文档库 最新最全的文档下载
当前位置:文档库 › 偏序集中的8个特殊元素

偏序集中的8个特殊元素

偏序集中的8个特殊元素

等价关系

“关系”一词,在日常生活中十分常见,在学校,有同学关系、师生关系、同事关系等; 在家庭中,有兄弟姐妹关系,父子关系、母女关系等;在一般的工作单位,有师徒关系、上 下级关系等等。在研究科学中也有很多关系,如数学中的数的大小比较关系、整数中整除关 系、函数关系、集合中的包含关系;计算机软件的程序与其子程序关系等。 为了数学的方法来研究这类关系,我们将用集合论的观点来描述这类关系。 例如,集合{}e d c b a A ,,,,=,为五个人组成的集合,其中他们中,a 是b 的父亲,c 是d 的 父亲,c 也是e 的父亲。现将集合A 的父子关系用有序对表示,即为),(),,(),,(e c d c b a 。把 这三个有序对组成一个集合{}),(),,(),,(e c d c b a R =,我们把R 这种由集合A 导出的有序 对组成的集合R ,叫做A 上关系 R 。 我们称集合R 为集合A 的父子关系集合(简称关系)。 我们把13个数组成的集合{}10,,3,2,1 =A 也建立几个关系。 二、建立关系举例: 1、 它们之间的小于等于关系R ; ()()()()()()(){},13,13,13,12,,3,2,2,2,3,1,2,1,1,1 =R 2、 它们除以3以后余数相同的关系1R ; ()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()? ?????=,10,10,7,10,4,10,1,10,9,9,6,9,3,9,8,8,5,8,2,8,10,7,7,7,4,7,1,7,9,6,6,6,3,6,8,5,5,5,2,5,10,4,7,4,4,4,1,4,9,3,6,3,3,3,8,2,5,2,2,2,10,1,7,1,4,1,1,12R 3、它们之间的整除关系2R ; ()()()()()()()()()()()()()()()()()()()()? ?????=10,10,9,9,8,8,7,7,6,6,10,5,5,5,8,4,4,4,9,3,6,3,3,3,10,2,8,2,6,2,4,2,2,2,10,1,2,1,1,13 R 注意:关系有两大类关系:A 到B 的关系,A 上的关系;我们主要讨论A 上的关系。 三、关系的几种表示方法: 1、图形表示; 2、表格表示; 3、矩阵表示; 比如:{ }5,4,3,2,1=A 上的R 关系为()()()()()()(){},4,5,2,4,5,3,3,3,3,2,2,22,1=R 则??????? ? ??=01000000101010000110 00010R A

应用离散数学-集合与关系

集合与关系《应用离散数学》 第3章 21世纪高等教育计算机规划教材

目录 3.1 集合及其运算 3.2 二元关系及其运算3.3 二元关系的性质与闭包3.4 等价关系与划分 3.5 偏序关系与拓扑排序3.6 函 数 3.7 集合的等势与基数3.8 多元关系及其应用

集合是现代数学中最重要的基本概念之一,数学概念的建立由于使用了集合而变得完善并且统一起来。集合论已成为现代各个数学分支的基础,同时还渗透到各个科学技术领域,成为不可缺少的数学工具和表达语言。对于计算机科学工作者来说,集合论也是必备的基础知识,它在开关理论、形式语言、编译原理等领域中有着广泛的应用。 本章首先介绍集合及其运算,然后介绍二元关系及其关系矩阵和关系图,二元关系的运算、二元关系的性质、二元关系的闭包,等价关系与划分、函数,最后介绍多元关系及其在数据库中的应用等。

3.1 集合及其运算 3.1.1 基本概念 集合是数学中最基本的概念之一,如同几何中的点、线、面等概念一样,是不能用其他概念精确定义的原始概念。集合是什么呢?直观地说,把一些东西汇集到一起组成一个整体就叫做集合,而这些东西就是这个集合的元素或叫成员。 例3.1 (1)一个班级里的全体学生构成一个集合。 (2)平面上的所有点构成一个集合。 (3)方程 的实数解构成一个集合。 (4)自然数的全体(包含0)构成一个集合,用N表示。 (5)整数的全体构成一个集合,用Z表示。 (6)有理数的全体构成一个集合,用Q表示。 (7)实数的全体构成一个集合,用R表示。

(8)复数的全体构成一个集合,用C表示。 (9)正整数集合Z+,正有理数集合Q+,正实数集合R+。(10)非零整数集合Z*,非零有理数集合Q*,非零实数集合R*。(11)所有n 阶(n≥2)实矩阵构成一个集合,用M n(R)表示,即

离散数学公式

基本等值式 1.双重否定律A?┐┐A 2.幂等律 A ? A∨A, A ? A∧A 3.交换律A∨B ? B∨A,A∧B ? B∧A 4.结合律(A∨B)∨C ? A∨(B∨C) (A∧B)∧C ? A∧(B∧C) 5.分配律A∨(B∧C) ? (A∨B)∧(A∨C) (∨对∧的分配律) A∧(B∨C) ? (A∧B)∨(A∧C) (∧对∨的分配律) 6.德·摩根律┐(A∨B) ?┐A∧┐B ┐(A∧B) ?┐A∨┐B 7.吸收律 A∨(A∧B) ? A,A∧(A∨B) ? A 8.零律A∨1 ? 1,A∧0 ? 0 9.同一律A∨0 ? A,A∧1 ? A 10.排中律A∨┐A ? 1 11.矛盾律A∧┐A ? 0 12.蕴涵等值式A→B ?┐A∨B 13.等价等值式A?B ? (A→B)∧(B→A) 14.假言易位A→B ?┐B→┐A 15.等价否定等值式 A?B ?┐A?┐B 16.归谬论(A→B)∧(A→┐B) ?┐A 求给定公式范式的步骤 (1)消去联结词→、?(若存在)。 (2)否定号的消去(利用双重否定律)或内移(利用德摩根律)。 (3)利用分配律:利用∧对∨的分配律求析取范式,∨对∧的分配律求合取范式。 推理定律--重言蕴含式 (1) A ? (A∨B) 附加律 (2) (A∧B) ? A 化简律 (3) (A→B)∧A ? B 假言推理 (4) (A→B)∧┐B ?┐A 拒取式 (5) (A∨B)∧┐B ? A 析取三段论 (6) (A→B) ∧(B→C) ? (A→C) 假言三段论 (7) (A?B) ∧(B?C) ? (A ? C) 等价三段论 (8) (A→B)∧(C→D)∧(A∨C) ?(B∨D) 构造性二难 (A→B)∧(┐A→B)∧(A∨┐A) ? B 构造性二难(特殊形式) (9)(A→B)∧(C→D)∧(┐B∨┐D) ?(┐A∨┐C) 破坏性二难

离散数学39偏序关系

偏序关系

一、偏序关系和哈斯图 1、定义3-12.1 若集合A上的二元关系R是自反的、反对称的和传递的,则称R是A的偏序关系,记作?.设?为偏序关系,如果∈?,则记作x?y,读作“小于或等于”。.序偶称为偏序集合.(Partially Ordered Relations) 注意:这里的“小于或等于”不是指数的大小,而是在偏 序关系中的顺序性.x“小于或等于”y的含义是:依照这个序, x排在y的前边或者x就是y.

根据不同偏序的定义,对序有着不同的解释. 例如整除关系是偏序关系, 3 ? 6的含义是3整除6. 大于或等于关系也是偏序关系,针对这个关系写5?4是说大于或等于4,关系?中5排在4的前边,也就是5比4大. 注: 和空关系都是A上的偏序关系, 1. 集合A上的恒等关系I A 但全域关系E 一般不是A上的偏序关系. A 2. 实数域上的小于等于关系(大于等于关系),自然数域上的整除关系,集合的包含关系等都是偏序关系.

定义设R为非空集合A上的偏序关系,定义 (1) ?x, y∈A, x ? y当且仅当 x ? y且x≠y; (2) ?x, y∈A, x 与 y 可比当且仅当 x ? y 或 y ? x. 注: 在具有偏序关系的集合A中任二元素 x 和 y 之间必有下列四种情形之一: x ? y ,y ? x ,x=y ,x 与 y 不可比.

例设A={1, 2, 3} (1) ?是A上的整除关系,则:1 ? 2, 1 ? 3, 1=1, 2=2, 3=3, 2 和 3 不可比; (2) ?是 A 上的大于等于关系,则: 2 ? 1, 3 ? 1, 3 ? 2, 1=1, 2=2,3=3.

等价关系与偏序关系复习题答案

第5章 等价关系与偏序关系 一、选择题(每题3分) 1、设Z 为整数集,下面哪个序偶不够成偏序集( A ) A 、)(,小于关系:<>< 关系:整除 D 、,()Z M M <>关系:整倍数 2、序偶(),A ρ<>?必为( B ) A 、非偏序集 B 、偏序集 C 、线序集 D 、良序集 3、设≤小于等于关系:Z 为整数集,下面哪个序偶能够成良序集( D ) A 、,()R R + <>≤:正实数集 B 、,()Q Q ++<≤>有理数集:正 C 、,()Z Z ++<≤> 整数集:正 D 、,()N N <≤>:自然数集 4、设{,{1},{1,3},{1,2,3}}A =?,则A 上包含关系“?”的哈斯图为( C ) 5、集合{ 1, 2, 3,4 }A =上的偏序关系图为 则它的哈斯图为( A ) 6、某人有三个儿子,组成集合123{ , , }A S S S =,则在A 上的兄弟关系一定不是( D ) A 、偏序关系 B 、线序关系 C 、良序关系 D 、等价关系 7、有一个人群集合12{ , , , }n A P P P = ,则在A 上的同事关系一定是( D ) A 、偏序关系 B 、线序关系 C 、良序关系 D 、等价关系 8、设A 为非空集合,则下列A 上的二元关系中为等价关系的是( D ) A 、空关系 B 、全域关系 C 、恒等关系 D 、上述关系都是 9、设{ 1, 2, 3 }A =,则A 上不同等价关系的个数为( C ) A 、3 B 、4 C 、5 D 、6 10、设{ 1, 2, 3, 4 }A =,则A 上不同等价关系的个数为( C ) A 、13 B 、14 C 、15 D 、16 注:除了等价关系可以对空集定义,而划分不能外,等价关系与划分是相同概念的不同描述. 11、设{ 1, 2 }S =,“?”为S 中元素的普通乘法,定义S S ?上的等价关系 {,,, | ,,,,}R a b c d a b S S c d S S a d b c =<<><>><>∈?<>∈??=?, 则由R 产生的S S ?上一个划分的分块数为( D ) A 、1 B 、2 C 、3 D 、4 提示:记12341,1,1,2,2,1,2,2a a a a =<>=<>=<>=<>, 则由R 的关系图易知1234{{},{},{},{}}S S a a a a ?=.

离散编程,求偏序关系的极大元与极小元

求偏序集中的极大元与极小元 成绩: 10 / 折扣: 0.9 输入 输入偏序集 , A 中的元素数不超过 20 个,分别用单个小写的英文字母表示。 输入的第一行给出 A 中的各个元素,两个相邻的元素之间用逗号隔开。 输入的第二行给出偏序关系£,用有序对的形式给出,如 , 等等,两个相邻的有序对之间用逗号隔开。 输出 输出 A 的极小元与极大元。 输出的第一行给出各个极小元,两个相邻元素之间用逗号隔开,输出的元素要求按照英文字母的自然顺序排列输出。 输出的第二行给出各个极大元,两个相邻元素之间用逗号隔开,输出的元素要求按照英文字母的自然顺序排列输出。 测试输入期待的输出时间限制内存限制额外进程 测试用例 1 以文本方式显示 1.a,b,c,d? 2.,,,,,? 以文本方式显示 1.a,c? 2.b,d? 无限制 1024KB 0 测试用例 2 以文本方式显示 1.a,b,c,d,e,f? 2.,,,,,,,,? 以文本方式显示 1.a,c,e? 2.b,d,f? 无限制 1024KB 0 源程序 #define N 100 #include"stdio.h" #include"string.h" int main( ) { char b[N],c[N],d[N],e[N]; /* b放元素,c放偏序关系,d放极小元,e放极大元 */ int i,j,m=0,n=0,len1,len2,s; scanf ( "%s%s",b,c ); len1 = strlen( b );

离散数学

计算机专业通知:计算机资料就是同学们网上学习的阶段测试和简答练习等资料,请同学们打印下来复习,如有新的资料更新会通知大家!(以下资料只是网上一部分) 离散数学 一、单项选择题 1、(p∨(q∧r))→(p∧q∧r)的主析取范式是:(B ) A. ∑(0,1) B. ∑(0,1,7) C. ∑(0,7) D. ∑(1,7) 2、下列是真命题的是(A ) A. 2是素数 B. 2+3=6 C. 雪是黑色的 D. 3能被2整除 3、设P:我们划船,Q:我们跳舞,命题“我们不能既划船又跳舞”符号化为(B ) A. P Q B. ┐(P∧Q) C. ┐P∧┐Q D. ┐P∧Q 4、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式 x(P(x)Q(x))在哪个个体域中为真 (A) A. 自然数 B. 实数 C. 复数 D. 前面三者均成立 5、当P的真值是1,Q的真值是1 R的真值是0,下列复合命题中真值为0的是(D ) A. (PvQ)→R B. R→(P ? Q) C. (PvR) →Q D. (P ?R)??Q 6、设A={1,2,3},则下列说法正确的是(C ) A. R={<1,1>,<2,2>,<3,3>,<1,2>}在A上是反自反的 B. R={<2,3>,<3,2>}在A上是自反的 C. R={<1,2>,<2,1>,<3,3>在A上是对称的 D. R={<1,2>,<1,3>}在A上是对称的 7、下面关于集合的表示中,正确的是(B ). A. φ=0 B. φ∈{φ} C. φ∈φ D. φ∈{a,b} 8、设A={?},B=P(P(A)),以下不正确的式子是()(分数:1分) A. .{{? },{{? }},{?,{? }}}包含于B B. {{{? }}}包含于B C. {{?,{? }}}包括于B D. {{? },{{?,{? }}}}包含于B 标准答案是:D。您的答案是: 9、六阶群的子群的阶数可以是()。(分数:1分) A. 1,2,5 B. 2,4 C. 3,6,7 D. 2,3 标准答案是:D。您的答案是: 10、设G是n个结点、m条边和r个面的连通平面图,则m等于()。(分数:1分) A. n+r-2 B. n-r+2 C. n-r-2 D. n+r+2 标准答案是:A。您的答案是:

偏序关系

4.6偏序关系 偏序关系:同时具有自反、反对称和传递性

4.6 偏序关系 定义4.21 设R为非空集合A上的一个二元关系,如果R是自反的、反对称的和传递的,则称R为A上的偏序关系,记作≤。设≤是偏序关系,若∈≤,则记作x≤y,读作x“小于或等于”y。集合A与A上的偏序关系≤一起组成的有序对叫做偏序集。 如以下关系都是偏序关系: (1)非空集合A上的恒等关系I A。 (2)实数集R上的“≤”、“≥”关系。

4.6 偏序关系 定义4.22 设为偏序集,定义 (1)?x, y∈A,x < y ?x ≤ y ∧x≠y,x是偏序集,其中A={1, 2, 3, 4, 5},是A上的整除关 系,则有 (1)1<2<4,1<3等。 (2)1=1,2=2,3=3等。 (3)2与3是不可比的。

4.6 偏序关系 Sed ut perspiciatis unde omnis.68% 设为偏序集,若?x, y ∈A ,x 与y 都是可比的,则称≤为A 上 的全序关系(或线序关系)。且称为全序集。 例如,集合A = {1, 2, 3, 4, 5}上的(1)“小于等于”关系是全序关系,因为任何两个数总是可比大小 的。(2)“整除关系”不是全序关系,因为2与3是不可比的。 定义4.23

4.6 偏序关系 定义4.24 设为偏序集,对于任意的x, y∈A,如果x < y并且不存在z∈A使得x | x, y∈A∧y盖住x} 根据定义4.24,?∈COV A ?y盖住x ?x ≤ y ?∈ ≤ 所以COV A ?≤。

离散数学N元集合关系个数计算

Author :ssjs Mail : 看了离散数学中的关系整理了一点关于n 元集合中各种关系的计算,现写下这个方便大家学习交流理解。对文章所致一切后果不负任何责任,请谨慎使用。 如有错误之处请指正。 定义: 1,对称:对于a,b R a b ∈∈∈),b (),a (,A 有如果只要 2,反对称:如果R a b R b a b b ∈∈=∈),(),(a ,A ,a 和时仅当 3,自反:如果对每个元素R ),(A a ∈∈a a 有 4,反自反:如果对于每个R ),(A a ?∈a a 有 5,传递:如果对R ),(,R ),(R ),(,A ,,∈∈∈∈c a c b b a c b a 则且 6,非对称:如果R ),(R ),(?∈a b b a 推出【注】其中是含(a,a)这样的有序对的。 【重要】集合A 的关系是从A 到A 的关系 (也就是说集合A 的关系是A A ?的子集)。 如下结论: N 元集合上的自反关系数为:)1(2 -n n N 元集合上的对称关系数为:2/)1(2+n n N 元集合上的反对称关系数为:2/)1(n 3 2-n n N 元集合上的非对称关系数为:2/)1(3-n n N 元集合上的反自反关系数为:)1(n 2-n N 元集合上的自反和对称关系数为:2/)1(n 2-n N 元集合上的不自反也不反自反关系数为:)1(n n 222 2-?-n 下面是上面结论的计算 1,自反 2A A ,A n n =?=因为也就是说集合A 有n 平方个有序对,由自反定义可知,对R ),(A a ∈∈?a a 有所以n 个有序对()).....3,2,1i X ,X (n i i =其中一定在所求关系中,否则的话此关系就不是自反的了,那么还有n n -2个有序对,所以由集合子集对应二进制串可得自反关系数为)1(n 222--=n n n 下图有助于理解。 (1,1) (2,2).......(n,n) | (1,2) (1,3).........(n-1,n) N n n -2 个有序对

离散数学等价关系

概念问题 二进制关系:A和B的笛卡尔积的子集称为从A到B的二进制关系。集合上的关系:从a到a的关系。 关系的性质 反射,抗反射,对称,抗对称和传输。 没有列出概念,但应注意以下方面: (1)所有属性的概念都是逻辑表达式,即判断是非,必须严格按照定义判断是非; (2)它们都是用全名量词表示的逻辑表达式,因此必须为真才能保持一致; (3)它们全部由隐含条件语句表示。如果前提为假,则它也为真,也就是说,所有未出现在真之后再为假的内容都为真。 关系代表 (1)设置符号(适合定义和表示); (2)图表表示(适合直观感觉和观察特性); (3)关系矩阵表示(适合计算);特别地,关系矩阵是布尔矩阵,即逻辑矩阵,其描述A中的第i个元素是否与B中的第j个元素有关。 关系运作

(1)交叉,合并与区别 R1?R2————M1ùM2 R1èR2————M1úM2 (2)综合 合成操作非常重要且容易出错。注意其顺序以及对集合,图形和矩阵的相应计算。 自我及其综合运算形成力量。 例如,R 2对应于由点直接连接的边,这些点可以从图形上的每个点分两步到达。 另一个例子 R1°R2 ————M2M1 R ^ 2 ————M ^ 2 关系的应用 (1)n元关系的应用 一般来说,当2元关系扩展到N元关系时,它就成为数据库的基本框架。N元有序对是N个字段的记录,因此关系操作对应于数据库操作。我们只知道这部分内容(与数据库重复)。 (2)封闭的应用 首先,介绍了三种闭包的概念。如果用一句话来概括,R的自反/对称/传递闭包是包含R的自反/对称/传递关系中最小的。

然后其应用着重于掌握传递闭包的应用,它可以显示传递性直接通过连接边可到达的点的连通性。 然后讨论三个闭包的计算: (3)等价关系的应用 首先是等价关系的概念,以及等价类和划分的扩展概念。 其次,等价关系的应用仅仅是分类。因为等价与划分之间存在一一对应的关系。 A.如果一个关系是集合a上的等价关系,写出每个元素的等价类,然后删除重复项,则由非重复等价类组成的集合就是原始集合a的除法。B,如果子集族是集合A的划分,则根据“属于同一个子集的人如果有关系就可以配对”的规则,二元有序对的集合必须满足反射性,对称性和可传递性,是等价的关系。 (4)偏序关系的应用 第一个是偏序的概念,并扩展了“小于或等于”,“小于”和“可比”。然后是整个顺序,然后是良好顺序(自己比较概念)。

偏序关系整理

●定义:集合S上的关系R,如果它是自反的,反对称的和传递的,就称为偏序。集 合S与偏序R一起叫做偏序集,记做(S, R) ●例子: ●1、整数集合上的“大于或等于”关系 ●2、正整数集合上的整除关系 ●3、集合S的幂集合上的包含关系 ●符号: ●通常用?表示偏序关系,读作“小于等于” ●∈R ? xRy ? x?y ●使用这个记号是由于“小于或等于”关系是偏序关系的范例。 ●“严格小于”: x?y ? x?y ∧x≠y ●当a与b是偏序关系(S, ≤)的元素时,不一定有a ≤b或b ≤a。 ●定义2:偏序集(S, ≤)的元素a和b叫做可比的,如果a ≤b或b ≤a。当a和b是S 的元素且没有a ≤b,也没有b ≤a,则称a和b是不可比的。 ●极大元素:偏序集的一个元素,它不小于这个偏序集的任何其他元素 ●极小元素:偏序集的一个元素,它不大于这个偏序集的任何其他元素 ●最大元素:偏序集的一个元素,它大于这个偏序集的所有其他元素 ●最小元素:偏序集的一个元素,它小于这个偏序集的所有其他元素 设为偏序集, A?S, u,l∈A ●上界(upper bound): u是A的上界??x( x∈A → x?u ) ●下界(lower bound): l是A的下界??x( x∈A → l?x ) ●例:, S={1,2,3,4,5,6,9,10,15} ●A1={1,2,3}, A2={3,5,15}, A3=S. ●A1的上界是{6}, A1的下界是{1} ●A2的上界是{15}, A2的下界是{1} ●A3的上界集合的最小上界:集合的一个上界,它小于所有其他的上界 ●集合的最大下界:集合的一个下界,它大于所有其他的下界 是{}, A3的下界 I A R R∩I A=R=R R∩R-1 I A R R R 最小元与极小元是不一样的。最小元是B中最小的元素,它与B中其它元素都可比;而极小元不一定与B中元素可比,只要没有比它小的元素,它就是极小元。对于有穷集B,极小元一定存在,但最小元不一定存在。最小元如果存在,一定是唯一的,但

离散数学 集合与关系 函数 习题 测验

一、已知A、B、C是三个集合,证明(A∪B)-C=(A-C)∪(B-C) 证明:因为 x∈(A∪B)-C?x∈(A∪B)-C ?x∈(A∪B)∧x?C ?(x∈A∨x∈B)∧x?C ?(x∈A∧x?C)∨(x∈B∧x?C) ?x∈(A-C)∨x∈(B-C) ?x∈(A-C)∪(B-C) 所以,(A∪B)-C=(A-C)∪(B-C)。 二、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图。 解:r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R2=R5={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>, <5,5>} 三、证明等价关系 设R是集合A上的一个具有传递和自反性质的关系,T是A上的关系,使得∈T?∈R且∈R,证明T是一个等价关系。 证明因R自反,任意a∈A,有∈R,由T的定义,有∈T,故T自反。 若∈T,即∈R且∈R,也就是∈R且∈R,从而∈T,故T对称。 若∈T,∈T,即∈R且∈R,∈R且∈R,因R 传递,由∈R和∈R可得∈R,由∈R和∈R可得∈R,由∈R和∈R可得∈T,故T传递。 所以,T是A上的等价关系。 四、函数 设A、B、C、D是集合,f是A到B的双射,g是C到D的双射,令h:A×C→B×D且?∈A×C,h()=。证明h是双射。 证明:1)先证h是满射。 ?∈B×D,则b∈B,d∈D,因为f是A到B的双射,g是C到D的双射,所以存在a∈A,c∈C,使得f(a)=b,f(c)=d,亦即存在∈A×C,使得h()=

等价关系离散数学

等价关系(4学时) 【教学目的】 了解、掌握等价关系及相应的等价类与集合划分的基本概念及例子 【教学要求】 正确地掌握等价关系及相应的等价类与集合划分之间的关系;给定A上的等价关系R,会求所有的等价类和商集A/R,或者求与R相对应的划分;反之给定集合 A上的划分π,求对应于π的等价关系 【教学重点】 等价关系、偏序关系的各种性质的判断和证明; 【教学难点】 如何正确地掌握等价关系及相应的等价类与集合划分之间的关系 【教学方法】 讲练结合教学法、提问式与启发式相结合教学法。 【教学手段】 传统板书与多媒体课件辅助教学相结合。 【课型】新授课 教学过程 4.1一种特殊的二元关系——等价关系(Equivalence Relation). 一、等价关系(Equivalence Relation) 1、定义4.18 设R为非空集合上的关系.如果R是自反的、对称的和传递的, 则称R为A 上的等价关系.设R是一个等价关系, 若∈R, 称x等价于y, 记作:x ~ y. 例4.17 设A = { 1, 2, …, 8 }, 如下定义A上的关系R: R = { | x, y∈A∧x≡y (mod 3)} 其中x≡y(mod 3)是x与y模3. 不难验证R为A上的等价关系, 因为: ?x∈A , 有: x≡x(mod 3) ?x,y∈A, 若x≡y(mod 3), 则有: y≡x (mod 3) ?x,y,z∈A, 若x≡y(mod 3), y≡z(mod 3), 则有: x≡z.(mod 3) 该关系的关系图如右图所示. 不难看到, 上述关系图被分为三个互不连通的部分.每部分中的数两两都有关系.不同部分中的数则没有关系, 每一部分中的所有的顶点构成一个等价类. 4.2等价关系与划分

偏序关系中盖住关系的求取及格论中有补格的判定.

《离散数学》实验报告 (2015/ 2016 学年第一学期) 题目:偏序关系中盖住关系的求取及格论中有补格的判定 专业 学生姓名 班级学号 指导教师 指导单位计算机学院计算机科学与技术系 日期2015年12月15日

评分细则 评分项优秀良好中等差遵守机房规章制度 上机时的表现 学习态度 算法思想准备情况 程序设计能力 解决问题能力 课题功能实现情况 算法设计合理性 算法效能评价 报告书写认真程度 内容详实程度 文字表达熟练程度 回答问题准确度 简 短 评 语 教师签名: 年月日 评 分 等 级 备 注 评分等级有五种:优秀、良好、中等、及格、不及格

偏序关系中盖住关系的求取及格论中有补格的判定 一、实验内容和要求 内容: 编程实现整除关系这一偏序关系上所有盖住关系的求取,并判定对应偏序集是否为格。 要求: 对任意给定正整数,利用整除关系求所有由其因子构成的集合所构成的格,判断其是否为有补格。 二、实验目的 编程实现整除关系这一偏序关系上所有盖住关系的求取,并判定对应偏序集是否为格。 三、实验任务 1、求出输入数的所有因子。 2、求出整除关系“≤”的偏序集。 3、求出盖住关系COV A。 4、判断是否有补格。 5、判断是否为布尔格。 四、实验内容 #include using namespace std; bool Find(int a, int b,int n) //判断两个元素是否互补 { int temp; if (a < b) { temp = a; a = b; b = temp; } int dividend=a, divider=b, remainder=0,min,max; remainder = dividend%divider; while (remainder) { dividend = divider;

离散数学等价关系

离散数学等价关系 离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。 离散数学在各学科领域,特别在计算机科学与技术领域有着广泛的应用,通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。 随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。

离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域。 离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯·格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。那么这能否从数学上进行证明呢?100多年后的1976年,肯尼斯·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用计算机辅助计算,用了1200个小时和100亿次的判断,终于证明了四色定理,轰动世界,这就是离散数学与计算机科学相互协作的结果。 离散数学可以看成是构筑在数学和计算机科学之间的桥梁,因为离散数学既离不开集合论、图论等数学知识,又和计算机科学中的数据库理论、数据结构等相关,它可以引导人们进入计算机科学的思维领域,促进了计算机科学的发展。

010_离散数学

湖南师范大学硕士研究生入学考试自命题考试大纲 考试科目代码:考试科目名称:离散数学 一、试卷结构 1) 试卷成绩及考试时间 本试卷满分为100分,考试时间为180分钟。 2)答题方式:闭卷、笔试 3)试卷内容结构 集合论40% 数理逻辑40% 图论20% 4)题型结构 a: 填空题,5小题,每小题5分,共25分 b: 计算题,3小题,每小题10分,共30分 c: 证明题,3小题,每小题15分,共45分 二、考试内容与考试要求 1、集合论 考试内容 集合及其表示集合的运算与性质二元关系的概念二元关系的五种性质关系矩阵与关系图关系的各种运算与性质关系闭包与性质相容关系等价关系序关系部分函数、满射、内射、双射的概念可逆、左可逆、右可逆函数特征函数集合的基数与性质 考试要求 (1)理解集合的表示、二元关系的概念、部分函数、满射、内射、双射的概念可逆、左可逆、右可逆函数的概念; (2)掌握集合的运算与性质、关系的五种性质、关系的运算与性质、关系闭包与性质、相容关系、等价关系、序关系. (3)了解特征函数集合的基数与性质.

2、数理逻辑 考试内容 命题与命题的真值五个基本联结词命题符号化合式公式真值表合式公式的类型等价式、蕴含式的证明范式和判定问题求主范式的方法变元、谓词和量词量词的辖域、前束范式合式公式的解释、求合式公式在给定解释下真值的方法 考试要求 (1)理解命题与命题的真值、联结词、合式公式与真值表、变元、谓词和量词等概念. (2)掌握合式公式的类型、等价式、蕴含式的证明、求主范式的方法、合式公式的解释、以及求在给定解释下真值的方法. (3)了解量词的辖域、前束范式. 3、图论 考试内容 图的基本概念路与回路和连通性图的矩阵表示欧拉图和哈密顿图平面图对偶图与着色树与生成树根树及其应用 考试要求 (1)理解图、路、回路和连通性等基本概念. (2)掌握一些特殊图类的性质,树的特征与应用. 三、参考书目 [1] 左孝凌等,《离散数学》,上海科技文献出版社,1982年 [2] 王兵山、张强、毛晓光,《离散数学》,国防科技大学出版社,1998年 [3] 耿素云、屈宛玲,《离散数学》,高等教育出版社,2003年

离散数学作业1_集合与关系答案

离散数学作业1_集合与关系 1. 设A、B、C为任意三个集合,判断下列命题的真与假。如命题为真,则证明之;否则,举反例说明。 (1)若A?C=B?C,则A=B(假命题) (2)若A?C=B?C ,则A=B(假命题) (3)若A?C=B?C 且A?C=B?C ,则A=B (真命题,参考ppt 1.2节例8) 2.证明A-B=A∩~B. 证明思路:任取x∈A-B?……? x∈A∩~B 证明:任取x∈A-B?x∈A且x/∈B(根据相对补的定义) ? x∈A且x∈~B(根据绝对补的定义) ? x∈A∩~B 3. 设A={1,2,3,4,5,6},下面各式定义的R都是A上的二元关系。试分别以序偶、关系矩阵、关系图三种形式分别写出R。 (1) R={|x整除y};(2) R={|x是y的倍数}; (3) R={|(x-y)2∈A};(4) R={|x/ y是素数}。 解: (1) R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,2>,<2,4.>,<2,6>,<3,3 >,<3,6>,<4,4>,<5,5>,<6,6>} (2) R={<1,1>,<2,1>,<2,2>,<3,1>,<3,3>,<4,1>,<4,2>,<4,4>,<5,1>,<5,5

>,<6,1>,<6,2>,<6,3>,<6,6>} (3) R={<1,2>,<1,3>,<2,1>,<2,3>,<2,4>,<3,2>,<3,4>,<3,1>,<3,5>,<4,3 >,<4,5>,<4,2>,<4,6>,<5,4>,<5,6>,<5,3>,<6,5>,<6,4>} (4) 质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。 100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。 注:1既不是质数也不是合数。因为它的约数有且只有1这一个约数。 R={<2,1>,<3,1>,<4,2>,<5,1>,<6,2>,<6,3>} 4. 设R是A到B的二元关系,证明:对于A的任意子集A1和A2, R(A1∩A2) = R(A1)∩R(A2)当且仅当? a∈A,b∈A,且a≠b有R(a)∩R(b) = Φ. 证明(1)先证充分性(由后推前)即已知 ? a∈A, b∈A ,有R(a)∩R(b) = Φ, 目的是证明对于A的任意子集A1和A2, 有 R(A1∩A2) = R(A1)∩R(A2) (下面通过证明R(A1∩A2) ?R(A1)∩R(A2),以及R(A1)∩R(A2) ? R(A1∩A2))

离散数学符号表

《离散数学》符号表 ? 全称量词(任意量词) ? 存在量词 ├ 断定符(公式在L 中可证) ╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算 ∧ 命题的“合取”(“与”)运算 ∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算 ? 命题的“双条件”运算的 B A ? 命题A 与B 等价关系 B A ? 命题A 与B 的蕴涵关系 * A 公式A 的对偶公式 wff 合式公式 iff 当且仅当 V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” ) □ 模态词“必然” ◇ 模态词“可能” φ 空集 ? 属于(?不属于) A μ(·) 集合A 的特征函数 P (A ) 集合A 的幂集 A 集合A 的点数 n A A A ??? (n A ) 集合A 的笛卡儿积 R R R =2 )(1R R R n n -= 关系R 的“复合” 0? 阿列夫零 ? 阿列夫

? 包含 ? 真包含 ∪ 集合的并运算 ∩ 集合的交运算 - (~) 集合的差运算 ⊕ 集合的对称差运算 m + m 同余加 m ? m 同余乘 〡 限制 R x ][ 集合关于关系R 的等价类 A /R 集合A 上关于R 的商集 )(A R π 集合A 关于关系R 的划分 )(A R π 集合A 关于划分π的关系 ][a 元素a 产生的循环群 R a ][ 元素a 形成的R 等价类 r C 由相容关系r 产生的最大相容类 I 环,理想 )/(n Z 模n 的同余类集合 ) (mod k b a ≡ a 与b 模k 相等 )(R r 关系R 的自反闭包 )(R s 关系R 的对称闭包 +R ,)(R t 关系R 的传递闭包 *R ,)(R rt 关系R 的自反、传递闭包 .i H 矩阵H 的第i 个行向量 j H . 矩阵H 的第j 个列向量 CP 命题演绎的定理(CP 规则) EG 存在推广规则(存在量词引入规则) ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则)

离散数学作业2_集合与关系答案

离散数学作业2_集合与关系 1. 设A={1,2,3,4,5},R是集合A上的二元关系,aRb当且仅当a,<1,3>,<1,4>,<1,5>,<2,3>,<2,4>,<2,5>,<3,4>,<3,5>,<4,5>} M R2=M R⊙M R= 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 所以,R2={……} M R3= M R2⊙M R= 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 所以,R3={……} (2) aR2b的充要条件是b-a≧2 (3) aR3b的充要条件是b-a≧3

2. 设A={a,b,c}, R={,,},求R2,R3,R4,R∞,R* 解: M R= 0 1 0 0 0 1 1 0 0 所以 M R2= 0 0 1 1 0 0 0 1 0 M R3= 1 0 0 0 1 0 0 0 1 继续计算可得M R4= M R, 所以, M R5= M R2, M R6= M R3, M R7= M R,…. 所以M R∞=M R∨M R2∨M R3=….,M R*=M I A∨M R∞ 因此, R2={……}, R3={……}, R4={......}, R∞={......},R*={......} 3.分别对下图中所给的两个关系,求R n,n N。 b o o a a o b o o c c o o d d o o e ⑴⑵ 解: (1) R={,,,}, 因此,

离散数学作业6_集合与关系答案

离散数学作业 作业6 ——等价关系 1. 设R和S均为A上的等价关系,确定下列各式,哪些是A上的等价关系?如果是,证明之;否则,举反例说明。 (1)R∩S (2)R∪S (3)r (R-S) (4)R- S (5)R?S (6)R2 解:(1),(6)正确,其余错误。 2. R是集合A上的二元关系, a,b,c ,若aRb,且bRc,有cRb,则称R是循环关系。证明R是自反和循环的,当且仅当R是一等价关系。 分析: 需要证明两部分: (1)已知R是自反和循环的,证明:R是一等价关系 (2)已知R是一等价关系, 证明R是自反和循环的. 证明:(1)先证必要性。只需要证明R是对陈的和传递的。 任取(x,y)∈R。因为R是自反的,所以(y,y)∈R。由R是循环的可得(y,x)∈R,即R是对陈的。 任取(x,y),(y,z)∈R。因R是循环的,所以(z,x)∈R。由R对称性得(x,z)∈R,即R是传递的。 (2)证充分性。只需要证明R是循环的。任取(x,y),(y,z)∈R,下证(z,x)∈R。由于R是传递的,所以(x,z)∈R。又由R是对称的得(z,x)∈R。所以R是循环的。 3. 设|A|=n,在A上可以确定多少个不同的等价关系? 解:2n!/((n+1)n!n!)

4. 给定集合S={ 1 , 2 , 3, 4, 5 },找出S 上的等价关系R ,此关系R 能够产生划分{{1,2},{3},{4,5}},并画出关系图。 解:{(1,2),(2,1),(4,5),(5,4)}S R I =? 5. 设A={1,2,3,4,5}。R 是集合A 上的二元关系,其关系矩阵如下图所示。求包含R 的最小等价关系和该等价关系所确定的划分。 ????????????????=0010001000 000000101000001R M 分析: 可以证明tsr(R)是包含R 的最小等价关系. 解:包含R 的最小等价关系的矩阵表示如下: 100000 1010001010 101000101?? ? ? ? ? ? ??? 上述等价关系确定的划分为{{1},{2,4},{3,5}}. 6. 自学华氏(WalShall)算法,写出算法的基本概念、基本步骤和一个 求解传递闭包的具体实例,并可清晰讲解算法整体实现过程。 7. (选做题)设R 与S 是A 上的等价关系,证明: (1)R S 是A 上的等价关系,iff R S=S R ; (2)R ∪S 是A 上的等价关系,if R S ?S 且 S R ?R. 分析: iff 是if and only if 的缩写, 是当且仅当的意思. 证明:(1)先证必要性。任取(x,z)∈R S ,则存在y 使得xRy,ySz 。因为R 与S 是A 上的等价关系,所以R 与S 是对陈的,即yRx,zSy,所以

相关文档