文档库 最新最全的文档下载
当前位置:文档库 › CSC-2000WPFS风功率预测系统-工程使用说明

CSC-2000WPFS风功率预测系统-工程使用说明

CSC-2000WPFS风功率预测系统-工程使用说明
CSC-2000WPFS风功率预测系统-工程使用说明

版本:V7.0

(BT2012064-风电功率预测系统改进)

说明编号:

项目编号: (BT2012064)

项目类别:■软件?硬件?软硬件

归档类别:■通用?定制

是否有配套使用的工程说明书■否?是说明书编号版本:

是否有配套使用的定值清单■否?是

是否有关联定制软硬件■否?是具体描述:

原理图是否有变化■否?是具体描述:

是否有新增物料■否?是新增物料为:____________________ 是否需设计新的自动测试软件■否?是?不涉及

项目综述风电功率预测系统改进场内使用说明

版本:V7.0

目录

更新说明 (3)

1、简述 (5)

2、硬件安装及配置 (6)

3、数据库安装及配置 (7)

3.1 Solaris (7)

3.2 Windows (8)

3.2.1 数据库使用 (13)

3.3 RedHat (15)

4、CSC-2000及风功率预测系统的安装 (23)

4.1 V2安装及参数配置 (23)

4.2 新建接入模板 (28)

4.3 实时库及通讯规约配置 (32)

4.4 光伏电站实时库配置 (40)

5、WEB界面参数配置 (43)

6、硬件配置参考 (45)

6.1 系统装置 (45)

6.2 系统分区和组网 (46)

6.3 反向隔离装置 (48)

6.4 界面显示设置 (58)

6.5 防火墙的配置 (62)

附录一:风电场模板配置点表 (63)

附录二:光伏电站模板配置点表 (64)

附录三:预测算法的可配置参数说明 (65)

版本:V7.0

更新说明

因后续使用过程中发现的BUG等问题,会直接影响现场应用,因此工程人员务必将本章所列内容进行正确的更正!

(1) 文件位置:csc2100_home/config,

文件名:hisoption.xml

作用: isWindForcast 配置项,区分风功率预测、常规SCADA系统,为历史程序自动建表提供

错误:默认配置为1,默认风功率预测系统,导致常规SCADA系统使用时历史建表格式错误,报表显示异常。

更正:默认配置为0,默认常规SCADA系统将下图中所示id="isWindForcast">1中的数字“1”改为“0”.

注意:移植到V3.38版本后,hisjava建表时取消了对该参数的引用。

(2) 预测主机系统时间设置

请将预测主机的系统时间格式设置为24小时制,00:00:00秒作为当天的起始时间,具体设置方法是:控制面板—区域和语言—自定义设置—时间下面有系统时间格式的设置,并有对应的实例说明。应该讲时间格式改为HH:mm:ss的形式。

(3) 数据库操作说明

本次修订增加了历史数据库使用方面的相关说明详见第3章第3.2.1节(2014.01.08)。

(4) 预测系统移植到V3.38

基于V360版本的预测系统已经移植到V3.38,公司内的各项功能测试已经完成,近期可能会推广大现场应用,请在具体场站使用时,注意查看V2的版本信息。两个版本的预测系统

版本:V7.0

在工程使用的配置上没有区别,只是V2安装install过程中填写配置参数对话框的风格形式与V360版本有所不同。

(5) 在第4章4.4节增加光伏电站V2实时库配置说明

版本:V7.0

1、简述

本说明适用于风电场和光伏电站功率预测系统的安装及配置,本文以风电场为例进行说明,涉及风电与光伏有区别的部分将有分别的说明。

风电厂功率预测系统包括硬件部分和软件部分。根据现场应用的实际需求这两部分各自的具体组成结构会略有改变,但是总体框架基本相同。本说明主要以典型的风电功率预测系统为例给出安装和调试的详细过程说明。

典型风电功率预测系统的硬件组成及连接关系详见第2节硬件的安装和配置,现场具体实施过程中可能会增加或省略某些环节,但是只要把握好从综自系统和从外部网络接入的数据最终汇入预测主机,并明确从预测主机输出的数据可由其他系统接收即可。

典型风电功率预测系统软件部分主要由三部分组成:数据库、V2系统平台、预测算法系统(包含在V2系统里,没有明显的区分)。因此需要进行安装和配置的软件包括数据库和V2系统。安装过程首先必须正确安装数据库,并做好数据库相应的配置(如IP配置等),然后才能安装CSC-2000(V2)系统。

详细的安装及配置过程参见第3节数据库安装及配置,第4节CSC-2000及风功率预测系统的安装。第4节通讯规约配置部分给出了在需要进行前置程序(SDR配置)时的操作方法。

版本:V7.0

2、硬件安装及配置

现在风电场功率预测系统主要包含如下硬件:两台服务器、一台反向隔离装置、一台防火墙、和一台交换机。各装置的物理连接结构如下:

NWP服务器主要是从数值天气预报服务器端下载天气预报数据,下载以后保存到本地的目录中,通过反向隔离装置把文件同步到内网中的风功率预测主机上。风功率预测主机可以利用数值天气预报的数据预测短期气象,同时从综自接入的并网电功率、测风塔数据、风机数据、风机遥信数据到本地库。利用这些数据进行气象和功率的预测。届时,风功率预测系统就安装完成。

注意:根据现场实际情况要求的不同,上图中的数据传输过程可能存在一些差别,可能功率预测结果不是由预测系统直接上传调度,而是传给综自系统;当与综自系统的数据传输需要采用其他通讯规约(例如104规约),则需采用前置程序(SDR)进行规约配置(详见4.3实时库及规约配置说明)。

硬件安装及配置过程中遇到的具体问题请参考第6节硬件配置参考。

版本:V7.0

3、数据库安装及配置

3.1 Solaris

在Solaris 10中,系统自带了PostgreSQL数据库。自定义安装需要把原有系统自带的postgres用户删除,重新设置postgres用户。

具体安装流程如下:

1、创建postgres用户。

在Solaris中,使用命令“userdel postgres”删除系统自带的postgres

用户。使用命令“sec”打开“Solaris Managerment Console”控制台。

按照下列顺序打开左侧树“本计算机->系统配置->用户”,在弹出窗体中

输入“root”的密码,打开用户树,选择“用户账号”,创建postgres

用户。

2、在Solaris的postgres用户目录下创建“data”文件夹。配置.profile

配置文件。指向PostgreSQL数据库的数据文件夹、PostgreSQL数据库的

Lib文件夹和PostgreSQL数据库的bin文件夹。这样做的目的是为了让

系统找到PostgreSQL数据库的数据文件夹、使用的类和所使用操作文件。

复制到postgres用户的根目录下。

3、打开终端窗体,在窗体中输入“initdb”,PostgreSQL会自动初始化数据

到指定的文件夹中。

4、按照原有手册的操作修改“pg_hba.conf”和“postgresql.conf”文件。?

5、修改/etc/inet/目录下的ipnodes文件。把“::1 localhost”行改为

“#::1 localhost”。这样PostgreSQL启动时就不会报无法绑定固定IP

的错误。

6、使用postgres用户登录系统,使用“pg_ctl start”启动PostgreSQL

数据库,“pg_ctl stop”停止PostgreSQL数据库,“pg_ctl restart”

重启PostgreSQL数据库。

版本:V7.0

3.2 Windows

Windows系统下的安装可以按照普通文件的安装形式安装,不需要做特殊的设置。如果系统中已经安装过PostgreSQL数据库,可能已经存在PostgreSQL用户,则需要在系统管理中删除掉原有的PostgreSQL用户,否则无法顺利安装。

1、我的电脑(右键)->管理->本地用户和组->用户,删除掉“postgres”用户即可安装新的PostgreSQL数据库。

2、进入安装界面后首先进行配置设置,点击“Next”(如下图3.1)

图3.1

3、选择安装路径(图3.2)

版本:V7.0

图3.2

4、设置数据文件保存路径(图3.3)

图3.3

5、超级用户的密码,一般密码设置为postgres。(图3.4)。

版本:V7.0

图3.4

6、设置数据库端口为5432(图3.5)

图3.5

7、数据库的组,这里选择“C”,点击“Next”安装开始。(图3.6)

版本:V7.0

图3.6

8、安装完成,将选框中的对号去掉(不进行更新),然后点击“Finish”安装完成。(图3.7)

图3.7

版本:V7.0 注意:数据库安装完成后要更改安装目录data(例如:C:\ProgramFiles\ PostgreSQL\9.0\data)文件夹下的pg_hba和postgresql文件内容,并重启数据库服务。

9、完成服务器IP配置,打开PostgreSQL的安装目录(例如:C:\Program Files\PostgreSQL\9.0\data)文件夹下的pg_hba文件,在文件末尾IPv4下添加本机作为服务器设置的IP,如下图3.8。

图3.8

10、修改文件postgresql中 #when to log 下的内容由图3.9改为图3.10,注意去掉注释符“#”号

图3.9

图3.10

版本:V7.0

11、重启数据库服务使更改生效:控制面板—管理工具—服务的列表内找到postgresql-PostgreSQL-server并重新启动。

3.2.1 数据库使用

1、执行V2的install命令设置的主数据库名(例如scada1)只能建立数据库,此时数据库中的“模式->history->数据表”中数据表的个数是0;

2、执行localm,后才会自动调用hisjava,建立预测系统必备的数据表,主要有:

middle_forecast—保存各种算法进行气象预测的中间结果及动态权值,

nwp和sfore_weather—保存从数值天气预报文件解析出的天气预报值,

sfor_windpower—保存短期预测的功率值,

usfore_weather—保存超短期气象预测的最终结果,

usforeore_windpower—保存超短期功率预测的最终结果;

在首次启动localm后第一个15分钟的整数倍的时间点会建立一个当月表,例如在2014年1月会建立表名为tabsnapshot201401--用于存储当月时间内实时库配置的并网点功率及测风塔(环境监测仪)的实测数据,且每个月开始的时间会自动建立该月对应的表。

3、查看数据库中是否存有数据的方法:点击要查看是数据表选中该表,然后点击工具按钮中的“查看所选对象的数据”图标(SQL图标后面那个),即可显示该表内的所有数据记录。

4、数据表记录内容说明,打开某个数据表后如下图:每个表根据记录不同数据的要求,表内各列的数据也不一样,

表头包含“id”的都是实时库配置的id,例如下图f_id为各气象记录在实时库中的ID32值;

表头包含“index”一般是一次记录多次值的顺序;

time_c是一组值记录入库的时间,

time_f为该组值中每一个值实际对应的时间,即将来的时间点

表头包含“value”为记录的值或修正后的值,

其他参数为辅助表面每个记录的其他意义。

版本:V7.0

版本:V7.0 3.3 RedHat

1.创建Postgres用户

如下图所示,选择“用户和群组”

版本:V7.0

选择“添加用户”,用户名,全称,口令全部设为 postgres ,创建完成后,注销系统

2、PostgreSQL的安装

1.使用root用户登录,在“计算机的文件系统”创建pgsql文件夹,并将postgresql-8.3.6-1-linux.bin放在这里。

版本:V7.0

2.进入pgsql,右键选择“在终端中打开“,输入./postgresql-8.

3.6-1-linux.bin

版本:V7.0 3.点击前进:

4.Local选择C,继续前进:

版本:V7.0 5.端口选择默认的5432,继续前进:

6.密码填写“postgres”,全部小写,继续前进:

7.数据路径默认,继续前进:

版本:V7.0

8.安装目录默认,继续前进:

9.准备安装,继续前进:

10.安装完成,去除选择框Launch Stack Builder at exit ?,然后点击Finish退出安装程序:

11.进入/opt/PostgreSQL/8.3/data目录

12.修改pg_hba.conf,增加各客户端ip地址。,如本机ip1为192.168.1.1,本

风电功率预测系统功能要求规范

风电功率预测系统功能规范 (试行) 国家电网公司调度通信中心

目次 前言...................................................................... III 1范围. (1) 2术语和定义 (1) 3数据准备 (2) 4数据采集与处理 (3) 5风电功率预测 (5) 6统计分析 (6) 7界面要求 (7) 8安全防护要求 (8) 9系统输出接口 (8) 10性能要求 (9) 附录A 误差计算方法 (10)

前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。 本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。 本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 本规范由国家电网公司国家电力调度通信中心提出并负责解释; 本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。 本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。

风电功率预测系统功能规范 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。 本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1 风电场 Wind Farm 由一批风电机组或风电机组群组成的发电站。 2.2 数值天气预报 Numerical Weather Prediction 根据大气实际情况,在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3 风电功率预测 Wind Power Forecasting 以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4 短期风电功率预测 Short term Wind Power Forecasting 未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5 超短期风电功率预测 ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。

光功率计的使用说明

光功率计的具体说明 深圳中视同创光钎通信 光功率计使用说明书 概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。技术条件 性能指标: a.光波长范围:850 ~1550 nm ,b.光功率测量范围:-70 ~+10 dBm,c.显示分辨率:0.01 dB,d.准确度: ±5%(-70 ~+3 dBm ),非线性:≤ 4%(-70 ~+3 dBm )e.环境条件:工作温度 0 ~55℃,工作湿度≤ 85%,f.电源: AC 220伏/50Hz ±10% 基本功能: a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量处理, 波长校 准; 操作 将后面板上电源线连接好,电源开关置“ON” 。仪器开始自检,点亮所有的发光器件,然后进入初始状态。仪器的初始状态如下: a.測量方式:dBm;b.測量波长:1310 nm;c.量程(RH):自动方式;d.调零(Z ERO):关;e.平均(AVG):关。 测量准备 1).开机后预热半小时。若对測量要求不高,预热几分钟就行了; 2).调零 调零主要是消除光探测器的残余暗电流及弱背景光等噪声功率的影响。调零时,输入口必须完全遮光(注意:塑料保护盖不能完全遮光)。也可以在弱背景光下调零,但是,背景光功率值不能超过最小量程值的一半; 调零时,只需按一下“ZERO”键便可自动进行。调零过程中,“ZERO”和“RH”鍵上方指示器发光,面板上除波长设定键“λ SET”及测量键“MEAS”外,其余控制键不起作用,直到调零结束,指示器不发光,各控制键恢复常态。 3).设定波长 开机后,仪器自动设定为1310(nm) 波长。要改变测量波长,按“λ SET”键,其上方指示器发光,此时,“数码显示窗”(10)显示其对应的波长数(nm),每按一次该键,改变一个选定波长,同时在“数码显示窗”(10)显示出来,其值可以在850、980、1300、1310、1 480和1550(nm)之间循环,按“MEAS”键后便选定了最后显示的波长,同时转入测量状态。 4).将FC-PC型測试光缆连接线接好。 测量 1).一般测量 仪器在测量状态下,可以根据使用者的习惯和测试特点选择测量数据的显示方式为“dBm”

光功率计操作规程

光功率计操作规程 编制: 审核: 批准:山西新太阳科技有限公司

光功率计操作规程 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围: 850 ~ 1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率: 0.01 dB d.准确度:± 5%(-70 ~+3 dBm ) 非线性:≤ 4%(-70 ~+3 dBm ) e.环境条件: 工作温度 0 ~ 55℃ 工作湿度≤ 85% f.电源: AC 220伏/50Hz ±10% 2.基本功能 a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB);

b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量处理, 波长校准; 三.原理 光功率计由五部分组成, 即光探測器、程控放大器和程控滤波器、A/D转换器、微处理器以及控制面板与数码显示器。 A/D变换器 P I N I/V 程控放大器和滤波器 C P U 控制面板和显示器 被測光由PIN光探测器检测转换为光电流,由后续斩波稳定程控放大器将电流信号转换成电压信号,即实现I/V转换并放大,经程控滤波器滤除斩波附加分量及干扰信号后,送至A/D转换器,变成相应于输入光功率电平的数字信号,由微处理器(CPU)进行数据处理,再由数码显示器显示其数据。CPU可根据注入光功率的大小自动设置量程状态和滤波器状态,同时,可由面板输入指令(通过CPU)控制各部分完成指定工作。不注入光的情况下,可指令仪器自动调零。四.使用 4.1 面板说明

光功率计使用说明

ON/OFF 为关闭或接通电源入/Select 按键一次则显示另一个设置波长,设置波长可往复顺序循环。 W/dBm 主机开机后以dBm为单位显示,按键后在W和dBm 之间转换。 Ref 按Ref键,将测量值转换成相对差值以dB为单位显示。 ... 光功率计的使用要和光源配合使用,要想知道光源发出的光是多少个DB,就用一条尾纤的A端链接光源B端连接光功率计计,显示在光功率计的数值,就是光源发出的光是多少个DB,一般光源发出的光是7个DB左右。 值得注意的是光源和光功率计要选择同样的波长测试,例如:光源选择的是1310nm,光功率计要选择同样的。 但若要光缆发生故障时,因设备还在发光,一般不要用OTDR测试,需要注意设备与OTDR发出的同样的光,有可能把设备或者OTDR毁坏,要用光功率计测试,OTDR一般测试备用纤芯,因为主要还要看在用纤芯的好坏,就需要先把一条尾纤连接光功率计与在用纤芯,看是否能受到光,收到光是多少个DB。 一般基站小于36DB或者更小,就达到最大值了,若是一般的直放站就要10个DB左右。 若是监控、光纤上网等一般需要数据的,还要更小,因为怕丢数据。 如果购买光源光功率计的话,建议购买3M的。 光功率计使用说明书 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准 技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通 信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围: 850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率: 0.01 dB d.准确度: ±5%(-70 ~+3 dBm ) 非线性:≤ 4%(-70 ~+3 dBm ) e.环境条件: 工作温度 0 ~55℃ 工作湿度≤ 85% f.电源: AC 220伏/50Hz ±10% 2.基本功能 a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量 处理, 波长校准; 三.原理

关于短期及超短期风电功率预测的分析

关于短期及超短期风电功率预测的分析 发表时间:2020-03-14T14:01:00.437Z 来源:《福光技术》2019年32期作者:张俊林徐元中[导读] 风电的不确定性对电力系统与电力市场的稳定性、充裕性及经济性的影响日益彰显,及时、精确地预测风电功率(WP)动态的意义大。 湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室湖北省武汉市 430068 摘要:风电的不确定性对电力系统与电力市场的稳定性、充裕性及经济性的影响日益彰显,及时、精确地预测风电功率(WP)动态的意义大。风电功率预测(WPP)根据风速及相关因素的历史数据和当前状态,定性或定量地推测其此后的演化过程。本文就对短期及超短期风电功率预测相关内容展开分析。 关键词:短期;超短期;风电功率;预测 引言 WP 的整体不确定性由其随机性及模糊性构成。有效的 WPP 虽然不会减少 WP 的随机性,但是可以降低其模糊性,从而使 WP 的整体不确定范围降低到WPP 的最大误差区间,减小了WP 对电力系统及电力市场的扰动。 分析影响 WPP 精度的因素第一,气象的历史数据与实时数据的缺失,风电场数据采集、传输与处理设施的缺陷,都会影响WPP 的精度。数据预处理技术包括数据同步、异常数据的识别与处理、缺失数据的替代等。第二,预测策略。例如,直接预测 WP 或通过风速预测;直接预测整个风电场的WP 或根据部分风机的预测值及空间相关性推算;采用逐一累加方式或统计升尺度方式推算区域风电场群功率。一般来说,能反映更多具体数据的预测策略可以得到更高的精度,但需要更多的数据与计算量。第三,数值天气预报(NWP)在大气实际的初值和边值条件下,数值求解天气演变过程的流体力学和热力学模型,根据空间网格中的平均值推算实际风电场地表风速的非均匀分布,并预测其动态变化。由于计及了等高线与等地形信息,以及地表粗糙度等地貌信息,通过微观气象学方法可以得到各风机轮毂高度的风速、风向等信息。然后将风速的推算值转换为风能,其精度与 NWP 的精度、网格大小、刷新周期等密切相关。第四,预测方法。物理计算法、时序外推法、人工智能(AI)法分别从空间、时间与样本分类的观点推算。它们依据的数据源、预测模型、误差特性都有所不同。若能巧妙地互补不同方法的优点,可更好地反映风速的时空演变特性。 分析 WPP 方法的研究现状基于 NWP 的物理模型计算 NWP 将天气的物理过程概括成一组物理定律,并表达成数学方程组。然后在已知的初始值及边界条件下,逐个时间段地往前联立求解描述天气演变过程的热力学和流体力学方程组,预测未来的气象数据,再结合风电场周围的地形地貌,计算风电机组轮毂高度处的风速与风向等,最后通过该机的功率 TC 得到 WPP。其技术要点包括:采用高性能计算机求解偏微分方程组的数值解;采用网格嵌套的方法减少计算量;为目标区域定制预报模型;通过观测数据的同化提高预报质量。基于 NWP 的物理模型预测方法除了能够充分考虑风电场的物理和环境因素以外,其最大的优势在于不需要积累大量的历史数据,因此特别适合新建风电场的 WPP。但由于 NWP 的更新频率较低,难以满足超短期预测的要求,仅适合短期及中长期预测。 基于统计观点的外推模型时序外推法通过归纳风速(或 WP)历史数据的时间序列之间的统计规律,建立WPP 值与最近期WP 时间序列之间的线性或非线性映射。由于历史数据序列反映了流体、热力、地形地貌等因素的影响,故基于统计观点的外推模型可以回避对物理机理掌握不够的困难。但是外推法隐含下述假设:第一,连续性,即影响事物未来轨迹的那些因素及规律,与该时刻之前一段时间基本保持不变;第二,渐进性,即事物以缓慢而渐进的方式演化,短期内不会突变。这些假设不但会使外推法在系统结构或边界条件于预测时效内发生突变时失效,即使在系统缓慢变化期间,其预测误差也会随着预测时效的增加而迅速增加,影响外推法的适用性及强壮性。 时间序列预测法经典的时间序列预测法。时间序列预测法根据目标变量本身随时间变化的趋势外推,较适用于气象信息有限的风电场进行超短期预测。由于无需考虑更多的气象信息,故具有建模简单且计算量少的优点。但输入数据单一的特点也使其难以考虑其他信息的影响,无法按不同的边界条件来修正预测模型,故除了建模时需要大量历史数据外,其强壮性更差,难以应对突变状况;且预测精度也随着预测时效的增加而迅速降低。经典的时间序列预测法,包括持续法、移动平均法和自回归移动平均(ARMA)法。持续法将最近一点的实测值作为下一时刻的预测值,简单并常被用做新算法的比较基准。移动平均法随着时间序列移动一个宽度不变的窗口,将其中各项的动态平均值作为下一时刻的预测值,仅适用于系统平稳或小幅波动时。ARMA 法利用滞后的自身数值和随机误差项来解释当前值,并以此预测未来。对于非平稳的 WP 时间序列,通过差分来消除部分不平稳分量。自回归求和移动平均(ARIMA)模型扩展了 ARMA 模型,将时间序列视为随机过程,并被广泛应用于超短期WPP 和短期WPP。 与其他数学分析法的结合。一些学者引入了其他数学分析法来弥补时间序列预测法的不足。例如,分数—自回归求和移动平均(ARIMA)模型通过降低时间序列高阶模型参数估计的难度来提高模型精度。马尔可夫预测法将时间序列看做一个随机过程,通过系统在不同状态下的初始概率以及状态之间的转移概率建立随机型的时序模型。 AI 预测法 AI 算法借助自然界规律或生物智能的启发,设计求解问题的计算机程序。包括模仿人类思维中模糊性概念的模糊算法,主要用于图像处理及模式识别;模仿生物进化和群体智能的进化算法,主要用于决策支持及优化问题;模仿大脑结构及其对信息的处理过程的 ANN 算法,可实现仿真、图像识别等任务。由于 AI 算法不需要按机理建立预测对象的数学模型,而是通过大量实测数据或仿真算例来训练 AI 模型,在其输出与输入变量之间直接建立非线性映射关系,故可用于机理不清楚的场合。 2.2.3ANN

光功率计使用说明

光功率计使用说明

ON/OFF 为关闭或接通电源入/Select 按键一次则显示另一个设置波长,设置波长可往复顺序循环。 W/dBm 主机开机后以dBm为单位显示,按键后在W和dBm 之间转换。 Ref 按Ref键,将测量值转换成相对差值以dB为单位显示。 ... 光功率计的使用要和光源配合使用,要想知道光源发出的光是多少个DB,就用一条尾纤的A端链接光源B端连接光功率计计,显示在光功率计的数值,就是光源发出的光是多少个DB,一般光源发出的光是7个DB左右。 值得注意的是光源和光功率计要选择同样的波长测试,例如:光源选择的是1310nm,光功率计要选择同样的。 但若要光缆发生故障时,因设备还在发光,一般不要用OTDR测试,需要注意设备与OTDR发出的同样的光,有可能把设备或者OTDR毁坏,要用光功率计测试,OTDR一般测试备用纤芯,因为主要还要看在用纤芯的好坏,就需要先把一条尾纤连接光功率计与在用纤芯,看是否能受到光,收到光是多少个DB。 一般基站小于36DB或者更小,就达到最大值了,若是一般的直放站就要10个DB左右。 若是监控、光纤上网等一般需要数据的,还要更小,因为怕丢数据。 如果购买光源光功率计的话,建议购买3M的。 光功率计使用说明书 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准 技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通 信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围: 850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率: 0.01 dB d.准确度: ±5%(-70 ~+3 dBm ) 非线性:≤ 4%(-70 ~+3 dBm ) e.环境条件: 工作温度 0 ~55℃ 工作湿度≤ 85% f.电源: AC 220伏/50Hz ±10% 2.基本功能 a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量 处理, 波长校准;

风电功率预测的发展成就与展望

风电功率预测的发展现状与展望 范高锋,裴哲义,辛耀中 (国家电力调度通信中心,北京100031) 摘要:风电场输出功率预测对接入大量风电的电力系统运行有重要意义。本文从电力调度运行的角度,在风电功率预测技术的发展现状、系统建设情况、预测误差、预测评价指标和预测的主体等方面展开了论述,对目前存在的基础数据不完善、预测精度不高、预测的时间尺度较短和风电场普遍没有开展预测的问题进行了分析,提出了加强电网侧和风电场侧风电功率预测系统建设、加快超短期预测功能建设、继续深化预测技术研究、加强标准体系建设和开展跨行业合作等发展建议。 关键词:风电场;功率;预测;系统 中图分类号:TM614 文献标志码:A 文章编号: Wind power prediction achievement and prospect FAN Gao-feng , PEI Zhe-yi , XIN Yao-zhong (National Power Dispatching& Communication Center,Beijing 100031) Abstract: Wind power prediction is important to the operation of power system with comparatively large mount of wind power. This paper summarized the current situation of wind power prediction technology, wind power prediction system construction, prediction error, assessment index, and main market body of prediction from the power dispatch perspective. The main problems includes basic data incomplete, prediction precision relatively low, prediction time scale short and wind farm no wind power system are analyzed. Suggestions of enforcing grid side and wind farm side wind power prediction system construction, speeding up ultra-short term wind power prediction system construction, deepening wind power prediction technology study, strengthening prediction technical standard system and cooperation of different industry are proposed. Keywords: wind farm; power; prediction; system 0引言 电力系统是一个复杂的动态系统。维持发电、输电、用电之间的功率平衡是电网的责任。在没有风电的电力系统,电网调度机构根据日负荷曲线可以制定发电计划,以满足次日的电力需求。风电场输出功率具有波动性和间歇性,风电的大规模接入导致发电计划制定难度大大增加,风电对电力系统的调度运行带来巨大挑战。 目前风电对全网的电力平衡已经带来很大的影响[1-3]。对风电场输出功率进行预测是缓解电力系统调峰、调频压力,提高风电接纳能力的有效手段之一。同时,风电功率预测还可以指导风电场的检修计划,提高风能利用率,提高风电场的经济效益。经过多年的科研攻关与技术创新,我国具有自主知识产权的风电功率预测系统已在电力调度机构获得了广泛应用,12个网省调建立了预测系统,覆盖容量超过12GW,在电网调度运行中发挥了一定作用。本文对近年来风电功率预测方面完成的工作进行了总结,对存在的问题进行了论述,并提出了下一步的发展建议。 1 风电功率预测发展现状 1.1 风电功率预测技术的发展情况 电网调度部门对风电功率预测的基本要求有2个:一是短期预测,即当天预测次日0时起72h的风电场输出功率,时间分辨率为15 min,用于系统发电计划安排;另一个是超短期预测,即实现提前量为0~4h的滚动预测,用于电力系统实时调度[4]。 风电功率预测方法主要分为统计方法、物理方法[5-6]。统计方法是指不考虑风速变化的物理过程,而根据历史统计数据找出天气状况与风电场出力的关系,然后根据实测数据和数值天气预报数据对风电场输出功率进行预测,常用的预测模型有时间序列、神经网络、支持向量机等。物理方法是指风电功率预测的物理方法根据数值天气预报模式的风速、风向、气压、气温等气象要素预报值以及风电场周围等高线、粗糙度、障碍物等信息,采用微观气象学理论或计算流体力学的方法,计算得到风电

光功率计使用说明书

光功率计使用说明书 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围:850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率:0.01 dB d.准确度:±5%(-70 ~+3 dBm )非线性:≤4%(-70 ~+3 dBm )e.环境条件: 工作温度0 ~55℃ 工作湿度≤85% f.电源:AC 220伏/50Hz ±10% 2.基本功能

a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量处理, 波长校准; 三.原理 光功率计由五部分组成, 即光探測器、程控放大器和程控滤波器、A/D转换器、微处理器以及控制面板与数码显示器。 A/D变换器 P I N I/V 程控放大器和滤波器 C P U 控制面板和显示器 被測光由PIN光探测器检测转换为光电流,由后续斩波稳定程控放大器将电流信号转换成电压信号,即实现I/V转换并放大,经程控滤波器滤除斩波附加分量及干扰信号后,送至A/D 转换器,变成相应于输入光功率电平的数字信号,由微处理器(CPU)进行数据处理,再由数码显示器显示其数据。CPU可根据注入光功率的大小自动设置量程状态和滤波器状态,同时,可由面板输入指令(通过CPU)控制各部分完成指定工作。不注入光的情况下,可指令仪器自动调零。 四.使用

【CN109934402A】一种风电场集控中心集中风功率预测系统及其设计方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910180757.6 (22)申请日 2019.03.11 (71)申请人 北京天润新能投资有限公司西北分 公司 地址 830026 新疆维吾尔自治区乌鲁木齐 市经济技术开发区上海路107号 (72)发明人 景志林 张宁 马辉 梁志平  (74)专利代理机构 北京华仲龙腾专利代理事务 所(普通合伙) 11548 代理人 李静 (51)Int.Cl. G06Q 10/04(2012.01) G06Q 10/06(2012.01) G06Q 50/06(2012.01) (54)发明名称一种风电场集控中心集中风功率预测系统及其设计方法(57)摘要本发明提供一种风电场集控中心集中风功率预测系统,包括:(1)数据源;(2)数据平台层;(3)应用展示层;集中风功率预测系统采用微服务软件设计模式,系统中的每一个模块都是可以独立分拆、独立部署的微服务,底层使用的Docker容器技术和容器云平台,基于容器云平台上的持续集成、持续部署技术实现系统的快速迭代更新,分为生产控制大区的架构及信息管理大区的架构。还公开了一种风电场集控中心集中风功率预测系统的设计方法,包括步骤:1)设计集中风功率预测系统网络拓扑及电力监控系统安全防护模块;2)设计集中风功率预测系统的预测结果获取与展示模块;3)设计人为干预功率预测 结果的实施策略。权利要求书3页 说明书12页 附图11页CN 109934402 A 2019.06.25 C N 109934402 A

权 利 要 求 书1/3页CN 109934402 A 1.一种风电场集控中心集中风功率预测系统,其特征在于包括: (1)数据源:作为集中功率预测系统的基础数据来源,基础数据按照电场类别分为风电场数据、光伏电场数据,按照设备类型分为风机数据、逆变器数据、测量设备数据、升压站数据,展示以设备分类列出的数据源,测量设备数据包括风速、辐照度两种电场的实时监测数据,基础数据是通过客户端通过大数据平台的统一数据接口上传到中心端系统中,功率预测厂商的气象和功率预测数据为所述风电场集控中心集中风功率预测系统气象预报预警数据和预测功率数据的数据源,这部分数据通过互联网直接上传到所述风电场集控中心集中风功率预测系统中心端; (2)数据平台层:用于为统一的所述风电场集控中心集中风功率预测系统中心端提供统一存储和计算资源,所述风电场集控中心集中风功率预测系统的各业务子系统均部署在数据平台层; (3)应用展示层:是集中功率预测系统的界面,新能源用户通过所述界面实现所有风电场功率预测业务的查询、监控、报表工作。 2.根据权利要求1所述的一种风电场集控中心集中风功率预测系统,其特征在于:所述数据平台层包括统一数据接入服务、统一数据存储池、统一计算资源池、数据仓库、统一数据发布服务,所述数据接入服务基于大数据的采集技术,包括流数据和批数据采集技术Apache Kafka、日志等非结构化数据采集技术Logstash;所述应用展示层包括气象预报预警业务、功率预测业务和业务管理业务,所述气象预报预警业务分为天气数据展示、气象灾害预警、气象数据对比查询,所述功率预测业务分为预测指标展示、预测实测数据对比、上报状态查询与手动补报等功能,所述业务管理业务包括基础信息查询与管理、用户权限设置与管理、综合查询系统、数据归档管理、自由报表系统、测量设备管理系统。 3.根据权利要求1所述的一种风电场集控中心集中风功率预测系统,其特征在于:所述集中功率预测系统采用微服务软件设计模式,系统中的每一个模块都是可以独立分拆、独立部署的微服务,底层使用的Docker容器技术和容器云平台,基于容器云平台上的持续集成、持续部署技术实现系统的快速迭代更新。 4.根据权利要求1所述的一种风电场集控中心集中风功率预测系统,其特征在于:所述集中功率预测系统分为生产控制大区的架构以及信息管理大区的架构,所述生产控制大区分为安全Ⅰ区(控制区)和安全Ⅱ区(非控制区),所述安全Ⅰ区直接实现对电力一次系统的实时监控,纵向使用电力调度数据网络或专用通道,所述安全Ⅱ区在线运行但不具备控制功能,使用电力调度数据网络,与控制区中的业务系统或其功能模块电连接,所述集中功率预测系统在生产控制大区设置防火墙、功率预测服务器、内代理服务器、正向隔离、反向隔离,用于设备数据采集、协议适配、实时监控、告警管理、数据转发,所述集中功率预测系统的服务器把通过反向隔离传输过来的集中功率预测的结果按照电网要求的报文格式,上报给电网;内代理服务器将安全区数据通过正向隔离传输给外代理;所述信息管理大区采集存储服务器集群接受内代理转发的数据,对数据进行反向的解密、解压、数据拆箱匹配信息模型、流计算、数据持久化;获取其他管理信息系统数据,进行数据清洗、转换、加载、持久化,形成跨多数据引擎的清洁能源大数据湖;提供多副本集存储,保证数据的高可用性,查询分析服务集群提供海量异构数据的即席查询服务、多维数据聚合服务、并行化分析引擎、离线分析服务、数据审计核查、质量评估修复、使用痕迹记录等,为上层应用提供RESTful原则的 2

风电场风速及风电功率预测方法研究综述

—————————————————— —基金项目:福建省教育厅科技项目(JA08024);福建省自然科学基金计划资助项目(2008J0018)。 第27卷第1期2011年1月 电网与清洁能源 Power System and Clean Energy Vol.27No.1 Jan.2011文章编号:1674-3814(2011)01-0060-07 中图分类号:TM614 文献标志码:A 风电场风速及风电功率预测方法研究综述 洪翠,林维明,温步瀛 (福州大学电气工程与自动化学院,福建福州350108) Overview on Prediction Methods of Wind Speed and Wind Power HONG Cui,LIN Wei-ming,WEN Bu-ying (College of Electrical Engineering and Automation ,Fuzhou University ,Fuzhou 350108,Fujian Province,China ) ABSTRACT :Due to the intermittency of wind energy and the non -linearity of power system,there exist many uncertain variables which should be considered in the wind power prediction.The current prediction methods include the physical method, statistical method, learning method and the comprehensive one combining all the other methods.Based on accurate numerical weather prediction (NWP ),the physical method is seldom used in the short term prediction,as its model is complicated and deals with large quantities of calculations.The model of the statistical method is simple and requires a small amount of data.It can be applied in those situations where data acquisition is difficult.The AI method is suitable in the random or non —linear system as it does not rely on the accurate mode of the objective.The comprehensive method maximizes favorable factors and minimizes unfavorable ones as contained in above-mentioned methods.This paper presents a brief overview on prediction methods of wind speed and wind power,and raises further issues worth further research on the basis of summarizing the previous studies.KEY WORDS:wind power prediction;statistical methods; learning methods;combinatorial prediction 摘要:由于风能的随机性以及电力系统的非线性等原因,预测风电功率时需要考虑众多的不确定因素影响。 现有预测方法主要包括物理预测方法、统计预测方法以及学习预测方法、综合预测法等。基于数字天气预报(NWP-numerical weather prediction ) 的物理预测方法模型复杂、计算量大,较少用于短期预测;统计预测方法模型简单,数据需求量少, 较适合于数据获取有一定困难的情况;人工智能预测方法不依赖于对象的精确模型,适合于随机非线性系统;综合预测方法可一定程度地扬长避短。本文主要就风电场风速及风电功率预测方法研究进行了综合阐述,并在总结前人研究的基础上提出了一些可进一步研究的问题。 关键词:风电预测;统计方法;学习方法;综合预测 随着全球石化资源储量的日渐匮乏以及低碳、 环保概念的逐步深化,风能等可再生能源的开发与利用日益受到国际社会的重视。2007年初欧盟曾提出,2020年其可再生能源消费将占到全部能源消费的20%,可再生能源发电量将占到全部发电量的30%[1]。风力发电是风能的主要利用方式之一。2009年,全球风电装机总量已达157.9GW ,较上年增加了37.5GW [2]。中国风能资源仅次于美国和俄罗斯,可利用风能资源共计约10亿kW 。近些年来风电在中国获得了飞速发展,2000年至2009年十年时间,中国风电装机容量从0.34GW 增至25.8GW [3];2020年,预计全国风电总装机容量将达到30GW [1]。除部分采用离网运行方式外[4],大容量风电机组多数采用并入电网的运行方式。随着规模越来越 大、数量越来越多的风力发电功率注入电网, 风能具有的随机性对电力系统的影响越来越不可忽视。 1风电预测的意义 准确有效地预测出风电场的输出功率不但可 帮助电力系统调度运行人员做出最有效决策, 还

风电功率预测系统功能规范

风电功率预测系统功能规范(试行) 前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。本规范由国家电网公司国家电力调度通信中心提出并负责解释;本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1风电场Wind Farm由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报Numerical Weather Prediction根据大气实际情况,

在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3风电功率预测Wind Power Forecasting以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测Short term Wind Power Forecasting未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。 3数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据风电场的历史功率数据应不少于1a,时间分辨率应不小于5min。 3.2历史测风塔数据a)测风塔位置应在风电场5km范围内;b)应至少包括10m、70m及以上高程的风速和风向以及气温、气压等信息;c)数据的时间分辨率应不小于10min。 3.3历史数值天气预报历史数值天气预报数据应与历史功率数据相

国家能源局关于印发风电功率预报与电网协调运行实施细则

国家能源局关于印发风电功率预报与电网协调运行实施细则(试行)的 通知 国能新能[2012]-12文件 各省(区、市)发展改革委、能源局、中国气象局,国家电网公司、南方电网公司、华能集团公司、大唐集团公司、华电集团公司、国电集团公司、中电投集团公司、神华集团公司、中广核集团公司、三峡集团公司、中国节能环保集团公司、水电水利规划设计总院、各相关协会: 为促进风电功率预测预报与电网调度运行的协调,根据《风电场功率预测预报管理暂行办法》的有关要求,现将〈风电功率预报与电网协调运行实施细则~(试行)印发你们,请参照执行。 附:风电功率预报与电网协调运行实施细则(试行) 风电功率预报与电网协调运行实施细则(试行) 第-章总则 第一条根据《中华人民共和国可再生能源法》和《节能调度管理办法},为贯彻落实国家能源局《风电场功率预测预报管理暂行办法}C国能新能(2011 ) 177号),制定本实施细则。 第二条中国气象局负责建立风能数值天气预报服务平台和业务运行保障体系,为风电功率预测提供数值天气预报公共服务产品和相关技术支持系统。 第三条风电开发企业负责风电场发电功率预报工作,按照要求上报风电场发电功率预报曲线,并执行电网调度机构下发的发电功率计划曲线。 第四条电网调度机构负责电力系统风电发电功率预测工作,建立以风电功率预测预报为辅助手段的电力调度运行机制,保障风电优先调度,落实风电全额保障性收购措施。 风电功率预测预报和并网运行的有关考核办法另行制定。 第五条各有关单位应保证安全接收、传送、应用气象和电力运行等信息,确保涉密信息的获取和使用符合国家相关保密规定。 第二章气象数据服务及功率预测

光功率计1

光功率计 用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表。在光纤测量中,光功率计是重负荷常用表。,通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。 针对用户的具体应用,要选择适合的光功率计,应该关注以下各点: 1、选择最优的探头类型和接口类型 2、评价校准精度和制造校准程序,与你的光纤和接头要求范围相匹配。 3、确定这些型号与你的测量范围和显示分辨率相一致。 4、具备直接插入损耗测量的 dB功能。 光功率的单位是dbm,在光纤收发器或交换机的说明书中有它的发光和接收光功率,通常发光小于0dbm,接收端能够接收的最小光功率称为灵敏度,能接收的最大光功率减去灵敏度的值的单位是db(dbm-dbm=db),称为动态 范围,发光功率减去接收灵敏度是允许的光纤衰耗值.测试时实际的发光功率减去实际接收到的光功率的值就是光纤衰耗(db).接收端接收到的光功 率最佳值是能接收的最大光功率-(动态范围/2),但一般不会这样好.由于每种光收发器和光模块的动态范围不一样,所以光纤具体能够允许衰耗多 少要看实际情形.一般来说允许的衰耗为15-30db左右. 有的说明书会只有发光功率和传输距离两个参数,有时会说明以每公 里光纤衰耗多少算出的传输距离,大多是0.5db/km.用最小传输距离除以0. 5,就是能接收的最大光功率,如果接收的光功率高于这个值,光收发器可能会被烧坏.用最大传输距离除以0.5,就是灵敏度,如果接收的光功率低于这个值,链路可能会不通. 光纤的连接有两种方式,一种是固定连接一种是活动连接,固定连接就是熔接,是用专用设备通过放电,将光纤熔化使两段光纤连接在一起,优点 是衰耗小,缺点是*作复杂灵活性差.活动连接是通过连接器,通常在ODF上连接尾纤,优点是*作简单灵活性好缺点是衰耗大,一般说来一个活动连接 的衰耗相当于一公里光纤.光纤的衰耗可以这样估算:包括固定和活动连接,每公里光纤衰耗0.5db,如果活动连接相当少,这个值可以为0.4db,单纯光纤不包括活动连接,可以减少至0.3db,理论值纯光纤为0.2db/km;为保险计大多数情况下以0.5为好. 光纤测试TX与RX必须分别测试,在单纤情况下由于仅使用一纤所以当然只需测试一次.单纤的实现原理据生产公司讲是波分复用,但本人认为使用光纤耦合器的可能性更高

风电功率预测系统设计方案

风功率预测系统设计方案 随着社会的发展,传统能源出现面临枯竭的危险,发展新能源经济是当今世界的历史潮流和必然选择。而二次能源开发中利用风力发电是最有潜力最为环保的方式之一,但这也引出了分布式发电并网难的问题。由于风能发电的间歇性、不稳定性,并网后对电网冲击巨大,因此,做好风能发电的预测和调控是风力发电并网稳定运行和有效消纳的重要条件。 国外的经验证明,对风力发电进行有效预测,可以帮助电网调度部门做好各类电源的调度计划,减少风电限电,由此大大提高了电网消纳风电的能力,进而减少了由于限电给风电业主带来的经济损失,增加了风电场投资回报率。为此,国能日新自主研发的风电功率预测系统,为国家的风电事业发展贡献自己的一份力量。 风就是水平运动的空气,空气产生运动,主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。这种高纬度与低纬度之间的温度差异,形成了南北之间的气压梯度,使空气作水平运动,风沿水平气压梯度方向吹,即垂直与等压线从高压向低压吹。

地球在自转时,使空气水平运动发生偏向的力,称为地转偏向力,这种力使北半球南方吹向北方的风向东偏转,北方吹向南方的风向西偏转,南半球则相反。所以地球大气运动除受气压梯度力外,还要受地转偏向力的影响,大气真实运动是这两种力综合影响的结果。 国能日新开发的风电功率预测系统SPWF-3000,具备高精度数值气象预报功能、风电信号数值净化、高性能物理模型、网络化实时通信、通用风电信息数据接口等高科技模块;可以准确预报风电场未来168小时功率变化曲线。在即使没有测风塔的情况下,采用国能日新的虚拟测风塔技术,风功率系统短期预测精度超过80%,超短期预测精度超过90%。

相关文档