文档库 最新最全的文档下载
当前位置:文档库 › 幅频特性和相频特性

幅频特性和相频特性

幅频特性和相频特性
幅频特性和相频特性

HUNAN UNIVERSITY

电路实验综合训练

报告

学生姓名蔡德宏

学生学号201408010128

专业班级计科1401班

指导老师汪原

起止时间2015年12月16日——2015年12月19日

一、 实验题目

实验十二 幅频特性和相频特性 二、 实验摘要(关键信息)

实验十二

1、测量RC 串联电路组成低通滤波器的幅频特性和相频特性(元件参数:R=1K Ω,C=0.1uF ,输入信号:Vpp=3V 、f=100Hz~15KHz 正弦波。测量10组不同频率下的Vpp ,作幅频特性曲线和相频特性曲线)。

2、测量RC 串联电路组成高通滤波器的幅频特性和相频特性(电路参数和要求同上)。

3、测量RC 串并联(文氏电桥)电路频率特性曲线和相频特性曲线。 实验十三

1、测量R 、C 、L 阻抗频率特性(电路中用100Ω作保护电阻,分别测量R 、C 、L 在不同频率下的Vpp ,输入信号Vpp=3V 、f=100Hz~100KHz 的正弦波,元件参数:R=1K 、C=0.1uF 、L=20mH ),取10组数据,作幅频特性曲线。

2、搭接R 、L 、C 串联电路,通过观测Ui (t )和UR(t)波形,找出谐振频率。将电阻换成电位器,测量不同Q 值的谐振频率。 三、 实验环境(仪器用品)

函数信号发生器(DG1022U ),示波器(DSO-X 2012A),电位器(BOHENG3296-w104),3只电阻(保护100Ω,实验1K Ω),电容器(0.1μF ),电感(20mH ),面包板,Multisim 10.0(画电路图),导线若干。 四、 实验原理和电路

1、当在RC 和RL 及RLC 串联电路中加上交变电源,并不断改变电源频率时,电路的端口电压U 和电阻U 两端电压也随之发生规律性改变。 1)RC 串联电路的稳态特性

有以上公式可知,随频率的增加,I,

增加,

减小。当ω很小时2

π

ψ→

,电

源电压主要降落在电容上,此时电容作为响应为低通滤波器;反之,0→ψ,电压主要将在电阻上,电阻作为响应称为高通滤波器。利用幅频特性可构成不同的滤波电路,把不同频率分开。

2)文氏电桥:

如图电路,若R1=R2,C1=C2,则振荡频率为RC

π21

f 0=

,正反馈的电压与输出电压同相位

(此为电路振荡的相位平衡条件),实验电路图如下:

五、 实验步骤和数据记录

仪器测量值:电容C1=102.5nF C2=101.7nF 电阻R1=1.007Ωk R2=1.016Ωk 1)高通滤波器:

数据记录:

输入频率(kHz ) 0.1 0.4

0.7

1.0

1.33

1.5

3.0

5.0

8.0

15.0

输出Vpp (V ) 0.28 0.84 1.35 1.81 2.13 2.25 2.77 2.93 2.97 3.02

相位差(°) -85.

3

-73.7

-64.5

-55.2

-48.1

-44.7

-26.2

-16.5

-9.8 -4.6

幅频特性:

相频特性:

2)低通滤波器

:

数据记录: 输

入频率(kHz )

0.1 0.5

1

1.5

1.7

2

4

8

12

14

输出Vpp (V ) 3.18 3.06 2.69 2.29 2.13 1.97 1.17 0.58 0.39 0.32

相位差(°) 3.9 17.2 32.4 45.1 48.4 53.8 70.7 77.2 81.5 83.9

幅频特性:

相频特性:

3)文氏电桥

:

数据记录: 输入

频率(kHz )

0.1 0.5

1

1.5

2

5

8

10

12

14

输出Vpp (V )

0.22 0.73 0.98 1.07 1.01 0.83 0.71 0.66 0.53 0.49

相位差(°) -79.8 -49.1 -14.9 -1.5 9.8 29.4 40.1 57 68.3 79.2

幅频特性:

相频特性:

六、实验结果计算和分析

1)高通滤波器:由李萨图得a=837.5mV,b=1.0V,相位差为49°,直接测量为48.1°,误差为2%;并且随着频率升高,响应电压增大,位相差减小,体现高通。

2)低通滤波器:由李萨图得a=681.25mV,b=850mV,与实际测量的误差为1%;当频率增大时,响应电压减小,位相差增大,体现出低通。

3)文氏电桥:在某一频率处,响应电压最大,并且呈先增大后减小的趋势,而位相差呈先减小后增大的变化规律。

七、实验总结

本次实验了解到了RC,RL串联电路和文氏电桥的幅频和相频特性,学会了李萨图的运

用,对我们以后的综合性学习有帮助。

幅频特性和相频特性图

速度控制环优化 速度控制环的优化主要是速度调节器的优化。速度调节器主要优化比例增益与积分时间常数两个数据,先确定它的比例增益,再优化积分时间常数。如果把速度调节器的积分时间常数(MD1409)调整到500ms,积分环节实际上处于无效状态,这时PI速度调节器转化为P调节器。为了确定比例增益的初值,可从一个较小的值开始,逐渐增加比例增益,直到机床发生共振,可听到伺服电机发出啸叫声,将这时的比例增益乘以0.5,作为首次测量的初值。 MD1407—速度增益Kp MD1409—积分时间Tn 速度环手动优化的具体步骤: 步骤一、用适配器将驱动器和计算机相连接,启动计算机和系统(电缆连接必须断电) 步骤二、等机床准备好后使机床工作在JOG方式下。 步骤三、在计算机上运行“SIMODRIVE 611D START TOOL”软件,首先会弹出画面如图

【Axis-】出现如下画面 所示

步骤六、点击【Drive MD】,进入如下画面 步骤七、点击【Boot file/Nck res...】,再点击【Measuring parameters】,进入如下画面,Amplitude为输入信号幅值,峰值力矩的百分比;Bandwidth 为测量带宽;Averaging 为平均次数,次数越多,越精确,时间越长,通常20次;Settling time 为建立时间,注入测量信号和偏移,到记录测量数据 间的时间;Offset为斜坡偏移量(避免启停时出现浪涌电流)。

提示画面,机床参数MD1500应设置为0,如下图所示 步骤九、点击【OK】,出现提示画面如下图

步骤十、按机床NC Start按钮,开始优化,在计算机上点击【Display】,出现如下画面(如果在此时伺服电机发生特别大的噪声,这时应紧急按下急停 按扭)。 通过得到的曲线可以看出,改变MD1407和MD1409的值就可以使曲线发生变化。速度环参数的调节是驱动参数调节的重点,有时在电机的标准机床数据的情况下,电机可能会产生噪声。这种情况下,应先减小速度环的增益值。在改变增益时,观察调节器的幅频特性曲线的变化趋势,使曲线的幅值在0dB 位置达到最宽的频率范围,优化调整方法如下: ○1如果速度调节器的幅频特性曲线的幅值不超过0dB,可提高比例增益MD1407,频宽也增加,响应特性得到改善。当比例增益增大到一定数值后,幅 频特性曲线中的幅值会极度变化,频宽变窄,系统的动态特性降低。

实验十二 幅频特性和相频特性

实验十二 幅频特性和相频特性 一、实验目的:研究RC串、并联电路的频率特性。 二、实验原理及电路图 1、实验原理 电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示。当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。即: ()2 1U H j U ω= 1)低通电路 R C 1 U 2 U 10.707 () H j ω0 ωω 图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性 简单的RC 滤波电路如图4.3.1所示。当输入为1U ,输出为2U 时,构 成的是低通滤波电路。因为: 1 1 2 111U U U j C j RC R j C ωωω=?=++ 所以: ()()()211 1U H j H j U j RC ωω?ωω===∠+

()() 2 11H j RC ωω= + ()H j ω是幅频特性,低通电路的幅频特性如图 4.3.2所示,在1RC ω=时,()120.707H j ω==,即210.707U U =,通常2U 降低到10.707U 时的 角频率称为截止频率,记为0ω。 2)高通电路 C R 1 U 2 U ω ω0 0.707 1() H j ω 图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性 12 1 11U j RC U R U j RC R j C ωωω=?= ?+?? + ??? 所以: ()()()211U j RC H j H j U jRC ωωω?ω===∠+ 其中()H j ω传输特性的幅频特性。电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0 ωω<<时,即低频时 ()1 H j RC ωω=<< 当0ωω>>时,即高频时, ()1 H j ω=。 3)研究RC 串、并联电路的频率特性:

函数幅频特性曲线

1:已知x(t)=1,试用MATLAB 分析其幅频特性曲线。 解:因为x(t)=1是连续非周期信号,其对应的频谱是非周期连续的,对于连续的信号计算机不能直接加以处理,因而,需要将其先离散化,再利用离散傅里叶变换(DFT )对其进行分析实现其近似计算。对连续时间信号x(t)可以分解成x(t)=u(t)+u(-t-1),通过采取不同的采样间隔来分析其频谱。 (a)对x(t)离散化的采样间隔取R=0.005,对F(W)取N=7000,图像如图a ; (b)对x(t)离散化的采样间隔取R=0.01,对F(W)取N=30,图像如图b ; (c)对x(t)离散化的采样间隔取R=0.01,对F(W)取N=7000,图像如图c 。 针对(a)情况的程序如下:R=0.005;t=-5:R:5; f=Heaviside(t)+Heaviside(-t); W1=2*pi*2; N=7000;k=0:N;W=k*W1/N; F=f*exp(-j*t'*W)*R; F=real(F); W=[-fliplr(W),W(2:7001)]; F=[fliplr(F),F(2:7001)]; subplot(2,1,1);plot(t,f); xlabel('t');ylabel('x(t)'); title('x(t)函数的图像'); subplot(2,1,2);plot(W,F); xlabel('w');ylabel('F(w)'); title('x(t)函数的傅里叶变换F(w)'); 图a R=0.005, N=7000

图b R=0.01,N=30 图c R=0.01,N=7000

幅频特性和相频特性

HUNAN UNIVERSITY 电路实验综合训练 报告 学生姓名蔡德宏 学生学号 2 专业班级计科1401班 指导老师汪原 起止时间2015年12月16日——2015年12月19日 一、实验题目 实验十二幅频特性与相频特性 二、实验摘要(关键信息) 实验十二 1、测量RC串联电路组成低通滤波器的幅频特性与相频特性(元件参数:R=1K ,C=0、1uF,输入信号:Vpp=3V、f=100Hz~15KHz正弦波。测量10组不同频率下的Vpp,作幅频特性曲线与相频特性曲线)。 2、测量RC串联电路组成高通滤波器的幅频特性与相频特性(电路参数与要求同上)。 3、测量RC串并联(文氏电桥)电路频率特性曲线与相频特性曲线。 实验十三 1、测量R、C、L阻抗频率特性(电路中用100Ω作保护电阻,分别测量R、C、L在不同频率下的Vpp,输入信号Vpp=3V、f=100Hz~100KHz的正弦波,元件参数:R=1K、C=0、1uF、L=20mH),取10组数据,作幅频特性曲线。 2、搭接R、L、C串联电路,通过观测Ui(t)与UR(t)波形,找出谐振频率。将电阻换成电位器,测量不同Q值的谐振频率。 三、实验环境(仪器用品) 函数信号发生器(DG1022U),示波器(DSO-X 2012A),电位器(BOHENG3296-w104),3只电阻(保护100Ω,实验1KΩ),电容器(0、1μF),电感(20mH),面包板,Multisim 10、0(画电路图),导线若干。

四、 实验原理与电路 1、当在RC 与RL 及RLC 串联电路中加上交变电源,并不断改变电源频率时,电路的端口电压U 与电阻U 两端电压也随之发生规律性改变。 1)RC 串联电路的稳态特性 有以上公式可知,随频率的增加,I,增加,减小。当ω很小时2πψ→,电 源电压主要降落在电容上,此时电容作为响应为低通滤波器;反之,0→ψ,电压主要将在电阻上,电阻作为响应称为高通滤波器。利用幅频特性可构成不同的滤波电路,把不同频率分开。 2)文氏电桥: 如图电路,若R1=R2,C1=C2,则振荡频率为RC π21f 0=,正反馈的电压与输出电压同相位(此为电路振荡的相位平衡条件),实验电路图如下: 五、 实验步骤与数据记录 仪器测量值:电容C1=102、5nF C2=101、7nF 电阻R1=1、007Ωk R2=1、016Ωk 1)高通滤波器:

幅频特性和相频特性

HUNAN UNIVERSITY 电路实验综合训练 报告 学生姓名蔡德宏 学生学号201408010128 专业班级计科1401班 指导老师汪原 起止时间 2015年12月16日—— 2015年12月19日

一、 实验题目 实验十二 幅频特性和相频特性 二、 实验摘要(关键信息) 实验十二 1、测量RC 串联电路组成低通滤波器的幅频特性和相频特性(元件参数:R=1K Ω,C=0.1uF ,输入信号:Vpp=3V 、f=100Hz~15KHz 正弦波。测量10组不同频率下的Vpp ,作幅频特性曲线和相频特性曲线)。 2、测量RC 串联电路组成高通滤波器的幅频特性和相频特性(电路参数和要求同上)。 3、测量RC 串并联(文氏电桥)电路频率特性曲线和相频特性曲线。 实验十三 1、测量R 、C 、L 阻抗频率特性(电路中用100Ω作保护电阻,分别测量R 、C 、L 在不同频率下的Vpp ,输入信号Vpp=3V 、f=100Hz~100KHz 的正弦波,元件参数:R=1K 、C=0.1uF 、L=20mH ),取10组数据,作幅频特性曲线。 2、搭接R 、L 、C 串联电路,通过观测Ui (t )和UR(t)波形,找出谐振频率。将电阻换成电位器,测量不同Q 值的谐振频率。 三、 实验环境(仪器用品) 函数信号发生器(DG1022U ),示波器(DSO-X 2012A),电位器(BOHENG3296-w104),3只电阻(保护100Ω,实验1K Ω),电容器(0.1μF ),电感(20mH ),面包板,Multisim 10.0(画电路图),导线若干。 四、 实验原理和电路 1、当在RC 和RL 及RLC 串联电路中加上交变电源,并不断改变电源频率时,电路的端口电压U 和电阻U 两端电压也随之发生规律性改变。 1)RC 串联电路的稳态特性 有以上公式可知,随频率的增加,I, 增加, 减小。当ω很小时2 π ψ→ ,电 源电压主要降落在电容上,此时电容作为响应为低通滤波器;反之,0→ψ,电压主要将在电阻上,电阻作为响应称为高通滤波器。利用幅频特性可构成不同的滤波电路,把不同频率分开。

幅频特性和相频特性实验报告

HUNAN UNIVERSITY 课程实验报告 题目:幅频特性和相频特性 学生: 学生学号: 专业班级: 完成日期:2014年1月6号

一.实验容 1、测量RC串联电路频率特性曲线 元件参数:R=1K,C=0.1uF,输入信号:Vpp=5V、f=100Hz~15K 正弦波。测量10组不同频率下的Vpp,作幅频特性曲线。 2、测量RC串联电路的相频特性曲线 电路参数同上,测量10组不用频率下的相位,作相频特性曲 线。用莎育图像测相位差。 3、测量RC串并联(文氏电桥)电路频率特性曲线和相频特性曲 线 二.实验器材 1k?电阻一个,0.1uf电容一个,函数信号发生器一台,示波 器一台,导线和探头线若干 三.实验目的 (1)研究RC串并联电路对正弦交流信号的稳态响应; (2)熟练掌握示波器萨如图形的测量方法,掌握相位差的测量方法; (3)掌握RC串并联电路以及文氏电桥幅频相频特性特征。四.实验电路图

100nF

100nF 五.实验数据及波形图 电阻的幅度与峰峰值与频率: 电容的幅度与峰峰值与频率:

f/khz 3.1 5.0 9.1 13 15 Vpp/v 2.21 1.47 0.90 0.71 0.58 相位差/度-61.80 -72.21 -78.22 -80.02 -80.12 串并联电路频率峰峰值与相位差: f/khz 0.1 0.3 0.8 1.5 3 Vpp/v 0.348 0.92 1.54 1.70 1.54 相位差/度-81.88 -59.88 -26.24 -0.527 23.87 f/khz 5 7 10 12 15 Vpp/v 1.22 1.02 0.780 0.7 0.58 相位差/度44.60 54.46 64.32 64.68 69.66 当输入电压比输出电压=0.707(/2)时,其波形图如下: 1.电阻:

RL 、RC幅频相频特性要点

扬州大学物理科学与技术学院 大学物理综合实验训练论文 实验名称:RL、RC串联电路幅频特性和相频特性研究 班级:物教1101班 姓名:刘玉桃 学号:110801114 指导老师:徐秀莲

RL、RC串联电路幅频特性和相频特性研究(扬州大学物理1101 刘玉桃学号110801114 指导老师:徐秀莲) 摘要 在交流电路中,电阻值与频率无关,电容具有“通高频,阻低频”的特性,电感具有“通低频,阻高频”的特性。将正弦交流电压加到电阻、电容和电感组成的电路中时,各元件上的电压及相位会随着变化,这称作电路的稳态特性。当把正弦交流电压Vi输入到RC(或RL)串联电路中时,电容或电阻两端的输出电压V0的幅度及相位将随输入电压Vi的频率而变化。这种回路中的电流或电压与输入信号频率间的关系,称为幅频特性;回路电流和电压间的相位差与频率的关系,称为相频特性。将电容、电阻、电感串联起来,可以得到特殊的幅频特性和相频特性。本实验主要研究了交流电路中RL、RC串联电路的幅频特性和相频特性,不难得出,在RL、RC串联电路中,各元件上的电压幅度及相位随信号频率的改变而改变。 关键字:稳态特性;幅频特性;相频特性。 1.实验目的 (1)研究RL、RC串联电路对正弦交流信号的稳态响应 (2)学习使用双踪示波器,掌握相位差的测量方法; 2.实验仪器 名称数量型号 1、双踪示波器一台自备 2、低频功率信号源一台自备 3、九孔插件方板一块 SJ-010 4、万用表一只自备 5、电阻 2只 40Ω、1kΩ 6、电容 1只 0.5pF 7、电感 1只 1mH 8、短接桥和连接导线若干 SJ-009、SJ-301、SJ-302 9、开关 1只 SJ-001-1-纽子开关

幅频曲线

传感器与测试技术实验指导书 河北科技大学机械电子工程学院 2007年4月

实验一 传感器的静态标定 一、实验目的: 1.学习YJD-1型电阻应变仪的使用方法。 2.学习测量装置静态特性的标定方法。 3.掌握用分析软件对电阻应变式测力传感器的静态标定方法。 4.学习掌握电阻应变片的粘贴技术。 二、实验仪器: 1 YJD-1型电阻应变仪 2 电阻应变式传感器 3 计算机及分析软件 三、实验系统及测试原理 图1 实验系统框图 新设计制造的传感器,需要对其参数和性能进行标定,以便检查是否符合设计要求。 另外,随着时间和周围环境的变化,使用中传感器的参数会发生变化,故需要进行定期 校准,所以测量装置的标定,是一项经常性,非常重要的工作。 电阻应变式测力传感器的静态标定,就是在静态下,通过加载装置对传感器施加载荷,同时由应变仪读取输出,而获取传感器的静态特性参数,如灵敏度,非线性度,回程误差等。 四、实验步骤 1 粘贴应变片 (1)惠斯登电桥挑选两个电阻值120Ω左右的电阻应变片,阻值差小于0.5Ω。 (2)砂纸打磨等强度梁,去除污物,用酒精清洗。 (3)用502胶水粘贴电阻应变片。(一片粘贴在受力的位置,一片粘贴在不受力的位置。) (4)用万用表检查有无短路、断路,引线与等强度梁间的绝缘电阻应大于150M Ω。 (5)焊接导线,并用胶带纸固定,在常温下,放置24小时后,方可使用。 图 2 自制电阻应变式传感器 2 仪器的操作使用方法: (1)联接电桥:将应变式传感器的应变片引出导线分别接于仪器的A 、B 、C 三点,并将接线柱旋紧,组成半桥单臂测量电路。

(2)调整灵敏系数盘K,使之与应变片的灵敏系数K相符。 (3)检查指示器指针是否准确的停止在机械零位,否则必须校正后方可工作。 (4)检查微调,中调,粗调三个调节旋钮,是否都指在零位。 (5)经指导老师检查无误后,方可打开电源。 (6)将选择开关旋到“预”上,调节“电阻平衡”,“电容平衡”两电位器,使指示电表的指针指于零位。然后将开关旋到“静”的位置,再调节“电阻平衡”使指针指于零位。在“预”、“静”反复调整几次后,此时电桥已予调平衡。 (7)仔细观察三分钟,电表指针不应有漂移。 (8)进行加载,指针偏移零位,旋转“微调”旋钮使指针指回零位,记下此时“微调”旋钮读数。加载:100,200,300,400,500(g)记录读数。 依次卸载并记录读数。注意卸载至零载荷时,不要忘记将微调旋钮读数记录下来。 五实验结果的整理与计算 1用分析软件进行数据处理 (1)打开计算机。 (2)双击桌面上的“虚拟实验系统”。 (3)进入“机械工程测试技术基础实验”点击“开始”。 (4)进入实验,点击实验一“应变式传感器的标定”。 (5)将实验记录的各数据分别填入,点击“作图”。 (6)按端点线性、最小二乘法二种方法做出拟合直线,求出线性误差。 (7)绘出回程误差特性曲线,并确定其回程误差H。 (8)确定本测力传感器的静态灵敏度S。 2 用计算法进行数据处理 (1)线性误差()f L 线性误差是指测量装置校准曲线与规定直线之间的最大偏差。在静态测量的情况下,用实验来确定被测量的实际值和测量装置示值之间的函数关系的过程称为静态校准,所得到的关系曲线称为校准曲线。 (2)常用的规定曲线 1)端基直线 端基直线是一条通过测量范围的上下限点的直线。端基线性是生产中选择拟合直线的一种简便方法。具体做法是:以校准曲线的首尾(即额定的最小与额定的最大值)相连的直线作为所选择的拟合直线。如图4所示。

幅频特性曲线Matlab编程

幅频特性曲线Matlab编程 a=input('type in the first sequence ='); b=input('type in the second sequence ='); c=conv(a,b); M=length(c)-1; n=0:1:M; disp('output sequence =');disp(c) stem(n,c) xlabel('Time index n');ylabel('Amplitude'); type in the first sequence =[2 4 6 4 2 0 0 0] type in the second sequence =[3 -1 2 1] output sequence = Columns 1 through 9 6 10 18 16 18 12 8 2 0 Columns 10 through 11 0 0 Undefined function or variable 'ylable'. Error in ==> E:\Matlab6p5FULL\bin\win32\Untitled.m On line 8 ==> xlabel('Time index n');ylabel('Amplitude'); type in the first sequence =[2 4 6 4 2 0 0 0] type in the second sequence =[3 -1 2 1] output sequence = Columns 1 through 9 6 10 18 16 18 12 8 2 0 Columns 10 through 11 0 0

matlab 幅频特性 相频特性代码,图片

幅频特性 频率比w/wn 放大因子|H | 机械振动作业 16车辆二班 毛海宽 201630053743 一、单自由度系统幅频曲线图MatLab 程序代码 r=0:0.001:5; for zita=0.1:0.1:0.5 H=1./sqrt((1-r.^2).^2+(2*zita)^2*r.^2); plot(r,H ); hold on; end for zita=[sqrt(2)/2,1.0] H=1./sqrt((1-r.^2).^2+(2*zita)^2*r.^2); plot(r,H,'r'); hold on; end axis([0,5,0,5.5]); title('幅频特性'); xlabel('频率比w/wn'); ylabel('放大因子|H|'); legend('\xi=0.01','\xi=0.02','\xi=0.03','\xi=0.04','\xi=0.05','\xi=sqrt(2)/2','\xi=1.0'); text(1,5, '\rightarrow\xi =0.01'); text(1.02,2.51, '\rightarrow\xi =0.02'); text(0.9,1.71, '\rightarrow\xi =0.03'); text(1.0,1.3, '\rightarrow\xi =0.04'); text(1.0,1.0, '\rightarrow\xi =0.05'); text(1.0,0.7, '\rightarrow\xi =sqrt(2)/2'); text(1.0,0.5, '\rightarrow\xi =1.00'); grid on; 二、单自由度系统幅频曲线图

开环系统频率特性曲线的绘制方法

.. 开环系统频率特性曲线的绘制方法 (一) 已知系统开环传递函数G k (s ),绘制Nyquist 曲线(开环幅相曲线) 一、ω:0+→+∞ 1、由已知的G k (s )求()()k k s j G j G s ωω==,A (ω),φ(ω) ,P (ω),Q (ω); 11211222 1 1 2 2 1 2 1 1 2 2 1 2 1121 12221 1221 2 1 1 2 2 1 2 22222 2 2 2(1)[(1)2](1)[(1)2]()()(1)[(1)2](1)[(1)2] m m m m j k j k k k j k j k k k k v n n n n i l i l l l i l i l l l j T j j T j k G j j j T j j T j ωωωωωξωξωωωωωωωωωωωξωξωωω ω+-+---= +-+---∏∏∏∏∏∏∏∏ (1) 式中:分子多项式中最小相位环节的阶次和为111212m m m =+, 分子多项式中非最小相位环节的阶次和为212222m m m =+, 分母多项式中最小相位环节的阶次和为111212n n n v =++, 分母多项式中非最小相位环节的阶次和为212222n n n =+, 分子多项式阶次之和为12m m m =+,分母多项式阶次之和为12n n n =+。 注:式中仅包含教材p192所列5种非最小相位环节,不包含形如1Ts -、 11Ts -、22 121 n n s s ξωω+-、22 21n n s s ξωω+-等非最小相位环节。 2、求N 氏曲线的起点 当ω→0+时,(1)式可近似为: 0lim ()()k v k G j j ωωω+ →→ (2) 于是,N 氏曲线的起点取决于开环放大系数k 和系统的型v 。 ① 当0v =时,N 氏曲线起始于实轴上的一点(k ,0)或(-k ,0); ② 当0v >时,N 氏曲线起始于无穷远点: 0k >时,沿着角度()2 v π?ω=-?起始于无穷远点; 0k <时,沿着角度()2 v π?ωπ=--?起始于无穷远点。 ③ 当0v <时,N 氏曲线起始于原点: 0k >时,沿着角度()2 v π?ω=?起始于原点; 0k <时,沿着角度()2 v π?ωπ=-+?起始于原点。

四种滤波器的幅频特性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。本次实验我们选用的放大器为324型,其功能图如下所示 : 下面我们来逐步观察一下四种滤波器的特性。 1. 低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10K Ω,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+=+12V , Vcc-=-12V ,低通滤波器的传递函数20 02 2 )(ω αωω++=s s K s H p , ,其中 2 221102 12100 1111; 1;1C R K R R C C C R R R R K K f f p -+???? ??+= = + ==αωω带入数据w 。=10000rad/s ,Kp =1.8,α=1.2,

()() 220 220 2 2 25/2425/78.1)(ωω ω ωω+-= j H ; 当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时, )(ωj H 减小,;w 趋近无穷时, )(ωj H 趋近于0。此时wc=1.17rad/s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 频率f (Hz ) 输出V (v ) 频率f (Hz ) 输出V (v ) 10 1.965 2200 0.756 30 1.965 2300 0.698 50 1.960 2400 0.650 100 1.950 2500 0.596 200 1.945 2600 0.548 500 1.945 2700 0.518 800 1.945 2800 0.484 1000 1.855 2900 0.438 1100 1.795 3000 0.414 1200 1.755 3500 0.311 1300 1.700 4000 0.238 1400 1.490 4500 0.180 1500 1.400 5000 0.148 1600 1.290 5500 0.123 1700 1.195 6000 0.105 1800 1.095 7000 0.078 1900 0.966 8000 0.057 2000 0.898 9000 0.046 2100 0.818 10000 0.036 范围10~6kHz 输出不失真

幅频特性和相频特性

HUNAN UNIVERSIT Y 电路实验综合训练 报告 学生姓名蔡德宏 学生学号201408010128 专业班级计科1401班 指导老师汪原 起止时间2015年12月16日一2015年12月19日

实验题目 实验十二 幅频特性和相频特性 实验摘要(关键信息) 实验十二 1、 测量 RC 串联电路组成低通滤波器的幅频特性和相频特性(元件参数: R=1K 」, C=0.1uF ,输入信号:Vpp=3V f=100Hz~15KHz 正弦波。测量10组不同频率下的 Vpp,作幅 频特性曲线和 相频特性曲线)。 2、 测量RC 串联电路组成高通滤波器的幅频特性和相频特性(电路参数和要求同上)。 3、 测量RC 串并联(文氏电桥)电路频率特性曲线和相频特性曲线。 实验十三 1、 测量R 、C L 阻抗频率特性(电路中用 100 Q 作保护电阻,分别测量 R 、C L 在不 同频率下的 Vpp ,输入信号 Vpp=3V f=100Hz~100KHz 的正弦波,元件参数:R=1K C=0.1uF 、 L=20mH ,取10组数 据,作幅频特性曲线。 2、 搭接R 、L 、C 串联电路,通过观测 Ui (t )和UR (t )波形,找出谐振频率。将电阻换 成电位 器,测量不同 Q 值的谐振频率。 三、 实验环境(仪器用品) 函数信号发生器(DG1022U ,示波器(DSO-X 2012A ),电位器(BOHENG3296-W104 , 3 只电阻(保护100Q ,实验1K Q ),电容器(0.1 讨,电感(20mH ,面包板,Multisim 10.0 (画电路图),导线若干。 四、 实验原理和电路 1、当在RC 和 RL 及RLC 串联电路中加上交变电源,并不断改变电源频率时,电路的端口电 压U 和电阻U 两端电压也随之发生规律性改变。 1) RC 串联电路的稳态特性 有以上公式可知,随频率的增加, I, 增加, 减小。当?■很小时J ,电 2 源电压主要降落在电容上,此时电容作为响应为低通滤波器;反之, '■ > 0,电压主要将 在电阻上,电阻作为响应称为高通滤波器。 利用幅频特性可构成不同的滤波电路, 把不同频 率分开。 2)文氏电桥: 1 如图电路,若 R 仁R2 C1=C2则振荡频率为f 0 = -------------------- ,正反馈的电压与输出电压同相位 2兀RC FV "THfl A 5 at * Ci 100nF -KFG1--… lOOnF: IL :R1 : -VW :ikn : 3ESC1 €1 XFG1-

相关文档
相关文档 最新文档