代的工具。口述(随着电镜技术的不断改进以及与多种研究手段相结合, 电子显微镜将在生物医学领域应用会更加广泛。) 口述:引言:首先,我们需要知道的是生物电镜技术是医学生物学工作者深入研究机体的超微结构及其功能的有利手段之一。所谓超微结构,一般指光学显微镜所不能分辨的组织、细胞的细微形态结构(亚显微结构)以及生物大分子的结构。在形态学科,如解剖学、组织学、胚胎学、细胞学、病理学、微生物学、寄生虫学等等之中,电子显微镜技术已成为研究结构的常规方法。在某些机能学科,如生理、生物化学、病理生理、药理等。此外,在临床医学、环境保护科学以及中草药的研究等,电镜技术也做出了重要的贡献,并不断开辟着生物医学研究的新领域,主要从细胞,亚细胞的形态结构上阐明疾病的发生,发展及其病理转归规律。而随着电镜技术的不断改进以及与多种研究手段相结合,电镜技术在生物医学的应用将更加广泛。下面,我们小组将对生物电镜技术在生物医学领域中的应用稍作讲解。分为两个部分。 正文: 一.生物电镜技术在生物和医学中的研究历史 电子显微镜诞生于二十世纪30年代,德国的 Bruche和 Johannson根据电子光学原理,以电子束为介质用电子柬和电子透镜代替传统的光束和光学透镜,

超微结构又称为亚纤维结构

细胞结构又分为显微结构和亚显微结构。 超微结构又称为亚显微结构。指在普通光学显微镜下观察不能分辨清楚的细胞内各种微细结构,在电子显微镜下显示组织和细胞的微细结构,以及不同功能状态与分化发育中的变化称超微结构。 显微结构,是指在光学显微镜下看到的细胞结构。观察、分析则是细胞研究的基本方法,在普通光学显微镜中能够观察到的细胞结构。 《不同海拔火绒草叶绿体超微结构的比较》总结: 用青藏高原东北部3个不同海拔地区的火绒草为材料,通过实验观察并比较了其叶肉细胞中叶绿体的超微结构变化,电镜观察表明,生长于不同海拔地区的火绒草,叶绿体结构差异明显。生长于海拔2 300m处的火绒草,叶绿体基粒片层排列整齐、致密,结构清晰,片层可达32层。生长于海拔2 700m处的火绒草,基粒片层排列不规则,片层下降到十几层,类囊体出现轻微膨大。生长于海拔3 800m处的火绒草,基粒片层则严重扭曲,片层只有几层,类囊体膨大严重,类囊体膨大最宽处可达0.14μm,出现脂质小球。此外,随着海拔的升高,叶绿体的形状有向圆形转变的趋势。火绒草叶绿体基粒叠垛程度随海拔的升高而下降。 《汞胁迫对植物细胞结构与功能的影响》总结: 汞离子会破坏植物细胞的结构,,轻则使植物体内代谢过程发生紊乱,生长发育受阻,重则可造成植物枯萎,甚至衰老死亡。汞离子能毒害叶绿体的类囊体系统,能引起类囊体的解体,使叶绿体发生破坏,因此汞能抑制植物的光合作用,造成光合产物短缺,导致植物生长受阻,甚至衰老或死亡。汞对线粒体和细胞核的毒害也十分明显。汞离子能抑制细胞分裂,汞离子还能使细胞膜出现渗漏,抑制细胞对水分和微量元素的吸收。

《水分胁迫对六种禾草叶绿体和线绿体及光合作用的影响》总结 水分胁迫后,6种牧草的叶绿体均膨大变圆并向细胞中央移动;叶绿体内分布有一定数量的嗜锇颗粒和少量淀粉粒,受伤害严重的叶绿体中的基粒和被膜破损;叶绿体片层系统排列方向发生改变,产生扭曲,类囊体膨胀,质间片层空间变小。线粒体数目均增加,且对水分胁迫的耐受性强于叶绿体,嵴变大且排列紊乱,部分线粒体内的嵴出现一定程度的断裂,变得模糊.线粒体上还出现了少量的嗜锇颗粒。 水分胁迫会导致叶绿体光合机构的破坏,影响叶绿素的生物合成,引起光合CO2同化效率的降低,使叶片光合速率降低。 《盐胁迫对芦苇细胞超微结构的影响》总结 当盐度介于0%~4.0%时,芦苇细胞受损的膜结构发生局部内陷或萎缩变形。细胞器表面变得凹凸不平。当盐度为4.0%时,芦苇细胞叶绿体,线粒体,细胞核等具有膜结构细胞器及细胞壁遭到破坏,造成芦苇细胞膜系统的不可逆损伤,使细胞正常的物质代谢与能量转换和信息传递无法完成,导致芦苇细胞新陈代谢过程的中断。芦苇细胞生命活动趋于停止。在8.0%浓度盐胁迫下,芦苇细胞膜系统结构完全消失解体,导致芦苇细胞直接死亡。 《植物细胞超微结构的研究进展》总结 植物细胞超微结构的研究,着重于结构与功能的关系,重视细胞的整体机能,着重以细胞壁、细胞核及质膜来阐述植物细胞超微结构的研究进展。 细胞壁,早期的研究认为它与物质排出原生质体之外或与壁的代谢有关。细胞核凹入形成假包被的机制和功能目前尚不清楚,对核液泡发生和功能的认识也十分初步。植物细胞普遍存在与质膜相关联的膜囊结构,对这类膜结构的形成和动向大致有两种不同解释。

皮肤中级4 皮肤的超微结构

第四章皮肤的超微结构(重点3个考点) 表皮细胞间的联系1/3 表皮细胞间通过角蛋白丝、跨膜细丝相联系,如: (1)桥粒:是角质形成细胞间连接的主要结构,由相邻细胞的细胞膜发生卵圆形致密增厚而共同构成。 电镜下桥粒呈盘状,直径约为0.2~0.5μm,厚约30~60nm,其中央有20~30nm宽的电子透明间隙,内含低密度张力细丝;间隙中央电子密度较高的致密层称中央层,其粘合物质是糖蛋白;中央层的中间还可见一条更深染的间线,为高度嗜锇层。构成桥粒的相邻细胞膜内侧各有一增厚的盘状附着板,长约0.2~0.3μm,厚约30nm,许多直径约为10nm的张力细丝呈袢状附着于附着板上,其游离端向胞质内返折(胞内细丝),附着板上固有的张力细丝可从内侧钩住张力细丝袢,这些固有张力细丝还可穿过细胞间隙并与中央层纵向张力细丝相连,称为跨膜细丝。 桥粒由两类蛋白构成: 一类是桥粒跨膜蛋白,主要由桥粒芯糖蛋白Dsg和桥粒胶蛋白Dsc构成,它们形成桥粒的电子透明细胞间隙和细胞间接触层。人的桥粒跨膜蛋白在表皮的表达表现为分化特异性。Dsg1和Dsc1主要在棘层上部及颗粒层表达;Dsg2和Dsg3分别分别在基底层及棘层下部表达;Dsc3在基底层及棘层下部均有表达。 另一类为桥粒胞浆蛋白,是盘状附着板的组成部分,主要包括桥粒斑蛋白DP和桥粒斑珠蛋白PG,在表皮全层均有表达。桥粒斑蛋白DP仅存于桥粒斑块,因此是桥粒的特征标志。(2)半桥粒:是基底层细胞与下方基底膜带之间的主要连接结构,系由角质形成细胞真皮侧胞膜的不规则突起与基底膜带相互嵌合而成,其结构类似于半个桥粒。电镜下半桥粒内侧部分为高密度附着斑,基底层细胞的角蛋白张力细丝附着于其上, 致密斑,两侧致密斑与中央胞膜构成夹心饼样结构。致密斑中含 (integrin)等蛋白。(大疱性类天疱疮) 非角质形成细胞2/3 非角质形成细胞 1.表皮黑素单位:1个黑素细胞可通过其树枝状突起向周围约10~36个角质形成细胞提供黑素,形成1个表皮黑素单元。 黑素细胞起源于外胚层的神经嵴,数量约占基底层细胞总数的10%,其数量与部位、年龄有关而与肤色、人种、性别等无关。几乎所有组织内均有黑素细胞,但以表皮、毛囊、黏膜、视网膜色素上皮等处为多。 黑素细胞无桥粒。 HE染色切片中黑素细胞位于基底层,细胞胞质透明,胞核较小,银染色及多巴染色显示细胞有较多树枝状突起。电镜下可见黑素细胞胞质内含有特征性黑素小体,后者为含酪氨酸酶的细胞器,是合成黑素的场所。黑素分为真黑素和褐黑素,原料是酪氨酸。酪氨酸在酪氨酸酶的作用下形成黑素。黑素能遮挡和反射紫外线,保护真皮及深部组织免受辐射损伤。 https://www.wendangku.net/doc/671794763.html,ngerhans细胞:是由起源于骨髓的单核-巨噬细胞通过一定循环通路进入表皮中形成的免疫活性细胞。多分布于基底层以上的表皮和毛囊上皮中,数量约占表皮细胞总数的3%~5%,密度因部位、年龄和性别而异,一般面颈部较多而掌跖部较少。 Langerhans细胞HE染色及多巴染色阴性(多巴染色染黑素细胞),氯化金染色及ATP 酶染色阳性。光镜下细胞呈多角形,胞质透明,胞核较小并呈分叶状,线粒体、高尔基复合

试述肌节的超微结构

试述肌节的超微结构? 肌节是横纹肌纤维结构和收缩功能的基本单位,是指两条相邻Z线间的一段肌原纤维(或肌丝束)。一个肌节是由1/2I带+A带+1/2I带所组成,中轴为M线,紧邻M线两侧是A带的中央部分H 带,A带外侧分别为1/2I带。粗肌丝位于A带内,中央借M线固定;细肌丝一端固定在Z线,平行于I带内,另一端插入A带的粗肌丝之间,止于H带外侧。肌纤维收缩时,细肌丝向粗肌丝之间滑入,故I带变窄,A带长度不变,而H带也变窄甚至消失,每个肌节变短,肌纤维缩短。 比较大、中、小、微动脉的结构特点及其功能。 ①大、中、小、微动脉的管壁都分3层,从内向外称为内膜、中膜和外膜,以中动脉的3层结构最明显;内膜又分内皮、内皮下层和内弹性膜;中膜含平滑肌或弹性膜;外膜为结缔组织,有营养血管。②大动脉内膜较厚,内弹性膜多层;中膜主要为40~70层弹性膜,弹性膜之间有弹性纤维、环行平滑肌和少量胶原纤维;其功能是维持血液流动的连续性。③中动脉内膜的内皮下层较薄,内弹性膜明显;中膜较厚,由10~40层环形平滑肌组成;外弹性膜较明显;其功能是调节器官的血流量。④小动脉中膜由数层平滑肌纤维构成;较大的小动脉也可见内弹性膜;主要功能是调节器官与组织的血流量,并形成外周阻力,参与正常血压的维持。⑤微动脉无内弹性膜,中膜仅由1~2层平滑肌组成,外膜较薄;是控制微循环的总闸门,调节各组织血流量 试述胃黏膜上皮的结构及其功能意义。 ①胃的黏膜上皮是单层柱状上皮,除少量内分泌细胞外,主要由表面黏液细胞组成。②表面黏液细胞呈 柱状,细胞核卵圆形,位于基部;顶部胞质染色浅淡,PAS反应阳性;电镜下细胞顶部含大量黏原颗粒;相邻细胞间有紧密连接。③上皮下陷形成许多胃小凹,胃小凹底部含干细胞。④表面黏液细胞分泌不溶性黏液,含高浓度HCO3-,覆盖于上皮表面,可将上皮与胃液隔离,并可中和盐酸,抑制胃蛋白酶活性,保护上皮。⑤胃小凹的干细胞分裂分化,补充脱落的表面黏液细胞,使上皮不断更新。这些构成了胃黏膜的自我保护机制 试述精子发生的主要阶段及形态变化? 从青春期开始后,在腺垂体分泌的促性腺激素的作用下,精子发生开始即从精原细胞到形成精子的过程,它包括三个时期。(1)精原细胞增殖期。①A型精原细胞是最幼稚的生殖细胞,青春期开始后,其不断分裂增殖,一部分子细胞成为干细胞。②另一部分子细胞经历B型精原细胞增殖,分化为初级精母细胞。 (2)精母细胞成熟分裂期。①初级精母细胞经过DNA复制后(4n DNA),进行第一次减数分裂,形成两个次级精母细胞。②次级精母细胞不进行DNA复制,迅速进入第二次减数分裂,产生两个精子细胞,核型为23,X或23,Y(1nDNA)。减数分裂又称成熟分裂,仅见于生殖细胞的发育过程。经过两次减数分裂,染色体数目减少一半。 (3)精子形成时期。精子细胞由圆形逐渐分化转变成为蝌蚪形精子的过程,称精子形成。①此过程主要变化是核变得极度浓缩,形成精子头部;高尔

棉纤维细胞壁超微结构的原子力显微镜分析

棉纤维细胞壁超微结构的原子力显微镜分析1 王禄山1,2,高培基1,时东霞2, 张玉忠1 1山东大学微生物技术国家重点实验室,济南,(250100) 2中国科学院物理研究所纳米物理与器件实验室,北京,(100080) E-mail: Lswang@https://www.wendangku.net/doc/671794763.html,, Zhangyz@https://www.wendangku.net/doc/671794763.html, 摘 要:纤维素类生物质的超分子结构具有异质性的特点,其复杂性的结构是生物质转化利用研究的主要障碍。利用原子力显微镜观察棉纤维细胞壁的切面与表面超微结构,发现其基本结构单元——微纤丝排列存在两种方式:一种是交织排列,符合“缨状”微纤结构模型;另一种呈笔直平行有序排列。不同排列方式的微纤丝对纤维素酶的敏感程度不同,交织排列的微纤丝易于完全降解,而平行排列的微纤丝为分段降解。微纤丝结构的不均一性和不同集聚方式是棉纤维三维结构产生异质性的主要原因,而其特征及变化可以利用表面粗糙度参数进行表征;纤维素结构在纳米层次上的定性定量表征将对其酶解转化过程的相关研究产生重要影响。 关键词:微纤丝,超微结构,异质性,原子力显微镜 1.引言 纤维素是自然界中最丰富的有机质,自然界每年光合作用产物的量约为1011吨,是重要的可再生能源物质[1]。纤维素是由葡萄糖分子通过β-1,4糖苷键连接而成的线性高分子,化学组成相对简单,但由于葡萄糖分子链间及链内存在大量氢键,使其聚集形成微纤丝、纤丝及纤维等多层次、聚集态结构,即纤维素超分子结构。纤维素的物理、化学性质不仅取决于其化学组成,更取决于其超分子结构,多层次复杂的超分子结构导致了化学反应可及性的不均一和酶解反应的复杂性,这是导致酶解效率低、难于制备精细化工产品的重要原因[2]。 纤维素结构的研究:一是整体水平,一是超微结构水平[1]。整体水平的分析主要是进行晶体学和光谱学的测定及分析。在天然纤维素中存在的晶体为纤维素I,它含有两种晶态,占优势的三斜晶胞Iα和少量的单斜晶胞Iβ [3, 4]。进一步研究表明Iα是亚稳态的,在退火时向着Iβ转变 [5];不同的纤维素样品中,两晶态的含量不同,并且同一微纤丝中两种晶态含量也是变化的[4]。在很长的一段时间内,纤维素晶体二态性的存在对其结构的解析造成了很大困难。纯Iα与Iβ的发现为结晶纤维素原子级分辨率的解析奠定了基础[6,7],13C固态NMR谱测定表明Iα与Iβ都存在两种构象不同的吡喃葡萄糖残基[8]。应用同步加速器及中子衍射技术测定单一晶态的纤维素微晶结构表明,纤维素Iα与Iβ两晶胞结构都由两条平行链组成,链之间都有轻微不同的构象,链间的分子间氢键也不完全相同[9.10]。超微结构水平的测定主要应用显微技术,应用透射电镜(TEM)发现纤维素的结构单元是微 1本课题得到国家自然科学基金(批准号:30270022)、教育部博士点基金(批准号:20020422054)及山东省自然科学基金(批准号:Z2002D03)资助项目的课题资助。 - 1 -

电镜技术与肾脏超微结构病变

电子显微镜技术与肾脏及其超微结构病变 特点 【摘要】:电子显微镜在临床研究和疾病诊断中作出了巨大的贡献, 并不断开辟着生物医学研究的新领域, 主要从细胞、亚细胞的形态结构上阐明疾病的发生、发展及转归规律, 丰富了传统病理学的知识。本文归纳了电子显微镜技术与肾脏超微结构病变研究中的关键问题,指出了肾脏病变及其超微结构研究的主要进展,讨论了肾脏超微结构病变的类型、影响因素、过程机理等问题。在此基础上,对肾脏超微结构病变规律的研究前景进行了展望。 【关键词】:电子显微镜技术肾脏病变超微结构病变特点 电子显微镜包括扫描电子显微镜和透射电子显微镜两种类型, 利用透射电子显微镜可以观察样品内部超微结构, 利用扫描电子显微镜可以观察样品表面形貌, 立体感强, 在生物医学领域应用较多的是透射电子显微镜。透射电子显微镜的发明为人类在医学科学研究领域做出了巨大的贡献, 早在20 世纪40 年代电子显微镜就在医学上开始发挥其作用, 在病毒学、细胞生物学、组织学、病理学、分子生物学及分子病理学都有应用。电子显微镜技术在肿瘤诊断、病毒和病毒性疾病、系统性疾病等研究领域的应用, 说明其是现代临床研究和疾病诊断中不可缺少的重要工具之一。 电子显微镜技术在医学领域应用特点 随着科学技术的发展, 电子显微镜放大倍数已从第一台电镜的

十几倍提高到现在的百万倍, 因此在生物医学领域利用高性能的电子显微镜观察细胞中各种细胞器正常的和病理的超微结构, 诸如内质网、线粒体、高尔基体、溶酶体、细胞骨架系统等, 对探明病因和治疗疾病有很大帮助。通过研究细胞结构和功能的关系, 也可以研究细胞的通讯与运输、分裂与分化、增殖与调控等生命活动的规律, 电子显微镜也可结合各种制样技术观察病毒、细菌、支原体、生物大分子等的超微结构, 是现代生物医学研究不可替代的工具。 随着显微医学的发展, 电镜技术将会与免疫学、分子生物学和摄影技术、计算机等技术相结合, 更好的为医学研究提供平台, 还会利用计算机建立三维立体图象, 确切定位细胞位臵及状态, 总之, 电镜技术与其他实验技术的结合最终会推动整个生物医学科学研究。(选自1:《电子显微镜技术在生物医学领域的应用》) 下面具体就肾脏超微结构以及肾脏病变超微结构展开讨论,肾脏病变有很多种,每种病变都有其不同的超微结构病变特点,本文就以下几种病变进行分析,并讨论其特点,来更深入的了解肾脏的病变。 一、硬化性肾炎 硬化性肾小球肾炎(sclerosing glomerulonephritis)不是一个独立的肾小球肾炎病理类型,而是许多类型肾小球肾炎的终末阶段。病变特点是大量肾小球硬化,肾小管萎缩、消失,间质纤维化。起始病变的类型多不能辩认。

内质网病变的超微结构观察

内质网病变的超微结构观察 电镜技术的应用使人们对细胞的超微结构有了更深入的了解。各种细胞器的结构以及其病理状况时发生的改变为人们判断疾病的发生提供了直观科学的依据。本文主要概述了投射电镜观察下内质网的各种超微病理变化。 Abstract:There is a more in-depth understanding about cell ultrastructure depending on Electron microscope technology. The structure of the various kinds of organelles,and its pathological conditions change provides the intuitive and scientific basis for people to judge the occurrence of diseases. This paper mainly summarizes the ultrastructural changes of endoplasmic reticulum under the projection electron microscope. Key words:Electron microscope technology;Endoplasmic reticulum;Pathological changes 20世纪30年代,德国的RUSKA第一次发现了电子显微镜,随后利用刚刚形成的电子显微镜技术第一次看到了烟草花叶病毒[1]。随着电子显微镜技术的不断完善和发展,电镜的应用使人们对细胞的研究逐步深入到亚细胞结构,各种细胞器的结构也不断被人们认知。同时,在医学科研和诊断疾病中做出了重要贡献。例如,Gyorkey[2]等在2000例肿瘤诊断中8%要靠电镜帮助诊断。Kuzela[3]等对49例肿瘤的诊断结果分析,11例电镜可进一步提供明确的诊断,占22%,纠正6%的错误诊断,确诊率28%。国内周晓军[4]报道223例肿瘤电镜诊断,电镜确诊135例,占60%,纠正原病例诊断11例,占5%。有诊断价值者占65%。有由此可见,电镜技术在诊断疾病中的应用价值。 电镜分为扫描电镜和投射电镜。由于其分辨率高,放大倍数大,而且使用较为方便,电镜已经成为研究细胞微观结构最有效的方法之一[5]。本文所的总结的内质网超微结构变化主要通过投射电镜来观察。 1 内质网的超微结构及生理功能 内质网(endoplasmic reticulum),ERKR. Porter、A. Claude 和EF. Fullam等人于1945年发现,是细胞质内由膜组成的一系列片状的囊腔和管状的腔,彼此相通形成一个隔离于细胞基质的管道系统,为细胞中的重要细胞器。它实际上是一个连续的膜囊和膜管网,可分为粗面内质网(RER,Rough Endoplasmic Reticulum)和滑面内质网(SER,Smooth Endoplasmic Reticulum)两大部分。粗面内质网上附着有大量核糖体,合成膜蛋白和分泌蛋白;滑面内质网上无核糖体。 内质网是哺乳细胞中一种重要的亚细胞器。膜分泌性蛋白、氨基多糖、磷脂、胆固醇及钙信号等的代谢均与内质网功能直接相关,例如分泌性蛋白的合成与空间折叠、蛋白质糖基化修饰、蛋白质分泌等均在内质网内发生。目前研究认为,

骨骼肌细胞的超微结构特点

骨骼肌细胞的超微结构特点 肌肉和肌纤维周围均包有结缔组织,按其位置不同分为肌外膜、肌束膜和肌内膜。 包在整块肌肉外面的致密结缔组织,称肌外膜。 若干条肌纤维集成束,束的外周包有较厚的结缔组织,称肌束膜。 分布在每条肌纤维周围的少量结缔组织,称肌内膜。 骨骼肌纤维表面附有肌卫星细胞,肌纤维损伤后肌卫星细胞分化形成肌纤维。 (一)骨骼肌纤维的光镜结构 骨骼肌纤维呈长圆柱形,一条肌纤维内含多个细胞核,核呈扁椭圆形,位于肌膜下方; 肌浆内含大量肌原纤维,每条肌原纤维上都有明暗相间的横纹,后者由明带和暗带组成明带又称Ι带,其中部为Z线 暗带又称A带,其中部较浅的窄带称H带,H带中央为M线 * 肌节(sarcomere)为两条相邻Z线之间的一段肌原纤维,由?I带+A带+?I带组成;是骨骼肌收缩的基本结构单位 肌膜外有基膜紧贴,肌膜与基膜间有肌卫星细胞,肌纤维损伤后,肌卫星细胞分化形成肌纤维。 (二)骨骼肌纤维的超微结构 肌原纤维、横小管和肌浆网等是骨骼肌纤维最主要的超微结构。 1.肌原纤维(myofibril) 由粗、细两种肌丝(myofilament)规律排列组成。 粗肌丝位于肌节的暗带,中央固定在 M线上,两端游离。 细肌丝位于肌节两端,一端附于Z线,另一端伸至粗肌丝间,末端游离,止于H带外侧; Ι带仅有细肌丝;H带(A带中部) 仅有粗肌丝;H带两侧的A带既有粗肌丝,又有细肌丝; (1)粗肌丝的分子结构: 由肌球蛋白分子组成,肌球蛋白形似豆芽,分头和杆两部分,头部具有ATP酶活性。 (2)细肌丝的分子结构: 细肌丝由肌动蛋白、原肌球蛋白、肌原蛋白组成。 骨骼肌肌纤维的结构 骨骼肌由骨骼肌纤维组成。骨骼肌纤维呈长圆柱状,其大小因肌肉类型和生理活动的状况而不同,一般长度约3--40mm,镫骨肌纤维最短,长约lmm;缝匠肌纤维长达125mm。肌纤维的宽度约为10--100μm,加强体育锻练能使肌纤维体积增粗。

《超微结构病理学》一些知识(第一次修订版)

读图术语:嗜锇性板层小体、酶原颗粒、腺腔、毛细血管、粗面内质网、肾小囊腔、基底膜、足细胞胞体、毛细血管、肾小囊壁层 1、脱水:固定后的组织块含有游离水,不能与包埋剂混合,必须用中间介质(脱水剂)驱除水分,以利于包埋剂浸透渗入。常用脱水剂为酒精或丙酮。市售无水酒精和丙酮往往含有少量水分而纯度不够,可事先加入无水硫酸钠或硫酸铜等干燥剂吸去水分。脱水的时间可根据样品的不同而适当延长或缩短。 2、基膜:上皮细胞基底面与深部编译组织之间的细胞间质形成的薄膜,包括透明层、基板、网版。功能:支持、连接、固定。 3、质膜:亦称为细胞膜。它是细胞与周围环境、细胞与细胞间进行物质交换和信息传递的重要通道。细胞膜的厚度约为7-10nm ,在低倍tem 下观察质膜时,它呈一条致密的细线。在高倍TEM 下,质膜呈现出“两暗一明”的三夹板式结构,称为单位膜。 4、景深:景深不是一种固定的数值,而是与放大倍数和分辨率有关的,用以表达纵深方向层次细节程度的度量。扫描电镜景深大,图像立体感强。扫描电镜的景深比光学显微镜大几百倍,比投射电镜大10 倍左右。 ★线粒体:线粒体的形状多种多样,一般呈线状、粒状或短杆状。光镜下,线粒体直径为0.5-1.0um ,长短不一。电子显微镜下,线粒体由内外两层膜组成。内、外膜之间的腔隙称线粒体外室,内膜围成的腔称线粒体内室。线粒体内膜向内折叠形成[ 山脊] 膜之间的间隙称“[ 山脊] 间隙”,与外室想通。 ★主要功能:是进行氧化磷酸化,合成ATP ,为细胞生命活动提供能量。 ★病理:线粒体对有害因素敏感,易出现超微结构上的异常改变,且在一定范围内又是可逆的,故线粒体是电镜下观察细胞受损的重要形态指标,有人称之为“细胞病变指示器”,是分子细胞病理学检查的重要依据。1. 肿胀,有室内肿胀和室外肿胀;2. 肥大及增生;3. 巨大线粒体及环形、杯形线粒体;4. 线粒体间疝形成;5. 包含物;6 线粒体固缩;7. 急支颗粒增多、增大。 ★高尔基体:在电镜下,不同细胞中高尔基复合体的形态、大小和分布均有很大差异。但其最基本的成分主要包括扁平囊泡、小囊泡和大囊泡三个基本部分组成。扁平囊泡是高尔基复合体的主体部分,一般由3-8 层堆成,表面光滑,囊腔宽约15-20nm ,囊间距约为15-30nm 。小囊泡直径约为40-80nm ,界膜厚约为6nm (和ER 膜接近)。数量较多,与一般吞饮小泡类似,散布于扁平囊泡周围,常见于形成面附近。大囊泡直径为0.1~0.5um ,其界膜约8nm ,其厚度和质膜相近,在一般切面上多见于扁平囊泡扩大的末端,有时可见与之项链,或见于分泌面,所以也称之为分泌泡或浓缩泡。 ★主要功能:1.形成和包装分泌物;2.蛋白质和脂类的糖基化;3.蛋白质的加工改造;4.膜的转化。 ★病理:1. 高尔基复合体肥大;2 猥琐、破坏、消失;3高尔基复合体扩张;4. 内容物的改变。 电镜的类型:超高压电、高压电经、高分辨电镜、普及型电镜、简易型电镜。 样品制备:# 取材、# 固定、脱水(固定后的组织块含有游离水,不能与包埋剂混合,必须用中间介质(脱水剂)驱除水分,以包埋剂浸透渗入。常用脱水剂为酒精或丙酮)、浸透和包埋(一般是石蜡包埋后再用普通的石蜡切片机切片,或是不经石蜡包埋,直接将组织作冷冻切片)、超薄切片术(是应用超薄切片机制备出供投射电镜观察的超薄切片的专门技术。要切除可供透射电镜观察的超薄切片是很不容易的。它取决于浸透包埋的成功与否、切片机的质量和玻璃刀的正确选用,以及操作者的经验等多种因素。 取材: 取材正确与否直接关系到制备出的标本能不能符合观察的要求,取材的要点是:

骨骼肌细胞的超微结构特点教学文案

骨骼肌细胞的超微结 构特点

精品文档 骨骼肌细胞的超微结构特点 肌肉和肌纤维周围均包有结缔组织,按其位置不同分为肌外膜、肌束膜和肌内膜。 包在整块肌肉外面的致密结缔组织,称肌外膜。 若干条肌纤维集成束,束的外周包有较厚的结缔组织,称肌束膜。 分布在每条肌纤维周围的少量结缔组织,称肌内膜。 骨骼肌纤维表面附有肌卫星细胞,肌纤维损伤后肌卫星细胞分化形成肌纤维。 (一)骨骼肌纤维的光镜结构 骨骼肌纤维呈长圆柱形,一条肌纤维内含多个细胞核,核呈扁椭圆形,位于肌膜下方; 肌浆内含大量肌原纤维,每条肌原纤维上都有明暗相间的横纹,后者由明带和暗带组成明带又称Ι带,其中部为Z线 暗带又称A带,其中部较浅的窄带称H带,H带中央为M线 * 肌节(sarcomere)为两条相邻Z线之间的一段肌原纤维,由?I带+A带+?I带组成;是骨骼肌收缩的基本结构单位 肌膜外有基膜紧贴,肌膜与基膜间有肌卫星细胞,肌纤维损伤后,肌卫星细胞分化形成肌纤维。 (二)骨骼肌纤维的超微结构 肌原纤维、横小管和肌浆网等是骨骼肌纤维最主要的超微结构。 1.肌原纤维(myofibril) 由粗、细两种肌丝(myofilament)规律排列组成。 粗肌丝位于肌节的暗带,中央固定在 M线上,两端游离。 细肌丝位于肌节两端,一端附于Z线,另一端伸至粗肌丝间,末端游离,止于H带外侧; Ι带仅有细肌丝;H带(A带中部) 仅有粗肌丝;H带两侧的A带既有粗肌丝,又有细肌丝; (1)粗肌丝的分子结构: 由肌球蛋白分子组成,肌球蛋白形似豆芽,分头和杆两部分,头部具有ATP酶活性。 (2)细肌丝的分子结构: 细肌丝由肌动蛋白、原肌球蛋白、肌原蛋白组成。 骨骼肌肌纤维的结构 骨骼肌由骨骼肌纤维组成。骨骼肌纤维呈长圆柱状,其大小因肌肉类型和生理活动的状况而不同,一般长度约3--40mm,镫骨肌纤维最短,长约lmm;缝匠肌纤维长达125mm。肌纤维的宽度约为10--100μm,加强体育锻练能使肌纤维体积增粗。 收集于网络,如有侵权请联系管理员删除

兰属新材料叶绿素含量及叶绿体超微结构分析

Botanical Research 植物学研究, 2017, 6(5), 293-297 Published Online September 2017 in Hans. https://www.wendangku.net/doc/671794763.html,/journal/br https://https://www.wendangku.net/doc/671794763.html,/10.12677/br.2017.65038 Chlorophyll Contents and Chloroplast Ultrastructure of Chlorophyll Deficient Mutant in Cymbidum Yu Jiang1, Shihong Li2, Junrong He1*, Biping Zhuo1 1Horticultural Research Institute of Sichuan Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops, Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu Sichuan 2Bureau of Agricultural and Animal Husbandry, Meishan Sichuan Received: Aug. 20th, 2017; accepted: Sep. 4th, 2017; published: Sep. 11th, 2017 Abstract The varieties used in this research were Cymbidium LCS-2 with verge line pattern and Cymbidium LCS-1. Chlorophyll contents and chloroplast ultrastructure were researched. The results showed that: (1) The chlorophyll contents in LCS-2 is lower than that in LCS-1. But the ratio of chloro-phyll-a to chlorophyll-b of LCS-2 was higher than that of LCS-1. (2) There was a fewer chloroplasts with abnormal shape in LCS-2 cells, in which there were no thylakoids or starch grains, but many osmiophil globules, the membrane of the chloroplast had disjointed. (3) There were more regular chloroplasts in cells of LCS-1, with more and bigger starch grains but fewer osmiophil globules. Grana lamella could be seen clearly too. The results can provide evidence for variety breeding for Cymbidium with verge line pattern lives. Keywords Cymbidium longibracteatum, Leave Color Mutants, Chlorophyll, Ultrastructure 兰属新材料叶绿素含量及叶绿体超微结构分析 蒋 彧1,李世洪2,何俊蓉1*,卓碧萍1 1四川省农业科学院园艺所/农业部西南地区园艺作物生物学与种质创制重点实验室,四川成都 2四川省眉山市洪雅县农业和畜牧局,四川眉山 收稿日期:2017年8月20日;录用日期:2017年9月4日;发布日期:2017年9月11日 *通讯作者。

细胞超微结构病理学

细胞超微结构病理学 Virchow在19世纪中期所奠定的细胞病理学说,通过近代对细胞及其病变的超微结构以及结构与功能相结合的研究,已经获得了新的更广更深的基础,扩大和加深了对疾病的理解。 细胞是一个由细胞膜封闭的基本生命单元,内含一系列明确无误的互相分隔的反应腔室,这就是以细胞膜为界限的各种细胞器,是细胞代谢和细胞活力的形态支柱。 细胞内的这种严格分隔保证各种细胞器分别进行着无数的生化反应,行使各自的独特功能,维持细胞和机体的生命活动。细胞器的改变是各种病变的基本组成部分。 一、细胞核 细胞核(nucleus)是遗传信息的载体,细胞的调节中心,其形态随细胞所处的周期阶段而异,通常以间期核为准。 细胞核外被核膜。核膜由内外二层各厚约3nm的单位膜构成,中间为2~5nm宽的间隙(核周隙);核膜上有直径约50nm的微孔,作为核浆与胞浆间交通的孔道,其数目因细胞类型和功能而异,多者可占全核表面积的25%;在肝细胞核据估算约有2000个核孔。 核浆主由染色质构成,其主要成分为DNA,并以与蛋白质相结合的形式存在,后者由组蛋白与非组蛋白组成。染色质的DNA现在已可用多种方法加以鉴定和定量测定。 核内较粗大浓缩的、碱性染料深染的团块状染色质为异染色质,呈细颗粒状弥散分布的、用普通染色法几乎不着色的染色质则为常染色质。一部分异染色质也可以上述两种状态存在。从生化角度看,异染色质不具遗传活性,相反,常染色质则大部分具遗传活性。 间期核的染色质模式还反映细胞的功能状态。一般而言,大而淡染的核(浓缩染色质少)提示细胞活性(如蛋白质和酶的合成)较高;小而深染的核(浓缩染色质较多)则提示细胞活性有限或降低。 (一)细胞损伤时核的改变 1、核大小的改变 核的大小通常反映着核的功能活性状态,功能旺盛时核增大,核浆淡染,核仁也相应增大和(或)增多。如果这种状态持续较久,则可出现多倍体核或形成多核巨细胞。多倍体核在正常情况下亦可见于某些功能旺盛的细胞,如肝细胞中可见约20%为多倍体核。在病理状态下,如晚期肝炎及实验性肝癌前期等均可见多倍体的肝细胞明显增多。 核的增大除见于功能旺盛外,也可见于细胞受损时,最常见的情况为细胞水肿。这主要是细胞能量匮乏或毒性损伤所致,是核膜钠泵衰竭导致水和电解质运输障碍的结果。这种核肿大又称为变性性核肿大。 相反,当细胞功能下降或细胞受损时,核的体积则变小,染色质变致密,如见于器官萎缩时。与此同时核仁也缩小。2.核形的改变 光学显微镜下,各种细胞大多具有各自形状独特的核,可为圆形、椭圆形、梭形、杆形、肾形、印戒形、空洞形以及奇形怪状的不规则形等。在电镜下由于切片极薄,切面可以多种多样,但均非核的全貌。核的多形性和深染特别多见于恶性肿瘤细胞,称为核的异型性(atypia)。 3.核结构的改变 细胞在衰亡及损伤过程中的重要表征之一是核的改变,主要表现为核膜和染色质的改变。 核浓缩(karyopyknosis):染色质在核浆内聚集成致密浓染的大小不等的团块状,继而整个细胞核收缩变小,最后仅留下一致密的团块,是为核浓缩。这种浓缩的核最后还可再崩解为若干碎片(继发性核碎裂)而逐渐消失。 核碎裂(karyorrhexis):染色质逐渐边集于核膜内层,形成较大的高电子密度的染色质团块。核膜起初尚保持完整,以后乃在多处发生断裂,核逐渐变小,最后裂解为若干致密浓染的碎片。 核溶解(karyolysis):变致密的结成块状的染色质最后完全溶解消失,即核溶解。核溶解也可不经过核浓缩或核碎裂而一开始即独立进行。在这种情况下,受损的核很早就消失。 上述染色质边集(即光学显微镜下所谓的核膜浓染)、核浓缩、核碎裂、核溶解等核的结构改变为核和细胞不可复性损伤的标志,提示活体内细胞死亡(坏死)。 4.核内包含物(intranuclear inclusions) 在某些细胞损伤时可见核内出现各种不同的包含物,可为胞浆成分(线粒体、内质网断片、溶酶体、糖原颗粒、脂滴等),亦可为非细胞本身的异物,但最常见的还是前者。 这种胞浆性包含物可在两种情况下出现:①胞浆成分隔着核膜向核内膨突,以致在一定的切面上看来,似乎胞浆成分已进入核内,但实际上大多仍可见其周围有核膜包绕,其中的胞浆成分常呈变性性改变(如髓鞘样结构,膜碎裂等)。这

相关文档