文档库 最新最全的文档下载
当前位置:文档库 › 轴承九种常见故障的原因

轴承九种常见故障的原因

轴承九种常见故障的原因
轴承九种常见故障的原因

轴承九种常见故障的原因

轴承在运转过程中出现故障是常有的事,所以不必大惊小怪的。出现了故障,判断并处理是关键。今天我们就讲解一下FAG轴承常见故障的原因。

1、轴承温度过高:在机构运转时,安装轴承的部位允许有一定的温度,当用手抚摸机构外壳时,应以不感觉烫手为正常,反之则表明轴承温度过高。

轴承温度过高的原因有:润滑油质量不符合要求或变质,润滑油粘度过高;机构装配过紧(间隙不足);轴承装配过紧;轴承座圈在轴上或壳内转动;负荷过大;轴承保持架或滚动体碎裂等。

2、轴承噪音:滚动轴承在工作中允许有轻微的运转响声,如果响声过大或有不正常的噪音或撞击声,则表明轴承有故障。

滚动轴承产生噪音的原因:比较复杂,1)是轴承内、外圈配合表面磨损。由于这在种磨损,破坏了轴承与壳体、轴承与轴的配合关系,导致轴线偏离了正确的位置,在轴在高速运动时产生异响。当轴承疲劳时,其表面金属剥落,也会使

轴承径向间隙增大产生异响。2)轴承润滑不足,形成干摩擦,以及轴承破碎等都会产生异常的声响。3)轴承磨损松旷后,保持架松动损坏,也会产生异响轴承的损伤。滚动轴承拆卸检查时,可根据轴承的损伤情况判断轴承的故障及损坏原因。

3、滚道表面金属剥落:轴承滚动体和内、外圈滚道面上均承受周期性脉动载荷的作用,从而产生周期变化的接触应力。当应力循环次数达到一定数值后,在滚动体或内、外圈滚道工作面上就产生疲劳剥落。如果轴承的负荷过大,会使这种疲劳加剧。另外,轴承安装不正、轴弯曲,也会产生滚道剥落现象。轴承滚道的疲劳剥落会降低轴的运转精度,使机构发生振动和噪声。

4、轴承烧伤:烧伤的轴承其滚道、滚动体上有回火色。烧伤的原因一般是润滑不足、润滑油质量不符合要求或变质,以及轴承装配过紧等。

5、塑性变形:轴承的滚道与滚子接触面上出现不均匀的凹坑,说明轴承产生塑性变形。其原因是轴承在很大的静载荷或冲击载荷作用下,工作表面的局部应力超过材料的屈服极限,这种情况一般发生在低速旋转的轴承上。

6、轴承座圈裂纹:轴承座圈产生裂纹的原因可能是轴承配合过紧,轴承外圈或内圈松动,轴承的包容件变形,安装轴承的表面加工不良等。

7、保持架碎裂:其原因是润滑不足,滚动体破碎,座圈歪斜等。

8、保持架的金属粘附在滚动体上,可能的原因是滚动体被卡在保持架内或润滑不足。

9、座圈滚道严重磨损:可能是座圈内落入异物,润滑油不足或润滑油牌号不合适。

数控机床CNC的故障自诊断方法及应用工程师将数控机床CNC的故障自诊断方法及应用归纳如下:

一、开机自诊断

所谓开机自诊断是指数控系统通电时,由系统内部诊断程序自动执行的诊断,它类似于计算机的开机诊断。

开机自诊断可以对系统中的关键硬件,如:CPU、存储器、I/O单元、CRT/MDI单元,纸带阅读机、软驱等装置进行自动检查;确定指定设备的安装、连接状态与性能:部分系统还能对某些重要的芯片,如:PAM、ROM、专用LSI 等进行诊断。

数控系统的自诊断在开机时进行,只有当全部项目都被确认无误后,才能进入正常运行状态。诊断的时间决定于数控系统一般只需数秒钟,但有的需要几分钟。开机自诊断一般按规定的步骤进行,以FANUC公司的FANUC II 系统为例诊断程序的执行过程中,系统主板上的七段显示按9→8→7→6→5→4→3→2→1的顺序变化,相应的检查内容为:9―对CPU进行复位,开始执行诊断指令:

8―进行ROM测试,表示ROM检查出错时,显示器变为b;

7―对RAM清零,系统对RAM中的内容进行清除,为正常运行作好准备;

6一对BAC(总线随机控制)芯片进行初始化。此时,若显示变为A,说明主板与CRT之间的传输出了差错;变为C,表示连接错误:变为F,表示I/O板或连接电缆不良:变为H , 表示所用的连接单元识别号不对;显示小写字母c 表示光缆传输出错;显示J,表示PLC或接口转换电路不良等等。

5―对MDI单元进行检查

4―对CRT单元进行初始化

3―显示CRT的初始画面,如:软件版本号、系列号等。此时若显示变成L,表明PLC 的控制软件存在问题:变为O,则表示系统未能通过初始化,控制软件存在问题:2―表示已完成系统的初始化工作;

1―表示系统已可以正常运转此时若显示变为E表示系统的主板或ROM板,或CNC控制软件有故障。

在一般情况下CRT 初始化完成后,若其他部分存在故障,CRT 即可以显示出报警信息。

二、在线监控

在线监控可以分为CNC 内部程序监控与通过外部设备监控两种形式:

CNC内部程序监控是通过系统内部程序,对各部分状态进行自动诊断、检查和监视的种方法。在线监控范围包括CNC 本身以及与CNC 相连的伺服单元、伺服电动机、主

轴伺服单元、主轴电动机、外部设备等。在线监控在系统工作过程中始终生效。

数控系统内部程序监控包括接口信号显示、内部状态显示和故障显示三方面。

⑴接口信号显示它可以显示CNC和PLC、CNC和机床之间的全部接口信号的现行状态。指示数字输入/输出信号的通断情况,帮助分析故障。

维修时必须了解CNC和PLC、CNC和机床之间各信号所代表的意义,以及信号产生撤消应具备的各种条件才能进行相应检查。数控系统生产厂家所提供的―功能说明书’、―连接说明书‖以及机床生产厂家提供的―机床电气原理图‖是进行以上状态检查的技术指南。

⑵内部状态显示一般来说利用内部状态显示功能,可以显示以下几方面的内容:

1)造成循环指令(加工程序)不执行的外部原因。如:CNC系统是否处于―到位检查‖中:是否处于―机床锁住‖状态:是否处于―等待速度到达‖信号接通:在主轴每转进给编程时是否等待―位置编码器‖的测量信号;在螺纹切削时,是否处于等待―主轴I转信号‖进给速度倍率是否设定为0 % ,等等。

2)复位状态显示,指示系统是否处于―急停‖状态或是―外部复位‖信号接通状态。

3)TH报警状态显示。它可以显示出报警时的纸带错误孔的位置。

4)存储器内容以及磁泡存储器异常状态的显示。

5)位置跟随误差的显示。

6)伺服骆动部分的控制信息显示

7)编码器、光栅等位置测量元件的输入脉冲显示等等

⑶故障信息显示在数控系统中,故障信息一般以―报警显示‖的形式在CRT进行显示。报警显示的内容根据数控系统的不同有所区别。这些信息大都以―报警号‖,加文本的形式出现,具体内容以及排除方法在数控系统生产厂家提供的―维修说明书‖上可以查阅。

通过外部设备监控是指采用计算机、PLC编程器等设备,对数控机床的各部分状态进行自动诊断、检查和监视的一种方法。如:通过计算机、PLC编程器对PLC程序以梯形图、功能图的形式进行动态检测,它可以在机床生产厂家未提供PLC程序时,进行PLC程序的阅动态波形显示等内容,通常也需要借助必要的在线监控设备进行。

随着计算机网络技术的发展,作为外部设备在线监控的一种,通过网络联接进行的远程诊断技术正在进一步普及、完善。通过网络,数控系统生产厂家可以直接对其生产的产品在现场的工作情况进行检测、监控,及时解决系统中所出现的问题,为现场维修人员提供指导和帮助。

三、脱机测试

脱机测试亦称―离线诊断‖,它是将数控系统与机床脱离后,对数控系统本身进行的测试与检查。通过脱机测试可以对系统的故障作进一步的定位,力求把故障范围缩到最小。如:通过对印制线路板的脱机测试,可以将故障范围定位到印制电路板的某部分甚至某个芯片或器件,这对印制电路板的修复是I分必要的。数控系统的脱机测试需要专用诊断软件或专用测试装置,因此,它只能在数控系统的生产厂家或专门的维修部门进行。

随着计算机技术的发展,现代CNC的离线诊断软件正在逐步与CNC控制软件一体化有的系统已将―专家系统‖引入故障诊断中。通过这样的软件,操作者只要在CRT/MDI 上作一些简单的会话操作,即可诊断出CNC系统或机床的故障。

FANUC系统维修中常用的参数

FANUC系统有很丰富的机床参数,为数控机床的安装调试及日常维护带来了方便条件。根据多年的实践,对常用的机床参数在维修中的应用做一介绍。

1.手摇脉冲发生器损坏。一台FANUC 0TD数控车床,手摇脉冲发生器出现故障,使对刀不能进行微调,需要更换或修理故障件。当时没有合适的备件,可以先将参数900#3置―0‖,暂时将手摇脉冲发生器不用,改为用点动按钮单脉冲发生器操作来进行刀具微调工作。等手摇脉冲发生器修好后再将该参数置―1‖.

2.当机床开机后返回参考点时出现超行程报警。上述机床在返回参考点过程中,出现510或511超程报警,处理方法有两种:(1)若X轴在返回参考点过程中,出现510或是511超程报警,可将参数0700LT1X1数值改为

+99999999(或将0704LT1X2数值修改为-99999999)后,再一次返回参考点。若没有问题,则将参数0700或0704数值改为原来数值.(2)同时按P和CAN键后开机,即可消除超程报警。

3.一台FANUC 0i数控车床,开机后不久出现ALM701报警。从维修说明书解释内容为控制部上部的风扇过热,打开机床电气柜,检查风扇电机不动作,检查风扇电源正常,可判定风扇损坏,因一时购买不到同类型风扇,即先将参数RRM8901#0改为―1‖先释放ALM701报警,然后在

强制冷风冷却,待风扇购到后,再将PRM8901改为―0‖。

4.一台FANUC 0M数控系统加工中心,主轴在换刀过程中,当主轴与换刀臂接触的一瞬间,发生接触碰撞异响故障。分析故障原因是因为主轴定位不准,造成主轴头与换刀臂吻合不好,无疑会引起机械撞击声,两处均有明显的撞伤痕迹。经查,换刀臂与主轴头均无机械松动,且换刀臂定位动作准确,故采用修改N6577参数值解决,即将原数据1525改为1524后,故障排除。

5.密级型参数0900~0939维修法。按FANUC 0MC操作说明书的方法进行参数传输时,密级型参数0900~0939必须用MDI方式输入很不方便。现介绍一种可以传输包含密级型参数0900~0939在内的传输方法,步骤如下:(1)将方式开关设定在EDIT位置;(2)按PARAM键,选择显示参数的画面;(3)将外部接收设备设定在STAND BY(准备)状态;(4)先按EOB键不放开,再按OUTPOT 键即将全部参数输出。

6.一台FANUC 0MC立式加工中心,由于绝对位置编码电池失效,导致X、Y、Z丢失参考点,必须重新设置参考点。(1)将PWE―0‖改为―1‖,更改参数

NO.76.1=1,NO.22改为00000000,此时CRT显示―300‖报警即X、Y、Z轴必须手动返回参考点。(2)关机再开机,利用手轮将X、Y移至参考点位置,改变参数NO.22为

00000011,则表示X、Y已建立了参考点。(3)将Z轴移至参考点附近,在主轴上安装一刀柄,然后手动机械手臂,使其完全夹紧刀柄。此时将参数NO.22改为00000111,即Z

轴建立参考点。将NO76.1设―00‖,PWE改为0。(4)关机再开机,用G28 X0,Y0,Z0核对机械参考点。

7.由机床参数引起的无报警故障。一台FANUC 18i-W慢走丝,开机后CRT显示X、Y、U、V坐标轴位置显示不准确,即原正常显示小数点后三位数字,而且前显示小数点后四位数字,且CRT没有报警信息。首先应该怀疑是参数变化引起上述故障。检查参数发现NO.0000#2 INI发生变化,原正常显示―0‖(表示公制输入),而有故障时显示―1‖(英制输入),将该参数改为―0‖后,数字显示正常。

8.机床风扇报警,一时找不到,要买也来不及,可以修改一下参数8901,将风扇报警取消,暂时先开机加工。等买到风扇再更换。

9.保护参数不被人乱修改的参数有

PAR3208#1可以锁住SYSTEM KEY,PAR3292#7可以使参数锁打不开。

基本代号表示FAG轴承的基本类型

基本代号表示FAG轴承的基本类型,结构和尺寸。前置代号表示轴承零件置于基本代号之前,FAG公司的轴承代

号由基本代号,前置代号和后置代号构成。基本代号表示轴承的基本类型,结构和尺寸。前置代号表示轴承零件置于基本代号之前。后置代号表示轴承结构形状,尺寸,密封,保持架,公差,游隙,热处理,包装,技术要求等有改变时,在轴承基本代号后添加的补充代号。

1 前置代号

前置代号R直接放在进口轴承基本代号之前,其余前置代号用小圆点与基本代号隔开。

GS—推力圆柱滚子轴承座圈。例:GS.81112

K –-滚动体与保持架的组合件。例::推力圆柱滚子与保持架的组合件K.81108。

R –-不带可分离内圈或外圈的轴承。例:RNU207-不带内圈的NU207轴承。

WS—推力圆柱滚子轴承轴圈。例:WS.81112。

2 后置代号

后置代号置于基本代号的后面.当具有多组后置代号时,应按INA轴承代号表中所列后置代号的顺序从左至右的排列。某些后置代号前用小圆点与基本代号隔开。

(1) 内部结构

A,B,C,D,E内部结构变化

例1:角接触球FAG轴承7205C,7205E,7205B,C-15度接触角,E-25度接触角,B-40度接触角。

例2:圆柱滚子,调心滚子及推力调心滚子轴承N309E,21309E,29412E-加强型设计,轴承负载能力提高。VH-滚子自锁的满滚子圆柱滚子轴承(滚子的复圆直径不同于同型号的标准轴承)。例:NJ2312VH

(2)SKF轴承的外形尺寸及外部结构

DA-带双半内圈的可分离型双列角接触球轴承。例:3306DA DZ-圆柱型外径的滚轮轴承。例:ST017DZ

K-圆锥孔TIMKEN轴承,锥度1:12。例:2308K。

K30-圆锥孔轴承,锥度1:30。例:24040K30。

2LS-双内圈,两面带防尘盖的双列圆柱滚子NTN轴承。例:NNF5026C.2LS.V-内部结构变化,双内圈,两面带防尘盖,满滚子双列圆柱滚子轴承。

N-外圈上带止动槽的轴承。例:6207N。

NR-外圈上带止动槽和止动环的轴承。例:6207NR。

N2-外圈上带两个止动槽的四点接触球轴承。例:QJ315N2。S-外圈带润滑油槽和三个润滑油孔的轴承。例:23040是。轴承外径D大于等于320毫米的调心滚子轴承均不标注S。X-外型尺寸符合国际标准的规定。例:32036X。

Z..-特殊结构的技术条件。从Z11起依次向下排列。例:Z15-不锈钢制轴承(W-N01.3541)。

ZZ-滚轮轴承带两个引导外圈的挡圈。

(3)密封与防尘

RSR-轴承一面带密封圈。例:6207RSR。

ZR-轴承一面带防尘盖。例:6207ZR。

2ZR-轴承两面带密封盖。例:62072ZR。

ZRN-轴承一面带防尘盖,另一面外圈上带止动槽。例:6207ZRN。

2ZRN-轴承两面带防尘盖,外圈上带止动槽。例:62072ZRN。

(4)NSK轴承保持架及其材料

1)实体保持架。

A或B置于保持架代号之后,A表示保持架由外圈引导,B 表示保持架由内圈引导。

F-钢制实体保持架,滚动体引导。

FA-钢制实体保持架,外圈引导。

FAS-钢制实体保持架,外圈引导,带润滑槽。

FB-钢制实体保持架,内圈引导。

FBS-钢制实体保持架,内圈引导,带润滑槽。

FH-钢制实体保持架,经渗碳淬火。

H,H1-渗碳淬火保持架。

FP-钢制实体窗型保持架。

FPA-钢制实体窗型保持架,外圈引导。

FPB-钢制实体窗型保持架,内圈引导。

FV,FV1-钢制实体窗孔保持架,经时效,调质处理。

L-轻金属制实体保持架,滚动体引导。

LA-轻金属制实体保持架,外圈引导。

LAS-轻金属制实体保持架,外圈引导,带润滑槽。

LB-轻金属制实体保持架,内圈引导。

LBS-轻金属制实体保持架,内圈引导,带润滑槽。

LP-轻金属制实体窗型保持架。

LPA-轻金属制实体窗型保持架,外圈引导。

LPB-轻金属制实体窗型保持架,内圈引导(推力滚子轴承为轴引导)。

M,M1-黄铜实体保持架。

MA-黄铜实体保持架,外圈引导。

MAS-黄铜实体保持架,外圈引导,带润滑槽。

MB-黄铜实体保持架,内圈引导(推力调心滚子轴承为轴圈引导)。

MBS-黄铜实体保持架,内圈引导,带润滑槽。

MP-黄铜实体直兜孔保持架。

MPA-黄铜实体直兜孔保持架,外圈引导。

MPB-黄铜实体直兜孔保持架,内圈引导。

T-酚醛层压布管实体保持架,滚动体引导。

TA-酚醛层压布管实体保持架,外圈引导。

TB-酚醛层压布管实体保持架,内圈引导。

THB-酚醛层压布管兜孔型保持架,内圈引导。

TP-酚醛层压布管直兜孔保持架。

TPA-酚醛层压布管直兜孔保持架,外圈引导。

TPB-酚醛层压布管直兜孔保持架,内圈引导。

TN-工程塑料模注保持架,滚动体引导,用附加数字表示不同的材料。

TNH-工程塑料自锁兜孔型保持架。

TV-玻璃纤维增强聚酰胺实体保持架,钢球引导。

TVH-玻璃纤维增强聚酰胺自锁兜孔型实体保持架,钢球引导。

TVP-玻璃纤维增强聚酰胺窗式实体保持架,钢球引导。TVP2-玻璃纤维增强聚酰胺实体保持架,滚子引导。TVPB-玻璃纤维增强聚酰胺实体保持架,内圈引导(推力滚子轴承为轴引导)。

TVPB1-玻璃纤维增强聚酰胺实体窗式保持架,轴引导(推力滚子轴承)。

2)冲压保持架

J-钢板冲压保持架。

JN-深沟球轴承铆接保持架。

3)保持架变动

加在保持架代号之后,或者插在保持架代号中间的数字,表示保持架结构经过变动。这些数字只用于过渡时期,例:NU1008M1。

(5)无保持架IKO轴承

V-满装滚动体轴承。例:NU207V。

VT-带隔离球或滚子的满装滚动体轴承。例:51120VT。(6)公差等级(包括尺寸精度和旋转精度)

P0-公差等级符合国际标准ISO规定的0级,代号中省略,不表示。

P6-公差等级符合国际标准ISO规定的6级。

P6X-公差等级符合国际标准ISO规定的6X级圆锥滚子轴承。

P5-公差等级符合国际标准ISO规定的5级。

P4-公差等级符合国际标准ISO规定的4级。

P2-公差等级符合国际标准ISO的2级(不包括圆锥滚子轴承)。

SP-尺寸精度相当于5级,旋转精度相当于4级(双列圆柱滚子轴承)。

UP-尺寸精度相当于4级,旋转精度高于4级(双列圆柱滚子轴承)。

HG-尺寸精度相当于4级,旋转精度高于4级,低于2级(主轴轴承)。

(7)游隙

C1-游隙符合标准规定的1组,小于2组。

C2-游隙符合标准规定的2组,小于0组。

C0-游隙符合标准规定的0组,代号中省略,不表示。

C3-游隙符合标准规定的3组,大于0组。

C4-游隙符合标准规定的4组,大于3组。

C5-游隙符合标准规定的5组,大于4组。

1)公差等级代号与游隙代号需同时表示时,取公差等级代号(P0级不表示)加上游隙组号(0组不表示)组合表示。例:P63=P6+C3,表示轴承公差等级P6级,径向游隙3组。2)非标准游隙,在要求特殊径向游隙和轴向游隙的情况下,有关极限值应在字母R(径向游隙)或A(轴向游隙)之后用微米数表示,数字之间要用小圆点隔开。

例:6210.R10.20-6210轴承,径向游隙10微米至20微米。(8)测试噪音的轴承

F3-低噪音NACHI轴承。主要是指圆柱滚子轴承和内径d大于60毫米以上的深沟球轴承。例:6213.F3。

G-低噪音轴承。主要是指内径d小于等于60毫米的深沟球轴承。例:6207.G。

(9)热处理

S0-轴承套圈经过高温回火处理,工作温度可达150摄氏度。S1-轴承套圈经过高温回火处理,工作温度可达200摄氏度。S2-轴承套圈经过高温回火处理,工作温度可达250摄氏度。S3-轴承套圈经过高温回火处理,工作温度可达300摄氏度。S4-轴承套圈经过高温回火处理,工作温度可达350摄氏度。(10)特殊技术条件

F..-连续编号的制造技术条件。例:F80-轴承内,外径公差及径向游隙压缩。

K..-连续编号的检查技术条件。例:K5-轴承内,外径公差压缩。

.ZB-直径大于80毫米以上的带凸度的圆柱滚子。例:NU364.ZB。

.ZB2-滚针两端的凸度大于一般的技术要求。例:K18*26*20F.ZB2。

ZW-双列滚针和保持架组件。例:K20*25*40FZW。

.700…以700000开头的连续编号的技术条件。

Z52JN.790144-轴承可用于高温及低转速,经特殊热处理,钢板冲压铆合保持架,大游隙,经磷化处理,注油脂,使用温度可超过270摄氏度。

Z52JN.790191-轴承可用于高温及低转速,经过特殊热处理,钢板冲压铆合保持架,大游隙,经磷化处理,注油脂,使用温度可达270摄氏的。

(11)成对机床轴承

1)符合K技术条件的成对轴承,下列特殊技术条件与成对轴承有关:

K1-两套深沟球轴承成对安装以承受单向轴向载荷。

K2-两套深沟球轴承成对安装以承受双向轴向载荷。

K3-两套深沟球轴承按无游隙背靠背安装(O型安装)。

K4-两套深沟球轴承按无游隙面对面安装(X型安装)。

K6-两套角接触球轴承成对安装以承受单向轴向载荷。

K7-两套角接触球轴承按无游隙背靠背安装(O型安装)。

K8-两套角接触球轴承按无游隙面对面安装(X型安装)。

K9-内,外圈间带隔圈的两套圆锥滚子轴承成对安装以承受单向轴向载荷。

K10-内,外圈间带隔圈的两套圆锥滚子轴承按无游隙背靠背安装(O型安装)。

K11-外圈间带隔圈的两套圆锥滚子轴承按无游隙面对面安装(X型安装)。

成对或成组配置的轴承,需要包装字一起交货,或者标明是属于一对。不同组的轴承不可互换。在安装属于同一组的轴承时,安装时应按照记号和定位进行。若各成对轴承按一定轴向或径向游隙量配置时,其游隙应接在K技术条件之后按(7)项中第1条2)标明。例如,31314A.K11.A100.140表示两套31314A单列圆锥滚子轴承,面对面安装,外圈间带一定距离,轴承装配前轴向游隙在100微米到140微米之间,装配后游隙为零。

2)通用配对型轴承,可任意(串联,面对面或背对背)配对安装,后置代号为UA,UO和UL。

.UA-在轴承面对面或背对背安装时有小的轴向游隙。

.UO-在轴承面对面或背对背安装时无游隙。

滚动轴承常见故障及原因分析

滚动轴承常见故障及原因分析 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,

轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 滚动轴承常见故障原因分析 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

轴承故障原因分析及处理方法

轴承故障原因分析及处理方法 [摘要]: 本文介绍了轴承常见故障和处理办法,总结了避免故障发生的几种办法,保证生产的连续性。 [关键字]:轴承;故障率高;处理措施; 一、前言: 轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。 二、轴承故障原因分析: 导致轴承故障率升高的常见原因: 1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。 2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。 3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。 三、轴承发生故障时的处理方法: 轴承出现故障时,应从以下几个方面解决问题

1、加油不恰当,润滑油加的过多或过少。应当按工作的的要求定期给轴承加油。轴承加油后有时也会出现温度高的情况,这主要是加油过多。 2、轴承所加油脂不符号要求或被污染。润滑油脂选用不合适,不易形成均匀的润滑油膜。无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。当不同型号的油脂混合时可能发生化学反应,造成油脂变质,结块,降低润滑效果。加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。 3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。联轴器的找正要符合工艺标准。在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。检查轴承的游隙是否超标,若有以上情况要立即更换新的轴承。轴承的配合,轴承在安装时内径与轴,外径与外壳的配合非常重要,配合过松时,配合面会产生相对滑动称做蠕变。蠕变一但产生会磨损破坏面,损伤轴或外壳,而且磨损粉末会侵入轴承内部,造成发热,振动或损坏轴承。过盈过大时,会导致外圈外径变小或内圈内径变大,减少轴承内部的游隙。轴承各部配合间隙的调整,间隙过小时由于油脂在间隙内摩擦损失过大也会引起轴承发热。同时,间隙过小时,油量减小,来不及带走摩擦产生的热

轴承常见故障分析

轴承常见故障分析 1 轴承的种类: 表1-1滚动轴承类型与适用精度等级。 轴承形式适用标 准 适用精度等级 深沟球轴 承 GB307 0 级 6 级 5 级 4 级 2级 角接触球轴承0 级 6 级 5 级 4 级 2级 调心球轴 承0级 圆柱滚子轴承0 级 6 级 5 级 4 级 2级 圆锥滚子轴承公制系 列 (单 列) GB307 级 6 级 6 级 5 级 4 级 公制系 列(双 列、四 列) SB/T534 1994 级

英制系列SB/CO/ T1089 Cla ss4 Cla ss2 Cla ss3 Cla ss0 Cla ss0 调心滚子 轴承 GB307 0级 推力球轴 承0 级 6 级 5 级 4 级 推力调心滚子轴承0级 2 轴承使用中常见问题及对策 2.1 强金属音 1、异常载荷:选择合适的装配游隙和预紧力 2、组装不良:提高轴的加工精度,改善安装方法 3、润滑剂不足:补充或使用合适润滑剂 2.2 规则音 1、异物引起沟道锈蚀、压痕、伤痕:清洗相关零件,使用干净润滑脂 2、沟道剥落:疲劳磨损,更换轴承 2.3 不规则异音 1、异物侵入:清洗相关零件,使用干净润滑脂 2、游隙过大:注意配合及选择合适游隙 3、钢球伤痕:钢球疲劳剥落或异物卡伤,更换轴承

2.4 异常温升 1、润滑剂过多:减少润滑剂。 2、润滑剂不足,或不适合:增加润滑剂或选择合适润滑剂。 3、配合面蠕变或密封装置过大:轴承外径或内径配合面修正,密封形式进行变更。 2.5 轴的回转振动大 1、剥落:疲劳剥落,更换轴承 2、组装不良:提高轴的加工精度,改善安装方法 3、异物侵入:清洗相关零件,使用干净润滑脂 2.6 润滑剂泄漏大变色 1、润滑剂过多:减少润滑剂 2、异物入侵:清洗相关零

轴承损坏一般原因及对策

轴承损坏一般原因分析及其对策 一、轴承常见故障 滚动轴承的故障现象一般表现为两种,一是轴承安装部位温度过高,二是轴承运转中有噪音。 1、轴承温度过高 在主机运转时,安装轴承的部位允许有一定的温度,当用手抚摸主机外壳时,应以不感觉烫手为正常,反之则表明轴承温度过高。 轴承温度过高原因有:润滑油质量不符合要求或变质,润滑油粘度过高;主机装配过紧(间隙不足):轴承装配过紧;轴承座圈在轴上或壳内转动负荷过大;轴承保持架或滚动体碎裂等。 2、轴承噪音 滚动轴承在工作中允许有轻微的运转响声,如果响声过大或有不正常的噪音或撞击声咯噔声响,则表明轴承有故障。 滚动轴承产生噪音的原因比较复杂,其一是轴承内、外圈配套表面磨损。而这种磨损,破坏了轴承与壳体、轴承与轴的配套关系,导致轴线偏离了正确的位置,轴承在有负荷时运转产生异响。当轴承疲劳时,其表面金属剥落;也会使轴承径向间隙增大产生异响。此外,轴承润滑不足,形成干摩擦,以及轴承破碎等都会产生异常的声响。轴承磨损松旷后,保持架松动损坏,也会产生异响。 二、轴承的损伤原因分析与对策 轴承在运转中无法直接观察,但通过噪音、振动、温度、润滑剂等状况可察知轴承异常。轴承损伤的代表例;

1、裂纹缺陷 部分缺口有裂纹。其原因有:主机的冲击负荷过大,主轴与轴承配合过盈量大;也有较大的剥离摩擦引起裂纹;安装时精度不良;使用不当(用铜锤、卡入大异物)和摩擦裂纹。 对策:应检查使用条件,同时,设定适当过盈及检查材质,改善安装及使用方法,检查润滑剂以防止摩擦裂纹。 2、滚道表面金属剥离 运转面剥离。剥离后呈明显凹凸状。原因有轴承滚动体和内、外圈滚道面上均承受周期性脉动载荷作用,从而产生周期变化的接触应力。当应力循环次数达到一定数值后,在滚动体或内、外圈滚道工作面上就产生疲劳剥离。如果轴承的负荷过大,会使这种疲劳加剧。另外,轴承安装不正、轴弯曲、也会产生滚道剥离现象。 对策:应重新研究使用条件和选择轴承及游隙,并检查轴和轴承箱的加工精度、安装方法、润滑剂及润滑方法。 3、烧伤 轴承发热变色,进而烧伤不能旋转。烧伤的原因一般是润滑不足,润滑油质量不符合要求或变质,以及轴承装配过紧等。另外游隙过小和负荷过大(预压大)滚子偏斜。 对策:选择适当的游隙(或增大游隙),要检查润滑剂的种类,确保注入量,检查使用条件,以防定位误差,改善轴承组装方法。 4、保持架碎裂 铆钉松动或断裂,滚动体破碎。其原因有:力矩负荷过大,润滑不足,

滚动轴承常见故障原因分析

增刊 西 山 科 技 Supp lem en t 2001年8月 X ishan Science&T echno logy A ug.2001  技术经验 滚动轴承常见故障原因分析 王 建 国① (华化制药集团公司) 摘 要 介绍了滚动轴承的故障形式,分析了产生的原因,并提出了相应的解决方法。 关键词 滚动轴承 故障 原因 滚动轴承一般由外座圈、内座圈、滚动体和保持架等四部分组成。滚动轴承属于标准件,其类型很多,用量很大,凡是运转设备几乎都有不同类型和不同精度的滚动轴承。在生产实际中,由于各种原因,滚动轴承常出现故障,影响设备的正常运行,现对滚动轴承在运行中的常见故障作一分析,并简要介绍消除故障的方法。 1 故障形式 1)轴承转动困难、发热;2)轴承运转有异声;3)轴承产生振动;4)内座圈剥落、开裂;5)外座圈剥落、开裂;6)轴承滚道和滚动体产生压痕。 2 故障原因分析 2.1 检查不细致 轴承在装配前,要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡住的现象;同时检查轴颈和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧的“瓦口”处出现“夹帮”现象。若装配前检查不细致,会导致装配后的轴承运转情况不良,出现由于原始间隙太小导致的转动困难、发热;由于“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 2.2 装配不当 装配不当会导致轴承出现上述的各种故障形式。装配不当有以下几种情况: 1)配合不当。轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5、js5、js6、k5、k6、m6配合,轴承座孔与轴承外座圈采用J6、J7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈为不旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴颈或轴承座孔的配合表面上发生滚动或滑动。但有时由于轴颈和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大剂压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在安装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈) ①作者简介:王建国 男 1963年出生 1984年毕业于太原工学院 工程师 太原 030021

轴承损坏原因主要分析

轴承损坏原因主要分析 引风机试转时轴瓦出现的问题徐塘发电有限公司2×300MW扩建工程6号机组引风机是成都电力机械厂制造的型号为AN28e6静叶可调式轴流风机,风量为268.74m3/s,风压为4711Pa;电机是沈阳电机股份有限公司提供的型号为YKK710-8电机,电机转速为744r/min,功率为1 800kW,电压为6000V。电机两端为滑动轴承结构,瓦宽为220mm,甩油环外径为363mm,厚度为11.5mm,宽度为30mm,质量为3060g;轴颈外径为200mm,椭圆度偏差为0.2mm。油室两侧各有一个油位计,轴承座与下轴瓦之间有一个电加热器,下轴瓦下面有一个测温元件。电机轴承的冷却方式为自然冷却。第一次试转时,甲侧引风机电机推力端轴瓦温度升高,定值保护停机;乙侧引风机电机膨胀端轴瓦温度升至报警值,为了防止设备严重损坏,手动停机。检查发现甲侧引风机电机推力端轴瓦有烧瓦现象,乙侧引风机电机膨胀端轴瓦局部有磨痕。现场消缺,重新安装后,电机试运转4h无异常现象。锅炉空气动力场试验时,2台引风机电机的轴瓦温度稳定在61.9℃(甲)、59.5℃(乙)后略微下降,转动正常。 2005年4月1日,电除尘气流分布试验过程中除电机轴瓦温度稍高外,其他正常。但是在气流分布试验快结束后,16∶ 00,62号引风机电机侧轴瓦温度快速攀升至62.4℃时;16∶ 30,61号引风机风机侧轴瓦温度快速攀升至61.2℃,都有进一步上升的趋势。为了保护设备,手动停机。2台电机气流分布试验时引风机轴瓦温升值见表1。 4月2日~4月5 日对电机轴瓦解体检查,发现2台电机端外侧和风机端外侧轴瓦均有磨瓦现象,但内侧没有磨瓦现象。同时发现油挡附近轴颈处油润滑明显不足。对瓦面作刮瓦处理试转,当温度达到56~60℃后,瓦温快速攀升。前后试运转达11次,每次情况都差不多。解瓦检查发现,瓦面痕迹一致。加大冷却油量后,不再烧瓦,但温度仍然升至62℃,并且随着气温的波动而波动。整个过程中,2台风机轴系振动很好,最大振动均为1丝左右。 2 原因分析打开轴瓦对轴承进行了仔细检查,如压力角、间隙、椭圆度等,甲、乙侧引风机电机轴承检查数据见表2。所有数据都符合规范和厂家技术要求,可以排除安装不当的原因。由于2台引风机轴系轴向、水平、垂直方向振动都很小,所以排除了轴系不对中、磁力线中心、电机基础等问题。瓦面没有被电击的痕迹,所以也排除了轴承座绝缘不够和转子磁通量轴向分布不均等原因。2台风机为同一批产品,且烧瓦发生的过程和症状非常相似,所以初步认定故障原因是一致的。由这2台引风机电机轴瓦温升高直至烧瓦整个过程,通过对原始记录的数据资料进行分析,初步判断故障是由于甩油环转动带上来的油量太少,在下瓦压力角内无法形成和保持一定厚度的油膜,导致轴颈与轴瓦接触摩擦。瓦温、油温升高后,润滑油的黏度下降,加剧了油膜的破坏,直至轴瓦与轴颈摩擦,温度急剧升高。当温度达到某一临界数值时,油膜承压能力低于轴颈压力,由此将引起恶性循环,导致轴瓦温度快速攀升。加大润滑冷却油量后,润滑油位高于轴瓦下瓦面,这虽然缓解了油膜的破坏,在一定程度上避免了轴与轴瓦的直接接触,但是此时的平衡温度达到62℃,是一种高位平衡,轴承运行风险太大。 3 改进措施(1)更换润滑油。用46号机械油代替46号透平油,目的是为了提高润滑油的黏度,使得在甩油环转动时可以带上更多的油。但高温时, 机械油黏度的下降程

分析常见滚针轴承故障及其原因

分析常见滚针轴承故障及其原因 滚针轴承常见故障及其原因 1.故障形式: (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析: (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当: 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。

滚动轴承常见故障及其原因分析(正式版)

文件编号:TP-AR-L9607 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 滚动轴承常见故障及其 原因分析(正式版)

滚动轴承常见故障及其原因分析(正 式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清 洗并认真检查轴承的内外座圈、滚动体和保持架,是

否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

轴承故障及原因

轴承故障及原因 目录 简介 轴承故障及其原因 轴承的使用寿命 滑道类型及其说明 轴承损坏的类型 磨损 研磨颗粒引起的磨损 不充分润滑引起的磨损 振动引起的磨损 缺口/凹痕 错误安装或过载引起的缺口/凹痕 外来颗粒引起的缺口/凹痕 脏污 滚子末端或导轨边缘的脏污 滚子和滑道的脏污 与滚子间距对应的滑道的脏污 外表面的脏污 止推球轴承的脏污 表面损坏

深层生锈 摩擦腐蚀 电流通过引起的损坏 散裂 预载引起的散裂 椭圆挤压引起的散裂轴挤压引起的散裂 未对准引起的散裂 缺口/凹痕引起的散裂脏污引起的散裂 深层生锈引起的散裂摩擦腐蚀引起的散裂槽/坑引起的散裂 裂缝 粗糙处理引起的裂缝过分驱动引起的裂缝脏污引起的裂缝 摩擦腐蚀引起的裂缝支撑架损坏 振动 超速

阻塞 其他 简介 轴承故障及其原因 轴承是大多数机器的最重要组成部分, 因而对其工作能力和稳定性有严格要求. 因此, 非常重要的滑动轴承近年来一直是人们广泛研究的对象, 滑动轴承技术也已成为一特殊的科学分枝. SKF从一开始就一直站在这一领域的前沿. 进行此项研究, 可以相当精确地计算轴承寿命, 从而更好地与有关机器寿命相匹配. 然而, 轴承有时达不到它的额定寿命. 原因可能有很多, 比如负载比预期大, 不充分润滑, 粗糙处理, 无效密封, 安装过紧从而导致不能彻底清洁轴承内部. 不同类型的原因会造成不同类型的损坏. 因此, 如果可能的话, 应检查损坏的轴承, 在大多数情况下查明损坏原因并采取必要的措施以防止损坏的再次发生. 轴承的使用寿命 一般说来, 旋转轴承不可能永远旋转下去, 除非达到理想怕操作条件, 或者达不到疲劳极限, 但材料迟早会出现疲劳. 出现疲劳前的阶段有助于确定轴承旋转圈数和负载大小. 剪切应力循环出现于支

轴承损坏故障原因

轴承故障原因及其解决 1.过负荷----过载。这个是原因,一如干活太累。 引起过早疲劳,(包括过紧配合,布式硬度凹痕和预负荷)----提前疲劳失效。过载造成接触应力超过允许值。 减少负荷或重新设计----如是系统常时过载,可设法重新选用轴承;系统短期过载及冲击载荷,可设法提高润滑、轴承特殊化处理等解决。 2.过热----这个是表现。一如“发烧”。 征兆是滚道,球和保持架变色,从金色变为蓝色----轻度的润滑剂变色,甚至附着在滚道或滚子上。重度的轴承部件发蓝变色。重度的轴承部件发生金属流动。 温度超过400F使滚道和滚动体材料退火----这是说高温对轴承机械性能的影响。 硬度降低导致轴承承重降低和早期失效----轴承滚道或滚子硬度低于HRC58,寿命将降低。 严重情况下引起变形,另外温升降低和破坏润滑性能----一个结论是:轴承运行必须有一定的运行粘度之上的润滑剂;温度上升将降低润滑剂粘度,甚至影响其基本化学性能。 3.布式硬度凹痕----“真性布氏压痕”。 当负荷超过滚道的弹性极限时产生----一般由径向冲击载

荷造成。 滚道上的凹痕增加振动(噪声) 任何静态过负荷和严重冲击产生布式凹痕----此类损伤一般在压痕内仍残留磨削痕迹。 4.伪布式凹痕----“假性布氏压痕”。 在每个滚珠位置产生的椭圆形磨损凹痕,光滑,有明显边界,周围有磨削----形状不总要。此类损伤一般在压痕内无磨削痕迹。 表明严重的外部振动----不确知? 隔振和使用抗摩添加剂----一般由运输途中的颤振造成。 5.正常疲劳失效----疲劳损伤。 疲劳失效指滚道和滚动体上发生碎裂,并随之产生材料碎片脱落----含疲劳碎裂(习见于淬透轴承钢)及疲劳剥落(习见于渗碳轴承钢)。 这种疲劳为逐渐发生,一旦开始则迅速扩展,并伴随明显的振动增加----淬透钢一般是迅速扩展,容易造成瞬时损坏。渗碳钢将有较长时间的发展。 更换轴承,和设计有更长疲劳寿命的轴承----宜说选用更高额定动载的轴承、更高纯净度的轴承钢等等。

滚动轴承常见故障及其原因分析正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 滚动轴承常见故障及其原 因分析正式版

滚动轴承常见故障及其原因分析正式 版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动

是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心

滚动轴承常见故障的原因分析

滚动轴承常见故障的原因分析 滚动轴承是一些企业中比较经常使用的产品,在产品使用过程中总会有些故障的出现影响我们的生产,所以下面天拓四方的技术工程师就来给大家介绍一下滚动轴承常见故障的原因是哪些? 2.故障原因分析 (1) 装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧"瓦口"处出现"夹帮"现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2) 装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承

座孔的配合表面上发生滚动和滑动。 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。即将轴承放入盛有机油的油桶中,机油桶外部用热水或火焰加热,工艺要求加热的油温控制在80℃~90℃,一般不会超过100℃,最多

滚动轴承的正确使用

滚动轴承的正确使用 汽车上有几十种轴承是滚动轴承,大大小小几乎包括了所有常见的轴承类型,滚动轴承的故撞和损伤也较为常见。由于滚动轴承一般都是装在机构内部,所以不便直观检查,只能根据故障现象先作概略判断, 然后再拆卸检查。 滚动轴承的正确使用是减少轴承故障、延长轴承寿命的可靠保证,其内容包括正确的安装和合理的润滑。 下面分别介绍滚动轴承的使用要求和常见故障、损伤。 一、滚动轴承的正确使用 1.轴承的拆装 轴承安装前应清洗干净。安装时,应使用专用工具将辅承平直均匀地压入,不要用手锤敲击,特别禁止直接在轴承上敲击。当轴承座圈与座孔配合松动时,应当修复座孔或更换轴承,不要采用在轴承配合表面上打麻点或垫铜皮的方法勉强使用。轴承拆卸时应使用合适的拉器将轴承拉出,不要用凿子、手锤等敲击轴承。 2.轴承的润滑 滚动轴承常用的润滑剂有润滑油和润滑脂两种。当轴的圆周速度小于4-5m/s时,或汽车上不能使用润滑油润滑的部位,都采用润滑脂润滑。润滑脂润滑的优点是密封结构简单,润滑脂不易流失,受温度影响不大,加一次润滑脂可以使用较长的时间。 使用润滑脂要注意两个问题,一是要按汽车说明书的要求,选用合适

牌号的润滑脂。例如,汽车水泵轴承就不宜选用纳基润滑脂,因其耐水性较差。二是加入轴承中的润滑脂要适量,一般只充填轴承空腔的1/2-l/3为宜,过多不但无用,还会增加轴承的运转阻力,使之升温发热。特别要注意的是汽车轮毂轴承,要提倡“空毂润滑”,即只在轴承上涂一层适量的润滑脂即可,否则,不但浪费和散热不良,还会使润滑脂受热外溢,可能影响制动性能。 润滑油润滑的优点是摩擦阻力小,并能散热,主要用于高速和工作环境温度较高的轴承。润滑油的牌号要按汽车说明书的要求选用,并接汽车保养周期及时更换,放出旧油后要对机构进行清洗后再加新油,加油应加到规定的标线,或与加油口平齐(视汽车具体结构、要求而 定),不可多加。 二、滚动轴承常见故障 滚动轴承的故障现象一般表现为两种,一是轴承安装部位温度过高, 二是轴承运转中有噪音。 1.轴承温度过高 在机构运转时,安装轴承的部位允许有一定的温度,当用手抚摸机构外壳时,应以不感觉烫手为正常,反之则表明轴承温度过高。 轴承温度过高的原因有:润滑油质量不符合要求或变质,润滑油粘度过高;机构装配过紧(间隙不足);轴承装配过紧;轴承座圈在轴上或壳内转动;负荷过大;轴承保持架或滚动体碎裂等。

滚动轴承常见故障及其原因分析参考文本

滚动轴承常见故障及其原因分析参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

滚动轴承常见故障及其原因分析参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认 真检查轴承的内外座圈、滚动体和保持架,是否有生锈、 毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻

快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承

滚动轴承常见故障及其原因分析详细版

文件编号:GD/FS-9396 (安全管理范本系列) 滚动轴承常见故障及其原 因分析详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

滚动轴承常见故障及其原因分析详 细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合

适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。

滚动轴承故障诊断频谱分析

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷 等其它原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

滚动轴承故障的主要形式与成因

滚动轴承故障的主要形式与成因

滚动轴承故障的主要形式与成因 滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等都可能会导致轴承过早损坏。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损而不能正常工作。总之,滚动轴承的故障原因是十分复杂的。滚动轴承的主要故障形式与原因如下。 1.疲劳剥落 滚动轴承的内外滚道和滚动体表面既承受载荷又相对滚动,由于交变载荷的作用,首先在表面下一定深度处(最大剪应力处)形成裂纹,继而扩展到接触表面使表层发生剥落坑,最后发展到大片剥落,这种现象就是疲劳剥落。疲劳剥落会造成运转时的冲击载荷、振动和噪声加剧。通常情况下,疲劳剥落往往是滚动轴承失效的主要原因,一般所说的轴承寿命就是指轴承的疲劳寿命,轴承的寿命试验就是疲劳试验。试验规程规定,在滚道或滚动体上出现面积为0.5mm2的疲劳剥落坑就认为轴承寿命终结。滚动轴承的疲劳寿命分散性很大,同一批轴承中,其最高寿命与最低寿命可以相差几十倍乃至上百倍,这从另一角度说明了滚动轴承故障监测的重要性。 2.磨损 由于尘埃、异物的侵入,滚道和滚动体相对运动时

会引起表面磨损,润滑不良也会加剧磨损,磨损的结果使轴承游隙增大,表面粗糙度增加,降低了轴承运转精度,因而也降低了机器的运动精度,振动及噪声也随之增大。对于精密机械轴承,往往是磨损量限制了轴承的寿命。 此外,还有一种微振磨损。在轴承不旋转的情况下,由于振动的作用,滚动体和滚道接触面间有微小的、反复的相对滑动而产生磨损,在滚道表面上形成振纹状的磨痕。 3.塑性变形 当轴承受到过大的冲击载荷或静载荷时,或因热变形引起额外的载荷,或有硬度很高的异物侵入时都会在滚道表面上形成凹痕或划痕。这将使轴承在运转过程中产生剧烈的振动和噪声。而且一旦有了压痕,压痕引起的冲击载荷会进一步引起附近表面的剥落。 4.锈蚀 锈蚀是滚动轴承最严重的问题之一,高精度轴承可能会由于表面锈蚀导致精度丧失而不能继续工作。水分或酸、碱性物质直接侵人会引起轴承锈蚀。当轴承停止工作后,轴承温度下降达到露点,空气中水分凝结成水滴附在轴承表面上也会引起锈蚀。此外,当轴承内部有电流通过时,电流有可能通过滚道和滚动体上的接触点处,很薄的油膜引起电火花而产生电蚀,在表面上形成搓板状的凹凸不平。 5.断裂

相关文档
相关文档 最新文档