文档库 最新最全的文档下载
当前位置:文档库 › 电压可控的直流电压源程序

电压可控的直流电压源程序

电压可控的直流电压源程序
电压可控的直流电压源程序

模数转换,把电压经模数转换器,显示在数码管上的程序

#include

#define uchar unsigned char

#define uint unsigned int

sbit du=P2^6;

sbit we=P2^7;

sbit key1=P1^0;

sbit key2=P1^1;

sbit key3=P1^2;

sbit key4=P1^3;

sbit key5=P1^4;

uchar ge,shi,v=0,m=0;

uchar code able[]={0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10};

uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};

void display(uchar);

void delayms(uint);

void key();

void main()

{ P1=0xff;

while(1)

{

key();

P0=m;

display(v);

}

}

void key()

{ if(key1==0)

{delayms(10);

if(key1==0)

{m++;

v+=1;

if(v==50)

v=0;

while(!key1);

}

}

if(key2==0)

{delayms(10);

if(key2==0)

{m--;

v-=1;

if(v==0)

m=

v=50;

while(!key2);

}

}

if(key3==0)

{delayms(10);

if(key3==0)

{m=0;

v=0;

while(!key3);

}

}

}

void display(uchar v) {

shi=v/10;

ge=v%10;

P3=0x01;

P2=able[shi];

delayms(50);

//we=1;

P3=0x02;

//we=0;

//du=1;

P2=table[ge];

// du=0;

delayms(50);

}

void delayms(uint i) { uint j;

for(i;i>0;i--)

for(j=110;j>0;j--);

}

可调直流稳压电源课程设计

电子技术课程设计) —可调直流稳压电源 专业班级: $ 姓名: 学号:

? 目录 一、设计目的 (3) 二、设计任务及要求 (3) 三、实验设备及元器件 (3) ~ 四、设计步骤 (4) 1、电路图设计方法 (4) 2、设计的电路图 (5) 五、总体设计思路 (5) 1、直流稳压电源设计思路 (5) 2、直流稳压电源原理 (6) (1)直流稳压电源 (6) (2)整流电路 (6) · (3)滤波电路——电容滤波电路 (7) (4)稳压电路 (9) 3、设计的电路原理图 (10) 4、设计方法简介 (10) 六、课程设计报告总结 (12) 七、参考文献 (12) (

。 引言 直流稳压电源一般由电源变压器,整流电路,滤波电路及稳压电路所组成。变压器把交流电压变为所需要的低压交流电,整流器把交流电变为直流电,经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现电压可在1-25V可调。 关键词:直流,稳压,变压。 一、设计目的 1、学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2、学会直流稳压电源的设计方法和性能指标测试方法。 3、培养实践技能,提高分析和解决实际问题的能力。 : 二、设计任务及要求 1、设计一个连续可调的直流稳压电源,主要技术指标要求: ①输入(AC):U=220V,f=50HZ; U:1v--25v; ②输出直流电压 2 I≤1A; ③输出电流: 2、设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。 3、自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量。 4、在仿真软件multisim上画出电路图,仿真和调试,并测试其主要性能参数。

数控直流电流源(线性恒流源)

数控直流电流源 摘要:本文设计了一种数控直流电流源的方案,给出了硬件组成和软件流程及源程序。以STC89C52单片机为核心控制电路,利用12位D/A模块产生稳定的控制电压,12位A/D模块完成电流测量。输出电流范围为20~2000mA,具有“+”“-”步进调整功能,步进为1mA,纹波电流小,LCD同时显示预置电流值和实测电流值,便于操作和进行误差分析。 关键词:STC89C52数控电流源 Numerical Control DCCurrent Source Abstract:This paper introduces a design scheme of numerical control DC current source ,and gives the hardware composition and software flow as well as the source program. UseSTC89C52MCU as the core control circuit. 12 D/A module generates A steady the control voltage and 12 A/D module completes current measurements.The current-output ranges 20 to 2000mA,with "+" and "-" steppingfor 1mA adjustment function and small ripple current. LCD could show presets current value and the measured resultat the same time,for easy operation and error analysis. Keywords:STC89C52 Numerical controlCurrent source 1设计方案的选择 1.1电路综合设计流程

DIY数字显示直流电压表

DIY数字显示直流电压表 最近想做一个电源,因为经常DIY,没有一个电源不像样子,虽然是业余的,但是电压有时也会有不同的电压值,如做成固定的电压应用起来就不方便,如做成可调的,电源值就不能直观的展示出来,每调一次就用万用表量一起也不方便。如果有一个电压表装在电源上就方便多了,指针式的表头读起数来总是有点别扭,所以就想找一个数字式的电压表头。因此在这样的背景下自己通过DIY 制作了一个4位数字显示的电压表头。 做数字式电压表用什么IC好呢?选来选去最后决定用ICL7017吧!定好芯片就开要画个完整的电路图。既然要做就做好点,不想用洞洞板来接线路板,电线飞来飞去的有点头痛的感觉,所以还要画一块PCB板。电路图及PCB板的设计如下图示:

有了图就要准备物料了,不想一个一个的写出来,给个物料清单吧如下 组件编号 组件数值组件规格用量 号 C1 0.1uF 瓷片电容±20% 50V 1 C2 100P 瓷片电容±5% 50V 1 C3 0.1uF 金属膜电容±5% 63V 1 C4 0.1uF 独石电容±5% 63V 1 C6 0.22uF 金属膜电容±5% 63V 1 C5 0.47uF 金属膜电容±5% 63V 1 C7,C8 10uF/25V 电解电容+80-20% 2 R1 150Ω金属膜电阻±1% 1/4W 1 R8 1K 金属膜电阻±1% 1/4W 1 R9 1M 1/2W 金属膜电阻±1% 1/2W 1 R7 1M 金属膜电阻±1% 1/4W 1 R3 2.95K 金属膜电阻±1% 1/4W 1 R2,R5 10K 金属膜电阻±1% 1/4W 2 R4 20K 金属膜电阻±1% 1/4W 1 R6 154K 金属膜电阻±1% 1/4W 1 R10 470K 金属膜电阻±1% 1/4W 1 VR2 5K 精密微调电阻922C0 W 502 1 D2,D3 4148 ST 1N4148 DO-35 2 J1,J2 DC5V 鱼骨针2pin 2 D1 DIODE 1N4004 DO-41 1 DS1~4 HS-5161BS2 共阳8段数码管 4 U1 ICL7107 IC ICL7107CPLZ DIP-40 1 U2 TC4069 IC TC4069UBP DIP-14 1 U3 TL431 IC TL431A TO-92 1 IC插座14 pin 2.54mm 1 IC插座40 pin 2.54mm 1 PCB光板36x68x1.6mm 双面FR-4 1 塑料外壳尺寸要与PCB板配合,网上购的 1 镙丝 4 锡线适量 工具就是电子爱好者的常用工具了

数控电压源设计报告

全国电子设计大赛培训班设计报告(数控电压源) 组员:龚文周、彭玉琴、李冻秀、胡高丽 1.实验任务 本次实验是以89C51单片机为控制单元,以数模转换器DAC0832输出参考电压,以该参考电压控制电压转换模块LM350的输出电压大小。该电路设计简单,应用广泛,精度较高等特点。 2. 对选用芯片说明 DAC0832是一款常用的数摸转换器,它有两种连接模式,一种是电压输出模式,另外一种是电流输出模式,为了设计的方便,选用电压输出模式,如电路图所示,Iout1和Iout2之间接一参考电压,VREF输出可控制电压信号。它有三种工作方式:不带缓冲工作方式,单缓冲工作方式,双缓冲工作方式。该电路采用单缓冲模式,由电路图可知,由于/W R2=/XFER=0,DAC寄存处于直通状态。又由于ILE=1,故只要在选中该片(/CS=0)的地址时,写入(/WR=0)数字量,则该数字信号立即传送到输入寄存器,并直通至DAC寄存器,经过短暂的建立时间,即可以获得相应的模拟电压,一旦写入操作结束,/WR1和/CS立即变为高电平,则写入的数据被输入寄存器锁存,直到再次写入刷新。 3. 软件系统 软件的设计主要完成三方面的功能: 1.设置电压并且保存,主要是对EEROM的操作。 2.把设置的电压送到DA,主要是对DA的操作。 3.中断显示,把设置的电压显示到LED数码管上。 该数控电压源实现保存最近10电压功能,当打开电源的时候,它显示和输出的必须是上次使用电压大小,所以在EEROM中使用11个地址保存数据,第一个地址保存当前电压编号,大小为1~10。第2个地址~第11个地址连续保存10个电压大小数据。电压编号的大小分别对应到相应地址电压大小。 对软件流程做一下说明:当电源打开的时候,MCU进行复位,寄存器清零。接着电源应该显示和输出上次关机前的电压大小,这时候MCU先读取EEPROM中保存的电压编号,根据电压编号读出对应电压,把该数据送到DA,在转换成BCD码送到显示部分。这时候程序循环检测是否有按键信号,如果KEY1按下,电压编号指向下一个,保存该电压编号,读对应电压,把他送到DA并且显示。如果KEY2按下,当前电压数据加1,相对应输出电压(POWER—OUT引脚)增加0.1V,保存设置电压数据。如果KEY3按下,电压数据减1,输出电压 减少0.1V,保存设置电压数据。 4.电路原理图

可调直流稳压电源的设计说明

. .页脚. 可调直流稳压电源设计报告 任微明(学号:) (物理与电子信息学院 10级科技班, 呼和浩特 010022) 指导教师:高焕生 摘要:主要采用变压器、整流、滤波、稳压的流程思路将输入220V交流电转换成电压3~12V的直流电源。其中,稳压电路采用三端固定稳压器LM317达到稳压效果,因此系统可根据实际需要对其设计进行适当的修改。本系统设计方便简单、易学易改、成本低廉、功能实用。 关键字:变压器;整流;滤波;稳压 1 设计容及要求 1.1 设计目的 1、学习小功率直流稳压电源的设计与调试方法。 2、掌握小功率直流稳压电源有关参数的测试方法。 3、通过集成直流稳压电源的设计、安装和调试,要求学会: (1)选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源; (2)掌握直流稳压电路的调试及主要技术指标的测试方法。 (3)通过电路的设计可以加深对该课程知识的理解以及对知识的综合运用。 1.2 设计容 设计一波形直流稳压电源,满足:当输入电压在220V±10%时,输出直流电压为3~12V。 1.3 设计要求 (1)电源变压器做理论设计; (2)合理选择集成稳压器; (3)完成全电路理论设计、计算机辅助分析与仿真、安装调试、绘制电路图,PCB板;

(4)撰写设计报告、调试总结报告。 2 设计方法与步骤 2.1 设计方法 单元电路设计、PCB板设计、电路的组装与调试。 2.2 设计步骤 (1)功能和性能指标分析:对题目的各项要求进行分析,整理出系统和具体电路设计所需的更具体、更详细的功能要求和技术性指标数据,以求得设计的原始依据。 (2)画出总体电路图,要求按相关规定,布局合理,图面清晰,便于对图的理解和阅读,为组装、调试和维修时做好准备。 (3)按总电路图安装电路,调试并改进。 3 电路的设计 图3 整体电路图 3.1 电源变压器 过整流电路将交流变为脉动的直流电压。由于此脉动的直流压含有较的纹波,必须通过滤波电路加以滤波,从而得到平滑的直流电压。电源变压器的作用是将交流220V的电压变为所需的电压值,然后通过的电压还随电网电压波动、负载何温度的变化而变化。因而在整流、滤波电路之后,还需接稳压电路。稳压电路的作用是当电网电压波动、负载何温度变化时,维持输出直流电压稳定。 3.2 整流电路 利用二极管的单向导电性,将交流电压变成单向脉动电压的电路,称为整流

多量程直流数字电压表

电子技术课程设计报告 专业班级: 学生学号: 学生姓名: 指导教师: 设计时间: 自动化与电气工程学院

设计课题题目: 多量程直流数字电压表 一、设计任务与要求 1.设计并制作一个直流稳压电源,设计要求为 (1) 输入电压为220V (2) 输出电压为±5V 2.设计一个2 13 直流数字电压表,设计要求为 分辨率 (1) 测量量程:基本量程:200mV 0.1mV 扩展量程:2V 1mV 20mV 0.01mV (2) 测量范围: 0mV~2V (3 ) 显示范围:十进制数0~1999 (4) 使用双积分A/D 转换器ICL7107完成直流电压的数字化转换 二、电路原理分析与方案设计 1. 设计要求分析 数字电压表由电阻网络(量程调整)、直流放大(运放组成)、电压极性判断、A/D 转换、数码(液晶)显示等部分组成。 直流数字电压表主要完成对电位器或外部电压的测量与显示。因此,为了适应不同大小的的待测模拟电压信号,应该有测量量程的选择功能。ICL7107是双积分式三位半A/D 转换器,可构成基本量程200Mv,而扩展量程20V 可由电阻电位器分压,2V 量程可由运放放大。 2. 方案设计 (1)±5V 直流稳压电源 首先通过中心抽头的18V 电源变压器,输出电压经过四个二极管组成的桥式整流电路整流后通过电容滤波,然后通过三端稳压管LM7805和KV7905分别对正负电压进行稳压,在对输出电压进行滤波,从而得到较为稳定的±5V 直流稳压电源。 (2)2 13 直流数字电压表 将输入电压分别通过电阻电位器和μA741运放放大器进行缩小和放大,将输出信号输入到ICL7107 A/D 转换器V-IN 端,经过A/D 转换电路、参考电压电路、复位电路、时钟电路等电路完成数据转换及传输,最后通过2 13 数码管进行显示。 三、单元电路分析与设计 1.单元电路原理分析 电源: (1) 电源变压器

电子设计大赛—简易数控直流稳压电源

一、项目参加人员、负责内容以及技术特长: 二、项目背景 数控直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的多功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。普通直流稳压电源品种很多, 在家用电器和其他各类电子设备中,通常都需要电压稳定的直流电源供电。但在实际生活中,都是由220V 的交流电网供电。这就需要通过变压、整流、滤波、稳压电路将交流电转换成稳定的直流电。滤波器用于滤去整流输出电压中的纹波,一般传统电路由滤波扼流圈和电容器组成,若由晶体管滤波器来替代,则可缩小直流电源的体积,减轻其重量,且晶体管滤波直流电源不需直流稳压器就能用作家用电器的电源,这既降低了家用电器的成本,又缩小了其体积,使家用电器小型化。 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。电力电子技术是电能的最佳应用技术之一。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。 随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。这些理论为其后来的发展提供了一个良好的基础。在以后的一段时间里,数控电源技术有了长足的发展。但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、可靠性较差的缺点。因此数控电源主要的发展方向,是针对上述缺点不断加以改善。单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V的数控电源,功率密度达到每立方英寸50W的数控电源。目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。随着人们生活水平的不断提高,数字化控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数控制直流稳压电源就是一个很好的典型例子。但人们对它的要求也越来越高,要为现代人工作、科研、生活提供更好的更方便的设施,就需要从数字电子技术入手,一切向数字化和智能化方向发展。

可调直流稳压电源

要制作可调直流稳压电源,首先来了解一下可调直流稳压电源的基本工作原理。直流稳压电源工作流程为降压、整流(把交流电变直流电),输入滤波、三端稳压器稳压、输出滤波五部分。下面是具体介绍。 220V的交流电从直流稳压电源插头经保险管送到变压器的初级线圈,并从次级线圈感应出经约9V的交流电压送到4个二极管。二极管在电路中的符号有短线的一端称为它的负极(或阴极),有三角前进标志的一端称为它的正极(或阳极)。基本作用是只允许电流从它的正极流向它的负极(即只能按三角标示的方向流动),而不允许从负极流向正极。我们知道,交流电的特点是方向和电压大小一直随时间变化,用通俗的话说,它的正负极是不固定的。但是不管从变压器中出来的两根线中哪根电压高,电流都能而且只能由D3或D4流入右边的电路,由D1或D2流回去。这样,从右边的电路来看,正极永远都是D3和D4连接的那一端,负极永远是D1和D2连接的那一端。这便是二极管整流的原理。 二极管把直流稳压电源交流电方向变化的问题解决了,但是它的电压大小还在变化。而电容器有可以存储电能的特性,正好可以用来解决这个问题。在电压较高时向电容器中充电,电压较低时便由电容器向电路供电。这个过程叫作滤波。图中的C1便是用来完成这个工作的。 经过C1滤波后的比较稳定的直流电送到三端稳压集成电路LM317T的Vin端(3脚)。LM317T是一种这样的器件:由Vin端给它提供工作电压以后,它便可以保持其+V out端(2脚)比其ADJ端(1脚)的电压高1.25V。因此,我们只需要用极小的电流来调整ADJ端的电压,便可在+V out端得到比较大的电流输出,并且电压比ADJ端高出恒定的1.25V。我们还可以通过调整PR1的抽头位置来改变输出电压-反正LM317T会保证接入ADJ端和+V out 端的那部分电阻上的电压为1.25V!所以,可以想到:当抽头向上滑动时,直流稳压电源输出电压将会升高! 图中C2的作用是对LM317T 1脚的电压进行小小的滤波,以提高直流稳压电源输出电压的质量。图中D5的作用是当有意外情况使得LM317T的3脚电压比2脚电压还低的时候防止从C3上有电流倒灌入LM317T引起其损坏。 元件选择: 直流稳压电源大部分元件的选择都有弹性。IC选用LM317T或与其功能相同的其它型号(如KA317等,可向售货员咨询)。直流稳压电源变压器可以选择一般常见的9-12V的小型变压器,二极管选1N4001-1N4007均可。C1选择耐压大于16V、容量470-2200μF的电解电容均可。值得注意的是C2的容量表示法:前两位数表示容量的两位有效数字,第三位表示倍率。如果第三位数字为N,则它的容量为前两位数字乘以10的N次方,单位为PF。如C2的容量为10×104=100000PF=0.1μF。C2选用普通的磁片电容即可。C3的选择类似于C1。电阻选用1/8W的小型电阻。现在的小电阻一般用色环来标示其阻值,如果你还不会识别这种表示法,请看这篇文章-色环电阻的识别。 本直流稳压电源需要的元件都可以在电子商店买到,主要元件清单如下:

基于STC89C52单片机数控直流电压源资料

1 前言 在现代家庭中各种电器的不断出现,并要求着各种不同值的电源出现,使得家庭购买不同值得电源。数字化的也更加贴近人们的生活,因为它更加的直观,易被接受,大家都开始追求数字化的各类电子产品。数控直流电源有着直观,易操作,各种电压集一身,输出精度和稳定性都较高等优点,所以越来越受广大人们的喜爱。以后家里的电视遥控,电动玩具等都可以共用一个电源。 稳压电源按输出电压的类型分为直流稳压电源和交流稳压电源。其中直流稳压电源是电子技术常用的设备之一,直流稳压电源有许多基本功能要求,例如输出电压值能够在额定输出电压值以下任意设定和正常工作;对输出的电压值要求精确的显示和识别。而普通的直流稳压电源或多或少存在这样或那样的问题,他们的电源输出时通过波段开关盒电位器来控制的,当输出电压需要精确输出,或者在一个小范围内微调时,困难相对来说就很大;而且随着使用时间的增加,模拟电路元件在使用过程中难免发生磨损,波段开关与电位器均会或多或少产生接触不良现象,这会造成电压输出的误差。另外,传统的串联型稳压电路构成较为复杂,稳压精度不高。总体来说,传统稳压电源实现方式亟待改进。 现当代社会是信息技术不断发展的社会,模拟技术逐渐被更为优越方便的数字技术取代,大规模的社会化生产也要求更高的技术和效率。众多家用电器以及各类电子电器设备均需要直流稳压电源对其进行供电。而我们生活中用电均为220V的交流供电,这就需要通过变压、整流、滤波、稳压电路将交流电转换为稳定的直流电。滤波器用于滤除整流输出中的纹波,一般传统电路由于滤波扼流圈和电容器组成,若由晶体管滤波器来代替,则可缩小直流电源的体积,减轻其重量,而且晶体管滤波直流电源不需要直流稳压器就能作家用电器的电源,这既降低了家用电器的成本,又降低了其成本,又缩小了其体积,使家用电器小型化。 基于单片机控制的数控直流电压源可以克服稳压电源构成复杂,元器件磨损严重,稳压精度不高,读数不方便等缺点,更稳定更直观的完成模拟稳压电源的任务。而且成本小,经济实惠,便于在大规模的社会生产中采用。所以,对于数控直流电压源的研究与设计进步是技术上的革新,而且有实际的经济性,可以提高生产效率,是现代工业生产应用中的不二选择。

基于单片机的数控电压源课程设计设计

基于单片机的数控电压源课程设计 一.系统硬件设计结构框图 本数控直流稳压电源的设计以一稳压电源为基础,以高性能单片机系统为控制核心,以稳压驱动放大电路、短路保护电路为外围的硬件系统,在检测与控制软件的支持下实现对电压输出的数字控制,通过对稳压电源输出的电压进行数据采样与给定数据比较,从而调整和控制稳压电源的工作状态及监测开关电路的输出电流大小。本数控直流稳压电源实现以下功能:键盘可以直接设定输出电压值;可快速调整电压;LCD显示电压值等。 1.1 8051简介 我们采用8051系列的AT89S51作为CPU,AT89S51是一种带4K字节FLASH可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。 1.2 主要特性 1)与MCS-51兼容; 2)8位字长的CPU; 3)可在线ISP编程的4KB片内FLASH存储器,用于程序存储,可擦写1000次; 4) 256B的片内数据存储器,其中高128字节地址被特殊功能寄存器SFR占用;

5)可编程的32根I/O口线(P0~P3); 6)2个可编程16位定时器; 7)一个数据指针DPTR; 8)1个可编程的全双工串行通信口; 9)具有“空闲”和“掉电”两种低功 耗工作方式; 10)可编程的3级程序锁定位; 11)工作电源的电压为5(1±0.2)V; 12)振荡器最高频率为24MHz; 13)编程频率3 ~24 MHz,编程电流 1mA,编程电压为5V。 1.3芯片引脚排列与名称 DIP封装形式的AT89S51的芯片引脚排 列与名称如图1所示。 VCC:供电电压。 GND:接地。 P0口:P0口为一个8位,并行,图1 AT89S51的芯片引脚排列与名称 漏极开路双向I/O口,作为输出时可驱动8个TTL负载。该口内无上拉电阻,在设计中作为D/A,A/D及液晶显示器的数据口。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4个TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,该口在设计中低四位作为键盘输入口,高四位与RST作为在线编程下载口。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收/输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,可作为输入。在作为输出时,P2口的管脚被外部拉低,将输出电流。该口在设计中作为D/A,A/D及液晶显示器的控制口。 P3口:P3口管脚是带内部上拉电阻的8位双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流,这是由于上拉的缘故。P3口也可作为AT89S51的一些特殊功能口,如下表1所示: 表1 各端口引脚与复用功能表

可调直流稳压电源制作原理

可调直流稳压电源 1、可调直流稳压电源的构成 可调直流稳压电源是由降压、整流、滤波、稳压、调整、滤波、电压指示构成的。 降压的作用是:将输入的220V交流电压降到24V。此时输出的还是交流电压。整流的作用是:将交流电压整流成直流电压。此时输出的是只有正半周的电压。加电指示的作用是:加电后红色指示灯亮。指示稳压电源已经加电。滤波的作用是:将正半周的电压过滤成纹波系数很小的接近直流的电压。稳压的作用是:将纹波系数很小的输出电压稳定在用户需要的直流电压上。输出电压调整:根据用户的需要,调节稳定输出电压值。二次滤波:为了在用电时需要突发大电流时,向负载提供瞬时电流。稳定输出电压。电压指示:将当前输出的电压值用表头显示出来,以便用户对输出电压调整和使用。 其原理框图如图1所示。 图1 稳压电源框图 2、所用的器件和电原理图 组成降压的元件是:变压器B1。组成整流的元件是:D1-D4这四只二极管组成滤波的元件是2200微法、耐压50V的电解电容C1(外形如图3所示)。组成加电指示的元件是:限流电阻R1和红色发光二极管。组成稳压的元件是:可调输出电压的集成三端稳压器LM317。组成输出电压调整元件是:电位器R P(外形图如图4所示)。组成二次滤波元件是:10uF、耐压50V的电解电容C2。组成电压指示元件是:0-24V指针式电压表头。电原理图如图2所示。 图2 可调稳压电路电原理图 图3 电解电容外形图图4 电位器外形

3、电路板布局以及安装 有关电路板上原器件的安装如图5所示。装元器件时应该先装矮的元件,后装高的元件。图(a)是总装配图。图(b)是电位器和发光二极管装配图。图(c)是三端稳压器引脚图。图(d)是表头和输出端子接线图。外形图如图6所示。 (a)(b)(c)(d) 图5装配图 图6 外形图 4、装配顺序及调试方法: 1)首先安装D1-D4构成的电桥。安装完毕后可以从输入端用电10KΩ阻挡正反向测量是否有短路。如果内阻很大则说明没有短路。在接入变压器、开关后插入交流电源。用万用表直流电压50V或数字表的200V档测量输出电压。应该大于30V。 2)上述正确后连接电容C1,连接好后,在用万用表电压档(同上)测试输出电压。注意,电容的极性不可接错,否则电容会爆炸。 3)上述测试无误后连接三端稳压器、发光二极管、电位器和电压指示表头。注意,三端稳压器的引脚不可接错。否则不能输出直流电压。接好后检查无误后可以加电观察输出电压的变化了。调整电位器的旋钮,输出电压就会从1.25V到24V之间发生变化。 做实验时,只要调整到你所需要的输出电压就可以正常使用了。

直流数字电压表毕业设计

毕业设计 姓名:孟冬冬 专业:电气自动化 班级:电气1001班 设计课题:数字电压表的设计指导教师:杨喜录 电子信息工程系印制 二○一二年九月

宝鸡职业技术学院毕业设计任务书 姓名:孟冬冬 专业:电气自动化 班级:电气1001班 设计课题:数字电压表的设计 指导教师:杨喜录 电子信息工程系印制 二○一二年九月

引言 数字电压表是采用数字化电路测量的电压仪表。它以其高准确度、高可靠性、高分辨率、高性价比、读数清晰方便、测量速度快、输入阻抗高等优良特性而倍受人们的青睐。数字电压表是诸多数字化仪表的核心与基础。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表(如:温度计、湿度计、酸度计、重量、厚度仪等),几乎覆盖了电子电工测量、工业测量、自动化仪表等各个领域。因此对数字电压表作全面深入的了解是很有必要的。传统的模拟式(即指针式)电压表已有100多年的发展史,虽然不断改进与完善,仍无法满足现代电子测量的需要,数字电压表自1952年问世以来,显示强大的生命力,现已成为在电子测量领域中应用最广泛的一种仪表。

数字电压表简称DVM (Digital Voltmeter ),它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等领域,显示出强大的生命力。与此同时,由DVM 扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。智能化数字电压表则是最大规模集成电路(LSI )、数显技术、计算机技术、自动测试技术(ATE )的结晶。一台典型的直流数字电压表主要由输入电路、A/D 转换器、控制逻辑电路、计数器(或寄存器)、显示器,以及电源电路等级部分组成。它的数字输出可由打印机记录,也可以送入计算机进行数据处理。 系统概述 数字电压表是将被测模拟量转换为数字量,并进行实时数字显示的数字系统。 该系统(如图1所示)可由MC14433--32 1位A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD 到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED 发光数码管组成。

可调直流稳压电源的工作原理

可调直流稳压电源的工 作原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

可调直流稳压电源设计 摘要 可调直流稳压电源是采用当前国际先进的高频调制技术,其工作原理是将开关电源的电压和电流展宽,实现了电压和电流的大范围调节,同时扩大了目前直流电源供应器的应用。直流稳压电源的控制芯片是采用目前比较成熟的进口元件,功率部件采用现国际上最新研制的大功率器件,可调直流稳压电源设计方案省去了传统直流电源因工频变压器而体积笨重。与传统电源相比高频直流电源就较具有体积小、重量轻、效率高等优点,同时也为大功率直流电源减小体积创造了条件,此电源又称高频可调式开关电源。可调直流稳压电源保护功能齐全,过压、过流点可连续设置并可预视,输出电压可通过触控开关控制。 关键词:开关稳压电源;开关变压器;高频直流电源 目录

1可调直流稳压电源 可调直流稳压电源的工作原理 参数稳压器在输入交流电压150V-260V时,输出稳压在220V效果效于和高于这个范围,其效率要下降。采用单片微机进行第一步控制,使310V以下和90V以上的输入电压,调整控制在190V—250V范围,再用参数稳压器进行稳压效果很好。 由市电输入的交流电压变化波动很大,经过过压吸收滤波电路将高频脉冲等干扰电压滤去后,送入直流开关稳压电源、交流取样电路和控制执行电路。 直流开关稳压电源的功率小,但能把60-320V的交流电压娈换成+5V,+12V,-12V 的直流电压。+5V电压供给单片微机使用,±12V电压供给控制电路的大功率开关模块使用。 单片微机把取样电路采集到的输入电压数据,分析判断并发出控制信号送到触发电路,控制调节输出电压。 控制执行电路由SSR过零开关大功率模块和带抽头的自耦变压器组成。SSR之间采用RC吸收电路吸收过电压和过电流,使SSR在开关时不会损坏。控制执行电路把 90-310V的输入电压控制在190V-240V范围,再送到参数稳压器进行精确稳压。 参数稳压器由电感和电容组成LC振荡器,振荡频率50HZ。无论市电怎么变化,其振荡频率不会改变,因此输出电压不会变化,稳压精度高。即使输入电压波形失真很大,经参数稳压器振荡输出后却是标准的正弦波,因此稳压电源有强的抗干扰能力和净化能力。

积分式直流数字电压表

积分式直流数字电压表 摘要:51系列单片机具有两个以上16通道定时器(TIME0和TIME1),每个通道可选择为输入捕获、输出捕获和PWM方式来测量脉宽,8路8位A/D转换器。当需大于8位的A/D转换时,可以用片内16位的定时器外接运放、比较器和多路开关实现双积分A/D转换。TL082是JFETINPUT运放;LM358作为比较器;MC4066是多路开关。51单片机P1口的P10、P11、P12作为输出,控制MC4066多路开关的输入选择;INT0作为中断输入口,捕捉LM358比较器的输出电平跳变。 关键字:双积分A/D,输出比较,输入捕捉,分辨率

一、系统方案论证与比较 为了完成上面的设计要求,将整个积分式直流数字万用表的设计分为四部分:积分、过零比较部分,控制部分,显示部分和供电部分。原理图如图1.1所示。 图G-1-1 1、单片机的选择 方案一:采用ATMEL公司生产的8位单片机AT89C51作为双积分A/D转换器的核心,此次单片机价格相对便宜,容易购买。此设计中控制功能比较多,因此需要用到的输入输出口比较多, AT89C51足可以满足控制要求,且选用此单片机不需外接扩展电路,因此节省了资源,降低了成本;并且可以达到很高的精度和实现此次设计的各种要求。 方案二:采用MOTOROLA公司生产的8位单片机MC68HC908GP32作为双积分A/D 转换器的核心,该单片机只具有两个输入输出口,虽然也能满足以上各种要求,但需要外接扩展电路,这不但在使用上增加了难度而且也增加了设计成本,浪费了资源。使电路边的比较复杂,在实际调试中也增加了难度。 鉴于以上分析,拟选择方案一。 2、积分器、过零比较器电路 方案一:该方案的系统框图如图1.2所示。运放为LM311、比较器为LM339、多路开关为MC14052。MC68HC908GP32单片机的PTD5、PTD4作为输出控制MC14052多路开关的输入选择。PTD7作为输入口,捕捉LM339比较器的输出跳变。C为积分电容,常取0.1μF左右的聚丙烯电容,R为积分电阻,可取100K左右,Vi为输入电压,-E为负的基准电压。此电路只对输入信号进行了一次信号放大,也就是只进行了一次积分。此电路,积分波形不明显,不容易在示波器上调试出来。 方案二:该方案的系统原理图如图1.3所示。C1为积分电容,常取0.22μF 左右的聚丙烯电容,R2为积分电阻,可取500k左右,U2A为积分运放,U2A、C1、R2构成了积分器,U2B是过零检测运放。VIN为输入电压,VREF为基准电压,AGND 为转换器的参考零点。VREF和参考零点以R9、R10、R11分压产生。TL082是JFETINPUT运放;LM358作为比较器;MC4066是多路开关。此电路有自己单独的基准电压,并且它的基准电压根据测量的不同范围的电压,可以进行调节,因此更

基于单片机简易数控直流电压源的设计

摘要 本设计以AT89S52单片机为核心控制芯片,实现数控直流电源功能的方案。设计采用8位精度的DA转换器DAC0832、三端可调稳压器LM350和一个UA741运算放大器构成稳压源,实现了输出电压范围为+1.4V~+9.9V,电压步进0.1V的数控稳压电源,最大纹波只有10mV,具有较高的精度与稳定性。另外该方案只采用了5个按键实现输出电压的方便设定,具有设定值调整,微调(步进量0.1),粗调(步进量1)三种调整功能,显示部分我们采用了三位一体的数码管来显示输出电压值。我们自行设计了 12V和5V电源为系统供电。该电路的原理是通过MCU控制DA的输出电压大小,通过放大器放大,放大后的电压作为LM350的参考电压,真正的电压还是由电压模块LM350输出。利用5个按钮调整电压、并且通过共阴极三位一体LED显示输出的电压值。设计使用3三位一体数码管,可以显示三位数,一个小数位,比如可以显示5.90V,采用动态扫描驱动方式。与传统的稳压电源相比具有操作方便,电源稳定性高以及其输出电压大小采用数码显示的特点。 关键词:数控,步进,三端可调稳压器 I

ABSTRACT The design is with the MCUAT89S52 for the core control chip,which carry out the project that the function of the number controls the direct current power supply.Designed with the precision of eight DA converter DAC0832, three-adjustable regulators LM350 and a UA741 Operational Amplifiers constitute Regulators source, the output voltage range of +1.4 V ~ +9.9 V, 0.1V voltage step NC Regulators Power, it has with high precision and stability and only have the biggest ripple of 10 mV. Meanwhile, the program used only five keys to achieve the convenience of the output voltage setting ,with setting value adjustments. It has three kinds of adjust function,which can carry out micro-adjustment (Stepping volume 0.1)and the coarse adjustment (Stepping volume 1). The show part we have adopted a three-dimensional digital pipe to show the output voltage value. And we designed the 12V and 5V power supply system for electricity. The principle of that electric circuit was that the output voltage size which passes the MCU to control DA, passing the amplifier amplification, and the voltage is the reference voltage of the LM350. And the real voltage is still the LM350 outputs are from the voltage mold piece. Making use of five buttons to adjustment voltages, and pass the total cathode Christian Trinity LED to display the output's voltage .In this design I used 3 piece code tubes, which can show three position numbers, one of them is a fraction position. for example ,it can show a 5.90 Vs. In this design I adopt the scan to drive way is dynamic state sweep. With traditional steady press power supply to compare to have an operation convenience, the power supply stability high characteristics, its exportation electric voltage size adoption figures show. Keywords: Numerical Control, Stepping,Three-adjustable regulators II

大功率可调直流电源

第1章前言 1.1电力电子技术发展史 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的,集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 1、整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了一股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 2、逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 3、变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频

直流数字电压表设计说明书

专业资料 《电子测量技术》直流数字电压表设计 院系软件职业技术学院 专业应用技术2班 学生姓名郭妍 学号 5103130016

目录 一、题目及设计要求……………………………………………………………………3页 二、主要技术……………………………………………………………………………3页 三、方案选择…………………………………………………………………………… 3页 四、电路设计原理……………………………………………………………………… 3页 4.1 模数转换………………………………………………………………………… 4页 4.2 数字处理及控制……………………………………………………………………5页 五、电路图分介绍……………………………………………………………………… 5页 5.1 AT89C51介绍………………………………………………………………………6页 5.2排阻介绍……………………………………………………………………………7页 5.3 晶振电路……………………………………………………………………………7页 5.4 复位电路……………………………………………………………………………8页 5.5 ADC0808介绍………………………………………………………………………8页 5.6共阴极数码管………………………………………………………………………9页 5.7模拟输入电路………………………………………………………………………9页5.8总设计图……………………………………………………………………………10页 5.9仿真图………………………………………………………………………………10页 六、设计程序……………………………………………………………………………11页 七、心得体会……………………………………………………………………………14 页

相关文档