文档库 最新最全的文档下载
当前位置:文档库 › 判别分析(第3节_贝叶斯判别法1)

判别分析(第3节_贝叶斯判别法1)

判别分析(第3节_贝叶斯判别法1)
判别分析(第3节_贝叶斯判别法1)

Bayes 判别分析及应用 201009014119

Bayes 判别分析及应用 班级:计算B101姓名:孔维文 学号201009014119 指导老师:谭立云教授 【摘 要】判别分析是根据所研究个体的某些指标的观测值来推断该个体所属类型的一种统计方 法,在社会生产和科学研究上应用十分广泛。在判别分析之前,我们往往已对各总体有一定了解,样品的先验概率也对其预测起到一定作用,因此进行判别时应考虑到各个总体出现的先验概率;由于在实际问题中,样品错判后会造成一定损失,故判别时还要考虑到预报的先验概率及错判造成的损失,Bayes 判别就具有这些优点;然而当样品容量大时计算较复杂,故而常借助统计软件来实现。本文着重于Bayes 判别分析的应用以及SPSS 的实现。 【关键词 】 判别分析 Bayes 判别 Spss 实现 判别函数 判别准则 Class: calculation B101 name: KongWeiWen registration number 201009014119 Teacher: TanLiYun professor .【Abstract 】Discriminant analysis is based on the study of certain indicators of individual observations to infer that the individual belongs as a type of statistical methods in social production and scientific research is widely used. In discriminant analysis, we often have a certain understanding of the overall sample of the a priori probability of its prediction play a role, it should be taken into account to determine the overall emergence of various prior probability; because of practical problems, samples will result in some loss of miscarriage of justice, so identification must be considered when the prior probability and wrongly predicted loss, Bayes discriminant to have these advantages; However, when the sample is large computing capacity of more complex, often using statistical software Guer to achieve. This article focuses on the application of Bayes discriminant analysis, and implementation of SPSS. 【Key words 】 Discriminant analysis; Bayes discriminant; Spss achieve; Discriminant function; Criteria; 1.1.1 判别分析的概念 在科学研究中,经常会遇到这样的问题:某研究对象以某种方式(如先前的结果或经验)已划分成若干类型,而每一种类型都是用一些指标T p X X X X ),,(21 来表征的,即不同类型的X 的观测值在某种意义上有一定的差异。当得到一个新样品(或

贝叶斯分析

第四章贝叶斯分析 Bayesean Analysis §4.0引言 一、决策问题的表格表示——损失矩阵 对无观察(No-data)问题a=δ 可用表格(损失矩阵)替代决策树来描述决策问题的后果(损失): 或 损失矩阵直观、运算方便 二、决策原则 通常,要根据某种原则来选择决策规则δ,使结果最优(或满意),这种原则就叫决策原则,贝叶斯分析的决策原则是使期望效用极大。本章在介绍贝叶斯分

析以前先介绍芙他决策原则。 三、决策问题的分类: 1.不确定型(非确定型) 自然状态不确定,且各种状态的概率无法估计. 2.风险型 自然状态不确定,但各种状态的概率可以估计. 四、按状态优于: l ij ≤l ik ?I, 且至少对某个i严格不等式成立, 则称行动a j 按状态优于a k §4.1 不确定型决策问题 一、极小化极大(wald)原则(法则、准则) a 1a 2 a 4 min j max i l (θ i , a j ) 或max j min i u ij 例: 各行动最大损失: 13 16 12 14 其中损失最小的损失对应于行动a 3 . 采用该原则者极端保守, 是悲观主义者, 认为老天总跟自己作对. 二、极小化极小 min j min i l (θ i , a j ) 或max j max i u ij 例:

各行动最小损失: 4 1 7 2 其中损失最小的是行动a 2 . 采用该原则者极端冒险,是乐观主义者,认为总能撞大运。 三、Hurwitz准则 上两法的折衷,取乐观系数入 min j [λmin i l (θ i , a j )+(1-λ〕max i l (θ i , a j )] 例如λ=0.5时 λmin i l ij : 2 0.5 3.5 1 (1-λ〕max i l ij : 6.5 8 6 7 两者之和:8.5 8.5 9.5 8 其中损失最小的是:行动a 4 四、等概率准则(Laplace) 用 i ∑l ij来评价行动a j的优劣 选min j i ∑l ij 上例: i ∑l ij: 33 34 36 35 其中行动a1的损失最小五、后梅值极小化极大准则(svage-Niehans) 定义后梅值s ij =l ij -min k l ik 其中min k l ik 为自然状态为θ i 时采取不同行动时的最小损失.

两类正态分布模式的贝叶斯判别

两类正态分布模式的贝叶斯判别 硕633 3106036072 赵杜娟 一.实验目的 1.理解贝叶斯判别原则,编写两类正态分布模式的贝叶斯分类程序; 2.了解正态分布模式的贝叶斯分类判别函数; 3.通过实验,统计贝叶斯判别的正确率。 二.实验原理 (1)贝叶斯判别原则 对于两类模式集的分类,就是要确定x 是属于1ω类还是2ω类,这要看x 来自1ω类的概率大还是来自2ω类的概率大,根据概率的判别规则,可以得到: 如果)|()|(21x P x P ωω> 则 1ω∈x 如果)|()|(21x P x P ωω< 则 2ω∈x (1.1) 利用贝叶斯定理,可得 ) () ()|()|(x p P x p x P i i i ωωω= 式中,)|(i x p ω亦称似然函数。把该式代入(1.1)式,判别规则可表示为: )()|()()|(2211ωωωωP x p P x p > 则 1ω∈x )()|()()|(2211ωωωωP x p P x p < 则 2ω∈x 或写成: ) () ()|()|()(122112ωωωωP P x p x p x l > = 则 1ω∈x ) () ()|()|()(122112ωωωωP P x p x p x l < = 则 2ω∈x (1.2) 这里,12l 称为似然比,2112)()(θωω=P P 称为似然比的判决阈值。该式称为贝 叶斯判别。

(2)正态分布模式的贝叶斯分类器判别原理 具有M 种模式类别的多变量正态分布的概率密度函数为: )]()(2 1 exp[) 2(1)|(12 1 2 i i T i i n i m x C m x C x P ---= -πω 2,1=i (1.3) 式中,x 是n 维列向量; i m 是n 维均值向量; i C 是n n ?协方差矩阵;i C 为矩 阵i C 的行列式。且有 {}i i m E x =; ()() { }T i i i i m x m x E C --=;{}i E x 表示对类 别属于i ω的模式作数学期望运算。 可见,均值向量i m 由n 个分量组成,协方差矩阵i C 由于其对称性故其独立元素只有 2)1(+n n 个,所以多元正态密度函数完全由2 ) 1(++n n n 个独立元素所确定。取自一个正态总体的样本模式的分布是聚集于一个集群之内,其中心决定于均值向量,而其分布形状决定于其协方差矩阵,分布的等密度点的轨迹为超椭圆,椭圆的主轴与协方差矩阵的本征向量的方向一致,主轴的长度与相应的协方差矩阵的本征值成正比。 类别的判别函数可表示为:)()|()(i i i P x P x d ωω= 对于正态密度函数,可对判别函数取自然对数,即: )(ln )]|(ln[)(i i i P x P x d ωω+= 将(1.3)代入上式,简化后可以得到: {})()(2 1 ln 21)(ln )(1i i T i i i i m x C m x C P x d ----=-ω 这是正态分布模式的贝叶斯判别函数。显然,上式表明)(x d i 是超二次曲面,所以对于两类正态分布模式的贝叶斯分类器,两个模式类别之间用一个二次判别界面分开,就可以求得最优的分类效果。 对于两类问题,判别界面方程为:()()120d x d x -= 即:)()|(11ωωP x P 0)()|(22=-ωωP x P 判别条件为: 如果0)()(21>-x d x d , 则1ω∈x 如果0)()(21≤-x d x d , 则2ω∈x

Bayes判别

§5.2Bayes 判别 1. Bayes 判别的基本思想 假设已知对象的先验概率和“先验条件概率”, 而后得到后验概率, 由后验概率作出判别. 2. 两个总体的Bayes 判别 (1) 基本推导 设概率密度为1()f x 和2()f x 的p 维总体12,G G 出现的先验概率为

1122(),()p P G p P G ==(121p p +=) 先验概率的取法: (i) 121 2 p p == , (ii) 12 121212 ,n n p p n n n n ==++, 一个判别法 = 一个划分=12(,)R R =R 1212,,p R R R R =?=?=?R 距离判别中

112212{|(,)(,)} {|(,)(,)} R d G d G R d G d G =≤=>x x x x x x 判别R 下的误判情况讨论 2 1(2|1,)()d R P f =?R x x , 或 1 2(1|2,)()d R P f =?R x x 代价分别记为 (2|1),(1|2),(1|1)0,(2|2)0c c c c ==,

在得新x 后, 后验概率为 1111122() (|)()()p f P G p f p f = +x x x x 2221122() (|)()() p f P G p f p f = +x x x x (i) 当(1|2)(2|1)c c c ==时, 最优划分是 112212{:(|)(|)} {:(|)(|))} R P G P G R P G P G =≥?? =

贝叶斯算法原理分析

贝叶斯算法原理分析 Bayes法是一种在已知先验概率与条件概率的情况下的模式分类方法,待分样本的分类结果取决于各类域中样本的全体。 Bayes方法的薄弱环节在于实际情况下,类别总体的概率分布和各类样本的概率分布函数(或密度函数)常常是不知道的。为了获得它们,就要求样本足够大。另外,Bayes法要求表达文本的主题词相互独立,这样的条件在实际文本中一般很难满足,因此该方法往往在效果上难以达到理论上的最大值。 1.贝叶斯法则 机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设。 最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。 2.先验概率和后验概率 用P(h)表示在没有训练数据前假设h拥有的初始概率。P(h)被称为h的先验概率。先验概率反映了关于h是一正确假设的机会的背景知识,如果没有这一先验知识,可以简单地将每一候选假设赋予相同的先验概率。类似地,P(D)表示训练数据D的先验概率,P(D|h)表示假设h成立时D的概率。机器学习中,我们关心的是P(h|D),即给定D时h的成立的概率,称为h的后验概率。 3.贝叶斯公式 贝叶斯公式提供了从先验概率P(h)、P(D)和P(D|h)计算后验概率P(h|D)的方法:p(h|D)=P(D|H)*P(H)/P(D) ,P(h|D)随着P(h)和P(D|h)的增长而增长,随着P(D)的增长而减少,即如果D独立于h时被观察到的可能性越大,那么D对h的支持度越小。 4.极大后验假设 学习器在候选假设集合H中寻找给定数据D时可能性最大的假设h,h被称为极大后验假设(MAP),确定MAP的方法是用贝叶斯公式计算每个候选假设的后验概率,计算式如下: h_map=argmax P(h|D)=argmax (P(D|h)*P(h))/P(D)=argmax P(D|h)*p(h) (h属于集合H)

贝叶斯判别习题

1. 办公室新来了一个雇员小王,小王是好人还是 坏人大家都在猜测。按人们主观意识,一个人是好人或坏人的概率均为0.5。坏人总是要做坏事,好人总是做好事,偶尔也会做一件坏事,一般好人做好事的概率为0.9,坏人做好事的概率为0.2,一天,小王做了一件好事,小王是好人的概率有多大,你现在把小王判为何种人。 解:A :小王是个好人 a :小王做好事 B :小王是个坏人 B :小王做坏事 ()(/)(/)()(/)()(/)P A P a A P A a P A P a A P B P a B = +0.5*0.9 0.820.5*0.90.5*0.2==+ ()(/)0.5*0.2 (/)()(/)()(/)0.5*0.90.5*0.2 P B P a B P B b P A P a A P B P a B = =++=0.18 0.82>0.18 所以小王是个好人、 2. 设 m = 1,k = 2 ,X 1 ~ N (0,1) ,X 2 ~ N (3,2 2 ) ,试就C(2 | 1) = 1,C(1 | 2) = 1,且不考虑先验概率的情况下判别样品

2,1 属于哪个总体,并求出 R = (R1, R2 ) 。 解: 2222 121/821 ()()/}1,2 21(2)(20)}0.05421(2)(23)/4}0.176 2i i i P x x i P P μσ--= --== --===--== 由于1(2)P <2(2)P ,所以2属于2π 21/2 121/221(1)(10)}0.242 21(1)(13)/4}0.120 2P P --= --===--== 1(1)P >2(1)P ,所以1属于1π 由 1()P x 22211 }()(3)/4}22x P x x -==-- 即221 exp{}2x -=21exp{(69)}8 x x --+ 2211 ln 2(69)28 x x x -=--+ 解得 1 x =1.42 2 x =-3.14.所以 R=([-3.41,1.42],(-∞,-3.41)U(1.42,+∞)). 3.已知1π,2π的先验分布分别为1q =3 5,2q =25 ,C(2|1)=1,C(1|2)=1,且 11,01()2,120,x x f P x x x <≤??==-<≤???其他 22 (1)/4,13()(5)/4,350,x x f P x x x -<≤?? ==-<≤??? 其他 使判别1x = 95 ,2x =2所属总体。 解:1p (9/5)=2-9/5=1/5 1p (2)=2-2=0 2p (9/5)=(9/5-1)/4=1/5

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

典型判别分析与贝叶斯判别的区别

典型判别分析与贝叶斯判别的区别 1.原理不同 典型判别是根据方差分析思想,进行投影,将原来一个维度空间的自变量组合投影到另一维度空间,寻找一个由原始变量组成的线性函数使得组间差异和组内差异的比值最大化。根据样本点计算判别函数,计算判别函数到各类中心的欧式距离,取距离最小的类别。 贝叶斯判别是是利用已知的先验概率去推证将要发生的后验概率,就是计算每个样本的后验概率及其判错率,用最大后验概率来划分样本的分类并使得期望损失达到最小 2.前提条件不同 典型判别不考虑样本的具体分布,只求组间差异和组内差异的比值最大化 贝叶斯判别从样本的多元分布出发,充分利用多元正态分布的概率密度提供的信息计算后验概率,因此需要样本数据服从多元正态分布,方差齐性等。 3.产生的判别函数不同 典型判别根据K类最多产生K-1个判别函数 贝叶斯判别根据K类最多可产生K个判别函数 先验概率在判别分析中的作用 1.所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度,是根据以往经验和分析得到的概率。所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果,它是更接近于实际情况的概率估计。贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断 2.样品的先验概率对预测有一定的作用,反应样本分布的总体趋向性。被判断的个案应该属于先验概率最大总体的概率应该高一些,贝叶斯考虑了先验概率的影响提高判别的敏感度,同时利用先验概率可以求出后验概率(基于平均损失函数)和误判率,从而进行判别分析,充分利用数据的概率密度分布,判别效率高。样品归于概率大的类别。 3.这样使误判平均损失最小。既考虑到不同总体出现机会的差异、各错误判断造成损失的不同,又充分尊重了每个总体的分布状态 判别准则的评价 刀切法:基本思想是每次剔除训练样本中的一个样本,利用其余容量的训练样本建立判别函数,再用所建立的判别函数对删除的那个样本做判别,对训练样本中的每个样品重复上述步骤,已其误判的比例作为误判概率的估计。 判别分析结果 Eigenvalues a First 2 canonical discriminant functions were used in the analysis. 1.判别函数的特征根,方差百分比,累计方差百分比

贝叶斯分析在风险型决策中的应用

贝叶斯分析在风险型决策中的应用 姓名:王义成 班级:12级数学与应用数学四班 摘要:本文介绍了风险型决策的概念,特点及公式,简述了贝叶斯分析的基本理论,并通过一个具体生活实例,阐明了贝叶斯分析在风险型决策中的应用。 关键词:风险型决策贝叶斯分析期望损失 引言:决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 一、风险型决策 风险决策就是不完全信息下的决策,是根据风险管理的目标,在风险识别和风险衡量的基础上,对各种风险管理方法进行合理的选择和组合,并制定出风险管理的具体方案的过程。风险决策贯穿于整个风险管理过程,它依据对风险和损失的科学分析选择合理的风险处理技术和手段,从若干备选方案中选择一个满意的方案。 风险型决策的特点是:决策人无法确知将来的真实自然状态,但他能给出各种可能出现的自然状态,还可以给出各种状态出现的可能性,即通过设定各种状态的(主观)概率来量化不 确定性。构成一个统计决策有三个基本要素:①可控参数统计结构(Α,Β,{pθ:θ∈Θ}, 其中参数空间中每个元素就是自然界或社会可能处的状态;②行动空间(?,Β?),其中?={a}是为解决某统计决策问题时,人们对自然界(或社会)可能作出的一切行动的全体。?中的每个元素表示一个行动。是?上的某个σ代数,这是为以后扩充概念而假设的;③损失函数L(θ,a),它是定义在Θ×?上的二元函数。从这三个要素出发,可以得到不同的风险情景空间。例如,要开发一种新产品,在市场需求无法准确预测的情况下,要确定生产或不生产,生产多少等问题就是一个风险决策问题。状态集就是市场销售情况,如销路好、销路一般、销路差等,这些状态不受决策者控制,而决策者做出某种决策后,后果也不确定,带有风险。所以,在风险型决策中,准确而又充分地估计信息的价值,合理地在信息的收集上增加投入来获取不断变化的市场信息,及时掌握各种自然状态的发生情况,可以使决策方案的选择更可靠,进而增加经济效益。 二、贝叶斯风险与贝叶斯规则 ⑴风险函数 给定自然状态θ,采取决策规则δ时损失函数L(θ,δ(x)),对随机试验后果x的期望值成为风险函数(risk function),记作R(θ,δ) ⑵贝叶斯风险 当自然状态的先验概率为π(θ),决策人采用策略δ时,风险函数R(δ,θ),关于自然状态θ的期望值称为贝叶斯风险,记作R(π,δ)如果R(π,δ1)< R(π,δ2)则称 记作δ1>δ2 策略δ1优于δ 2, ⑶贝叶斯决策规则 先验分布为π(θ)时,若策略空间?存在某个策略δπ,能够使?δ∈?,有R π,δπ≤ R π,δ ,则称δπ是贝叶斯规则,亦称贝叶斯策略。

贝叶斯分析(doc 18页)

贝叶斯分析(doc 18页)

第四章贝叶斯分析 Bayesean Analysis §4.0引言 一、决策问题的表格表示——损失矩阵 对无观察(No-data)问题a=δ 可用表格(损失矩阵)替代决策树来描述决策问题的后果(损失): 或 损失矩阵直观、运算方便

二、决策原则 通常,要根据某种原则来选择决策规则δ,使结果最优(或满意),这种原则就叫决策原则,贝叶斯分析的决策原则是使期望效用极大。本章在介绍贝叶斯分析以前先介绍芙他决策原则。 三、决策问题的分类: 1.不确定型(非确定型) 自然状态不确定,且各种状态的概率无法估计. 2.风险型 自然状态不确定,但各种状态的概率可以估计. 四、按状态优于: l ij ≤l ik ?I, 且至少对某个i严格不等式成立, 则称行动a j 按状态优于a k §4.1 不确定型决策问题 一、极小化极大(wald)原则(法则、准则) a 1a 2 a 4 min j max i l (θ i , a j ) 或max j min i u ij 例: a 1a 2 a 3 a 4 θ 1 10 8 7 9 θ 2 4 1 9 2 θ 3 13 16 12 14 θ 4 6 9 8 10 各行动最大损失: 13 16 12 14

用 i ∑l ij来评价行动a j的优劣 选min j i ∑l ij 上例: i ∑l ij: 33 34 36 35 其中行动a1的损失最小五、后梅值极小化极大准则(svage-Niehans) 定义后梅值s ij =l ij -min k l ik 其中min k l ik 为自然状态为θ i 时采取不同行动时的最小损失. 构成后梅值(机会成本)矩阵S={s ij } m n ? ,使后梅值极小化极大,即: min max j i s ij 例:损失矩阵同上, 后梅值矩阵为: 3 1 0 2 3 0 8 1 1 4 0 2 0 3 2 4 各种行动的最大后梅值为: 3 4 8 4 其中行动a1 的最大后梅值最小,所以按后梅值极小化极大准则应采取行动1. 六、Krelle准则: 使损失是效用的负数(后果的效用化),再用等概率(Laplace)准则. 七、莫尔诺(Molnor)对理想决策准则的要求(1954) 1.能把方案或行动排居完全序; 2.优劣次序与行动及状态的编号无关; 3.若行动a k 按状态优于a j ,则应有a k 优于a j ; 4.无关方案独立性:已经考虑过的若干行动的优劣不因增加新的行动而改变;

判别分析讲解

判别分析 1.判别分析的适用条件 (1)自变量和因变量间的关系符合线性假设。 (2)因变量的取值是独立的,且必须是事先就己经确定。 (3)自变量服从多元正态分布。 (4)所有自变量在各组间方差齐,协方差矩阵也相等。 (5)自变量间不存在多重共线性。 2.违背条件时的处理方法 (1)当样本的多元正态分布假设不能满足的时候采取的措施和方法如下: <>如果数据的超平面是若干分段结构的话,采用分段判别分析。 <>如果数据满足方差和协方差的齐次性可以采用距离判别分析、经典判别分析、贝叶斯判别分析中的任何一种,因为此时三者是等价的,建议使用经典判别分析。 <>如果数据不满足方差和协方差的齐次性,则采用经典判别分析、非参数判别分析、距离判别分析,这些方法无此适用条件。 <>进行变量变换。 (2)方差和协方差的齐次性不能满足的时候可以采取的措施如下: <>增加样本,这有时可以使其影响减小。 <>慎重的进行变量变换。 <>采用经典判别分析、非参数判别分析、距离判别分析,这些方法无此适用条件。 <>在合乎总体实际情况的前提下,保证各个分组的样本量一样,判别分析中分组之间样本量一样可以带来以下几个好处:使得结果与方差齐次性假设不会偏离得太大;F检验时第 二类错误(实际上为虚假的条件下正确的拒绝了原假设的概率)得到减小;使得均值更加容易比较和检验。 <>要是样本服从多元正态分布,采用二次判别,但是应该注意到二次判别分析没有计算判错率和统计检验的公式。 (3)存在多重共线性时可以采取的措施如下: <>增加样本量。 <>使用逐步判别分析。 <>采用岭判别分析。 <>对自变量进行主成分分析,用因子代替自变量进行判别分析。 <>通过相关矩阵结合实际的理论知识删去某些产生共线性的自变量。显然,上述措施和线性回归中对共线性的处理方式是非常类似的。 (4)当线性假设被违反的时候可以采取的措施如下: <>采用二次判别分析。 <>K最近邻判别分析或核密度判别分析两种非参数判别分析。 <>离散型判别分析或混合型判别分析。 3.典型判别分析的基本原理 试图找到一个由原始自变量组成的线性函数使得组间差异和组内差异的比值最大化。所谓Fisher判别法,就是一种先投影的方法。考虑只有两个(预测)变量的判别分析问题。假定这里只有两类。数据中的每个观测值是二维空间的一个点。见图(下一张幻灯片)。这里只有两种已知类型的训练样本。其中一类有38个点(用“o”表示),另一类有44个点(用“*”表示)。按照原来的变量(横坐标和纵坐标),很难将这两种点分开。于是就寻找一个方向,也就是图上的虚线方向,沿着这个方向朝和这个虚线垂直的一条直线进行投影会使得这两类分得最清楚。可以看出,如果向其他方向投影,判别效果不会比这个好。有了投影之后,

贝叶斯判别、费希尔判别法的计算机操作及结果分析

贝叶斯判别、费希尔判别法的计算机 操作及结果分析 一、实验内容、目标及要求 (一)实验内容 选取140家上市公司作为样本,其中70家为由于“财务状况异常”而被交易所对其股票实行特别处理(Special Treatment,简称ST)的公司,另外70家为财务正常的公司。为了研究上市公司发生财务困境的可能性,以“是否被ST”为分组变量,选择资产负债率、总资产周转率和总资产利润率几个财务指标作为判别分析变量,这三个指标分别从上市公司的偿债能力、资产管理能力和获利能力三个不同的角度反映了企业的财务状况。(二)实验目标 贝叶斯判别、费希尔判别法的计算机操作及结果分析。 (三)实验要求 要求学生能熟练应用计算机软件进行判别分析并对结果进行分析,培养实际应用能力。 二、实验准备 (一)运行环境说明 电脑操作系统为Windows XP及以上版本,所需软件为SPSS 16.0。

(二)基础数据设置说明 将数据正确导入SPSS,设置相应的变量值。 三、实验基本操作流程及说明 (一)系统界面及说明 同实验一。 (二)操作步骤 1. 选择菜单项Analyze→Classify→Discriminate,打开Discriminate Analysis对话框,如图4-1。将分组变量st移入Grouping Variable列表框中,将自变量x1-x3选入Independents列表框中。 选择Enter independents together单选按钮,即使用所有自变量进行判别分析。若选择了Use stepwise method单选按钮,则可以根据不同自变量对判别贡献的大小进行变量筛选,此时,对话框下方的Method按钮被激活,可以通过点击该按钮设置变量筛选的方法及变量筛选的标准。 图4-1 Discriminate Analysis对话框

贝叶斯判别函数和决策面.docx

实验一贝叶斯判别函数和决 策面 一、实验结果 1、第一种情况:^.= cr2/,z = 1,2,L 决策面如图1所示: 从图1可以看出,各类样木落入以坷为中心的同样大小的一些超球体内,两类的决策而是一个超平而。当两类的先验概率相等,P(?) = P(?)二0.5时,决策面通过绚与叫连线屮点并与连线正交;当两类先验概率不相等,P(?) 二0.2 , P(?)二0.8时,决策面仍通过坷与弘2连线并与连线止交,但向先验概率较小的类偏移。 2、第二种情况:=; 2 ' i=l,2,如=;‘ “2 二决策面如图2所不: pv/1=0.2, pw2=0.8时'决策面 pw1=0.2/ pw2=0.8时,槪率密度及次策面 0.15 0.05 pw1=0.5^ pw2=0.5时,槪率密度及次策面 1 1=1,2,"产3

从图2可以看出,各类样木落入以冷为中心的同样大小的一些超椭球内,两 类的决策面是一个超平面。当两类的先验概率相等,P(?)二P(?)二0.5时,决 策血通过旳与u 2连线中点;当两类先验概率不相等,戶(?)二0?2,卩(5)二0?8 时,决策面仍通过绚与“2连线,但向先验概率较小的类偏移。 3、第三种情况: ,z, j = 1,2,L ,c '5 0_ _ 1 0_ T _5_ ,11\ — ,= 0 5_ 厶2 _0 1 1 _3_ Z _3_ pw1=0.2, pw2=0.8时,槪潔密度及决策面 pw1=0.2, pw2=0.8时,块策 面 pw1=0.5. pv/2=05时,槪潔密度及决策 面

如图3-1所示,当各个随机变量的方差类内相等、类间不相等时,决策而是 是一个超球面,投影是圆,且将方差较小的类包围。当两类先验概率和等时,决 策面过吗与“2连线屮点,当两类先验概率不相等时,决策而偏向先验概率小 的类。 1 u x = 1 3 如图3-2所示,当两个随机变量各类方差都不相等时,概率密度曲线是椭圆, 决策面也是椭圆。当两类先验概率不相等时,决策面会向偏先验概率小的类。 「10] 「10] 「1] 「5「 ⑶工计0 5f 工2计° 1}坷甘 鬥3. 0.3 0 u 2 pw1=0.2^ pw2=0.8B 寸,概率密度及决茉面 pw1=O2, pw2=08时,决策面 pw1=0.5> pw2=0.5时,概率密度及决茉面

杏种质资源测评

16个仁用杏种质资源测评 【摘要】我们对中仁一号、优1等16个仁用杏品种经过10余年的观测,并对其进行种质资源性状测评,从中得出丰产性突出的有3个品种,杏仁单重超过0.9克的有3个品种,核壳厚度≤1mm 的有4个,出仁率≥40%有2个,综合抗寒性较强的品种有7个,为仁用杏育种材料选择提供了依据和参考。 【关键词】仁用杏;种质;资源;测评 仁用杏是我国重要的生态经济型树种和木本粮油经济林树种,也是我国特有的高创汇率的土特林产品。仁用杏树耐旱、抗寒、耐瘠薄,栽培技术容易掌握,管理省工,结果早,受益快,经济寿命长,被群众誉为“铁杆庄稼”或“绿色银行”[1],是丘陵、山区和沙区重要的经济树种之一。随着市场需求变化,原有仁用杏品种壳厚,出核率低,抗倒春寒能力差,不能满足栽培要求和市场需求。迫切需要选育出新的仁用杏优良品种,以适应市场的变化。为此我们于1996年开始在国内收集仁用杏优良种质资源,栽植于嵩县德亭乡杨湾村朱文献承包的果园内。通过10余年的栽培,对其中的16个仁用杏品种,从丰产性,早实性、抗逆性、果实经济性状等方面进行比较,发掘和利用仁用杏相关的有利基因和特异种质资源[2],为仁用杏新品种育种材料选择提供了依据和参考。 1 仁用杏种质资源的管理 洛阳嵩县德亭乡杨湾村朱文献承包的果园内,位于n34°07’、

e114°45,海拔280m,属浅山丘陵区,年平均温度14.7℃,≥10°c日温的持续日数218天,活动积温4673°c;全年无霜期239天;年平均降水量610mm;全年日照时数为2141.7h,土壤为褐土,ph 值为7.9。我们把16个仁用杏品种,每品种高接1~3株,砧木为龙王帽,按株行距3m×4m定植。按照小冠疏层形整形。每年落叶期冬剪,春季发芽前喷布3~5波美度石硫合剂。开花期、膨果期、硬核期、落叶期分别灌水,生长期及时剪除陡长枝,正常防治病害虫。每年调查各品种物候期,结果量,果实性状,观察各品种适应性和抗性。 2 种质测评方法 2.1 丰产性测评的方法 果实鲜果质量测定:对每个品种每株每年鲜果实际产量称重,种核质量测定:每品种每株每年种核晒干后称重,种核晒干的标准含水≤8%,求出核率,利用计算公式:v%=w1w ×100%,v%指出核率;w指每品种,每株,每年鲜果实际质量;w1指每品种,每株,每年种核晒干后的实际质量。 2.2 果实经济性状测评方法 对干核随机抽取1kg,若单株产量不足1kg,全部称重处理,用称重法测取单核重后,人工砸取种仁,用天平再称种仁的质量,求出仁率,计算公式:v%=w1w×100%,v%表示出仁率,w为抽取杏核质量,w1为砸取杏仁质量;核壳厚度用游标卡尺测量;种仁营养主要成分粗脂肪由索氏抽提法测定,蛋白质由凯氏定氮法测定,糖类

贝叶斯数据分析

步骤: 1 序列的比对,然后将比对好的序列转化成.nex格式 2 运行MrBayes,简单步骤如下:(依次输入命令,完成简单也最常用的分 析):Execute filename.nex,打开待分析文件,文件必须和mrbayes程序在同一目录下。Lset nst=6 rates=invgamma,该命令设置进化模型为with gamma-distributed rate variation across sites和a proportion of invariable sites的GTR模型。模型可根据需要更改,不过一般无须更改。 3 mcmc ngen=10000 samplefreq=10,保证在后面的可能性分布中probability distribution至少取到1000个样品。默认取样频率:every 100th generation。 4 如果分裂频率分支频率split frequencies的标准偏差standard deviation在100,000代generations以后低于0.01,当程序询问:“Continue the analysis? (yes/no)”,回答no;如果高于0.01,yes继续直到该值低于0.01。 5 sump burnin=250(在此为1000个样品,即任何相当于你取样的25%的值),参数总结summarize the parameter,程序会输出一个关于样品(sample)的替代模型参数的总结表,包括mean,mode和95 % credibility interval of each parameter,要保证所有参数PSRF(the potential scale reduction factor)的值接近1.0,如果不接近,分析时间要延长。 6 sumt burnin=250,总结树summarize tree。程序会输出一个具有每一个分支的posterior probabilities的树以及一个具有平均枝长mean branch lengths的树。这些树会被保存在一个可以由treeview等读取的树文件中。

Bayes_判别分析及应用论文

Bayes判别分析及应用 班级:计算B101姓名:孔维文学号201009014119 指导老师:谭立云教授 【摘要】判别分析是根据所研究个体的某些指标的观测值来推断该个体所属类型的一种统计方法,在社会生产和科学研究上应用十分广泛。在判别分析之前,我们往往已对各总体有一定了解,样品的先验概率也对其预测起到一定作用,因此进行判别时应考虑到各个总体出现的先验概率;由于在实际问题中,样品错判后会造成一定损失,故判别时还要考虑到预报的先验概率及错判造成的损失,Bayes判别就具有这些优点;然而当样品容量大时计算较复杂,故而常借助统计软件来实现。本文着重于Bayes判别分析的应用以及SPSS的实现。 论文共分三部分。首先简单地介绍了判别分析的意义、主要应用及SPSS的优点;其次详细讲解了Bayes判别分析理论,举例说明利用SPSS实现Bayes判别分析的操作及结果分析;最后,在09年统计年鉴收集到“各地区农村居民家庭平均每人生活消费支出”数据资料,研究各地区经济发展程度说明Bayes判别分析在经济学方面的应用。 【关键词】判别分析Bayes判别Spss实现判别函数判别准则 Class: calculation B101 name: KongWeiWen registration number 201009014119 Teacher: TanLiYun professor .【Abstract】Discriminant analysis is based on the study of certain indicators of individual observations to infer that the individual belongs as a type of statistical methods in social production and scientific research is widely used. In discriminant analysis, we often have a certain understanding of the overall sample of the a priori probability of its prediction play a role, it should be taken into account to determine the overall emergence of various prior probability; because of practical problems, samples will result in some loss of miscarriage of justice, so identification must be considered when the prior probability and wrongly predicted loss, Bayes discriminant to have these advantages; However, when the sample is large computing capacity of more complex, often using statistical software Guer to achieve. This article focuses on the application of Bayes discriminant analysis, and implementation of SPSS. Thesis is divided into three parts. First, a brief overview of the significance of discriminant analysis, the main applications and advantages of Spss; followed by detailed explanation of the Bayes discriminant analysis theory, an example implementation using Spss Bayes discriminant analysis and results of operations; finally, in the 2009 Statistical Yearbook of the collected " all areas of life of rural residents per capita household

相关文档
相关文档 最新文档