文档库 最新最全的文档下载
当前位置:文档库 › Bridge load and resistance models

Bridge load and resistance models

Bridge load and resistance models
Bridge load and resistance models

Engineering Structures ,Vol.20,No.11,pp.985–990,1998

?1998Elsevier Science Ltd.All rights reserved

Printed in Great Britain PII:S0141-0296(97)00193-4

0141–0296/98$19.00+

0.00

Bridge load and resistance models

Andrzej S.Nowak and Maria M.Szerszen

Department of Civil and Environmental Engineering,University of Michigan,2370G.G.Brown,Ann Arbor,MI 48109-2125,USA

The development of rational codes for the design of bridges and evaluation of existing structures requires a knowledge of load and resistance models.This paper deals with the major parameters involved in the design and evaluation.The presented models are based on the available statistical data,material tests,load surveys,lab tests,?eld tests and simulations.The considered load compo-nents include dead load,live load and dynamic load.Resistance models are presented for steel girders (composite and non-composite),reinforced concrete T-beams and prestressed concrete AASHTO type girders.?1998Elsevier Science Ltd.All rights reserved.

Keywords:loads,resistance,reliability

1.Introduction

The new generation of bridge design codes is based on the theory of probability and statistics 1,2.Load and resistance parameters vary randomly and they have to be treated as random variables.Then,the structural performance can be measured in terms of the reliability index,which is a func-tion of statistical parameters of load and resistance 3,4.The objective of this paper is to provide a summary of the avail-able load and resistance models for highway bridges.

A considerable amount of research was conducted in conjunction with the development of the new AASHTO LRFD Bridge Design Speci?cations 5,Ontario Highway Bridge Design Code 6,8,and Eurocode (in progress).The available data was compiled and processed to establish a comprehensive basis for rational design and evaluation cri-teria.In this paper,the database is reviewed and the statisti-cal parameters are presented in tables and ?gures.

2.Bridge loads

The fundamental load combination includes dead load,live load and dynamic load.This paper deals with the statistical model for these load components.

The new developments affect dead load,live load and dynamic load.Dead load is based on the latest available data.The live load model is developed for one lane and two lane bridges.An important part of this study is the dynamic load analysis.The model is developed on the basis of an analytical simulation of the actual bridge behavior.The major load components of highway bridges are dead load,live load (static and dynamic),environmental loads (temperature,wind,earthquake)and other loads (collision,emergency braking).The load models are developed using the available statistical data,surveys and other obser-vations.Load components are treated as random variables.

985

Their variation is described by the cumulative distribution function (CDF),mean value and coef?cient of variation.The relationship between load parameters is described by a coef?cient of correlation.

The basic load combination for highway bridges is a sim-ultaneous occurrence of dead load,live load and dynamic load.The combinations involving other load components (wind,earthquake,collision forces)require a special approach which takes into account a reduced probability of a simultaneous occurrence of extreme values of several independent loads.

2.1.Dead load

Dead load,D ,is the gravity load due to the self weight of the structural and non-structural elements permanently connected to the bridge.Because of different degrees of variation,it is convenient to consider the following compo-nents of D :

D 1=weight of factory-made elements (steel,precast concrete members);

D 2=weight of cast-in-place concrete members;D 3=weight of the wearing surface (asphalt);

D 4=miscellaneous weight (e.g.railing,luminaries).All components of D are treated as normal random vari-ables.The statistical parameters used in the development of the AASHTO LRFD Code 5and OHBDC 8are listed in Table 1.The bias factors (mean-to-nominal ratios)are taken as in the previous calibration work 9.However,the coef?cients of variation are increased to include human error as recommended by Ellingwood et al.10.

The thickness of asphalt was ?rst modeled on the basis of statistical data available from the Ontario Ministry of Transportation (MTO).Measurements were taken in vari-ous regions of the province.The average thickness of

Table1Statistical parameters of dead load

Component Bias factor Coef?cient of

variation Factory-made 1.030.08 members

Cast-in-place 1.050.10 members

Asphalt75mm a0.25 Miscellaneous 1.03–1.050.08–0.10

a Mean thickness

asphalt is75mm.The coef?cient of variation,calculated from the slope of the distributions,is0.25.

For miscellaneous items(weight or railings,curbs, luminaries,signs,conduits,pipes,cables,etc.),the statisti-cal parameters(means and coef?cients of variation)are similar to those of D1,if the considered item is factory-made with high quality control measures,and similar to D2, if the item is cast-in-place,with less strict quality control.

2.2.Live load

Live load,L,covers a range of forces produced by vehicles moving on the bridge.Traditionally,the static and dynamic effects are considered separately.Therefore,in this study, L covers only the static component.The dynamic compo-nent is denoted by I.

The effect of live load depends on many parameters including the span length,truck weight,axle loads,axle con?guration,position of the vehicle on the bridge (transverse and longitudinal),number of vehicles on the bridge(multiple presence),girder spacing,and stiffness of structural members(slab and girders).

The live load model is based on the truck survey in Onta-rio performed by the MTO.The study covered about10000 selected trucks(only trucks which appeared to be heavily loaded were measured and included in the database). The uncertainties involved in the analysis are due to limi-tations and biases in the survey data.Even though10000 trucks is a large number,it is very small compared to the actual number of heavy vehicles in a50or75year life time.It is also reasonable to expect that some extremely heavy trucks purposefully avoided the weighing stations.A considerable degree of uncertainty is caused by unpre-dictability of the future trends with regard to con?guration of axles and weights.

For each truck,bending moments and shear forces were calculated for a wide range of simple spans.The cumulative distribution functions(CDF)were plotted on normal prob-ability paper and extrapolated to obtain the maximum load effects for extended periods of time11–13.The construction and use of the normal probability paper is explained in the fundamental textbooks on probability theory,e.g.Benjamin and Cornell14.The mean moments and shears were calcu-lated for time periods from1day to75years.

For one lane bridges,the maximum effect(moment or shear)is caused by a single truck or two(or more)trucks following behind each other.For a multiple truck occur-rence,the important parameters are the headway distance and degree of correlation between truck weights.The maximum one lane effect was derived as the largest of the following cases:

?single truck effect equal to the maximum50or75year moment(or

shear);Figure1Live load speci?ed by AASHTO15

?two trucks,each with a weight smaller than that of the single truck in the?rst case.Three degrees of correlation between truck weights are considered:none(?=0),par-tial(?=0.5)and full(?=1),where?=coef?cient of correlation.

It is assumed that,on average,about every50th truck is followed by another truck with the headway distance less than30m,about every150th truck is followed by a par-tially correlated truck,and about every500th truck is fol-lowed by a fully correlated truck.The two trucks are denoted by T1and T2.Three cases are considered.

?No correlation between T1and T2.The parameters of T1 are taken for every50th truck(maximum1year truck). Parameters of T2are taken for an average truck.?Partial correlation between T1and T2.The parameters of T1are taken for every150th truck(6month truck). Parameters of T2are taken for every1000th truck (maximum1day truck).

?Full correlation between T1and T2.The parameters of T1and T2are taken for every500th truck(maximum 1month truck).

The truck effects are determined by simulation for vari-ous time periods,for a headway distance equal to5m (bumper-to-bumper traf?c).The results indicate that one truck governs for spans less than30–40m.For longer spans,two fully correlated trucks govern.The headway dis-tance of5m is associated with non-moving vehicles or trucks moving at reduced speeds.This is important in con-sidering dynamic loads.

Bias factor is the ratio of the mean to the nominal value. Nominal live load is speci?ed by the code.For ASSHTO15, this is shown in Figure1,and for OHBDC7in Figure2

.

Figure2Live load speci?ed by OHBDC7

Figure 3Bias factors for live load effects speci?ed by AASH-TO 15

The resulting bias factors (ratio of mean to nominal)are shown in Figure 3for live load lane moments and shears.The coef?cient of variation of live load effect (per lane)is practically constant,equal to 0.12.

It is desirable for the code to specify a bias factor which is uniform.In Figure 3,bias factor varies from 1.5to 2.2,and in Figure 4,from 1.0to 1.25.Based on these results,in AASHTO LRFD 5and OHBDC 8the design live load was changed.In AASHTO LRFD 5,live load was speci?ed as a superposition of HS-20truck and uniform load of 9.3kN/m.In OHBDC 8,the axle load in the tandem part of the design truck was increased to 160kN each (from 140kN).The bias factors for these new nominal live loads are shown in Figures 5and 6,for AASHTO LRFD 5and OHBDC 8,respectively.

For two lane moments and shears,the analysis involves consideration of multiple presence side-by-side.The analy-sis involves the determination of the load in each lane and the load distribution to the girders.The effect of multiple trucks is calculated by superposition.The maximum moments are calculated as the largest of the following cases:

?one lane fully loaded and the other lane unloaded;

?both lanes loaded;three degrees of correlation between the lane loads are considered:no correlation (?=0),partial correlation (?=0.5)and full correlation (?=1).It has been observed that,on average,about every 15th truck is on the bridge simultaneously with another

truck

Figure 4Bias factors for live load effects speci?ed by OHBDC

7

Figure 5Bias factors for live load effects speci?ed by AASHTO LRFD

5

Figure 6Bias factors for live load effects speci?ed by OHBDC 8

(side-by-side).For each such simultaneous occurrence,it is assumed that every 10th time the trucks are partially cor-related and every 30th time they are fully correlated (with regard to weight).It is also conservatively assumed that the transverse distance between two side-by-side trucks is 1.2m (wheel center-to-center).

In the case of only one lane loaded,the parameters (mean and coef?cient of variation)of the maximum effect are as shown above.In the case of two lanes loaded,the para-meters of moments and shears in each lane depend on the degree of correlation.

?No correlation (?=0):the maximum 75year moment is caused by a simultaneous occurrence of the maximum 5year moment in lane 1and the average moment in lane 2.

?Partial correlation (?=0.5):the maximum 75year moment is caused by a simultaneous occurrence of the maximum 6month moment in lane 1and the maximum daily moment in lane 2.

?Full correlation (?=1):the maximum 75year moment is caused by a simultaneous occurrence of the maximum 2month moment in both lanes.

Structural analysis was performed using a ?nite element method.The model is based on a linear behavior of girders and slab.The maximum girder moments and shears were calculated by superposition of truck loads in both lanes.The results indicate that for interior girders,the case with two fully correlated side-by-side trucks governs,with each

truck equal to the maximum2month truck.However,for some cases of exterior girders,one truck may govern.

An important role is played by the girder distribution factors(GDF).In AASHTO15,GDF is speci?ed as a func-tion of girder spacing only.The formula is simple but not accurate.For longer spans and larger girder spacings,GDFs are too conservative,for short spans and spacings they are too permissive.In AASHTO LRFD5and OHBDC7,8GDFs are speci?ed with a bias factor close to1.0.

2.3.Dynamic load

Dynamic load effect,I,is considered as an equivalent static load effect added to the live load,L.The statistical para-meters(mean and coef?cient of variation)of I were determined by simulations16and?eld measurements17. The dynamic load is a function of three major para-meters:road surface roughness,bridge dynamics (frequency of vibration)and vehicle dynamics(suspension system).An analytical procedure was developed which includes the effect of these three parameters.Simulation of the dynamic load requires the generation of a road pro?le, which is done by using a Fourier transform of the power spectral density function.The bridge is modeled as a pris-matic beam.

Modal equations of motion are formulated.In the analy-sis,each truck is composed of a body,suspension system and tires.The body is subjected to a rigid body motion including the vertical displacement and pitching rotation. Suspensions are assumed to be of multi-leaf type springs. The dynamic load allowance(DLA)is de?ned as the maximum dynamic de?ection,D dyn,divided by the maximum static de?ection,D sta.Static and dynamic de?ec-tions are calculated for typical girder bridges.It has been observed that the absolute value of the dynamic de?ection is almost a constant.Therefore,as the gross vehicle weight is increased,the dynamic load allowance is decreased. Decrease of DLA is mainly due to the increase in static de?ection.

In most cases,the maximum live load is governed by two trucks side-by-side.The corresponding DLAs are cal-culated for two trucks by superposition of one truck effects. The obtained mean dynamic load is0.10of the mean live load for two trucks and0.15for one truck.The coef?cient of variation is0.80.

In AASHTO15,dynamic load(impact)was speci?ed as a function of span(but it was limited to0.3).In AASHTO LRFD5,dynamic load is speci?ed as0.33of the truck effect only,with no dynamic load applied to the uniformly distrib-uted load.

In OHBDC7,the design values of dynamic load are speci?ed as a function of the natural frequency of vibration. The results of simulations indicate that DLA values can be reduced and they are lower for two trucks than for one truck.In general,dynamic load is reduced for a larger num-ber of axles.Furthermore,DLA is applied to the maximum 75year live load.The actual DLA is close to the mean. Therefore,in the3rd edition of OHBDC8,dynamic load factor is equal to0.25for spans larger than6m.

3.Live load for evaluation of existing bridges Existing bridges are evaluated to determine their actual strength and predict the remaining life.The major differ-ence between the load model for the design of new bridges and evaluation of existing structures is the reference time period.New bridges are designed for a50or75year life-time and existing bridges are checked for5–10year per-iods.The load model depends on the reference time period. Maximum moments and shears are smaller for5or10year periods than for the50or75year life time.However,the coef?cient variation is larger for shorter periods.

The load combination including dead load,live load and dynamic load is considered.The maximum5or10year live loads,and corresponding dynamic loads,are derived using the same extrapolation procedure applied to derive the loads for longer time periods.Dead load model is not time-dependent and the statistical parameters are as given in Table1.The maximum5year live load moment(or shear)is about5%less than the maximum50year moment (or shear).The difference between10year moment and 50year moment is about3%.For a posted structure,with a reduced truck weight limit,the maximum live load values are lower than for bridges which are not posted.However, the corresponding dynamic load allowance,DLA,is increased(as a fraction of live load).Therefore,the DLAs recommended for posted bridges are increased by0.1 depending on the value of the evaluation level and number of axles.

4.Resistance of bridge girders

The resistance of bridge components has been modeled by tests,observations of existing structures and by numerical simulations.The causes of uncertainty about the structural resistance can be put into three categories:?material:strength of material,modulus of elasticity,

cracking stress and chemical composition;?fabrication:geometry,dimensions and section modulus;?analysis:approximate method of analysis,idealized stress and strain distribution model.

Therefore,the resistance,R,can be considered to be a product of the nominal resistance,R n,and three further fac-tors:material properties,M,fabrication(geometry),F,and professional/analysis,P:

R=R n MFP(1)

The models of resistance are considered for non-com-posite steel girders,composite steel girders,reinforced con-crete T-beams and prestressed concrete AASHTO-type gir-ders.The statistical data on resistance parameters can be based on the available material and component tests.The mechanical propertes of concrete,reinforcing steel and pre-stressing steel are based on the available test data provided by McGregor10and Siriaksorn and Naaman18.Flexural capacity is established by simulation of the moment–curvature relationship,as described by Tabsh and Nowak19. The shear capacity of concrete components is calculated using the modi?ed compression?eld theory20.The statisti-cal parameters were developed by Nowak et al.21. Moment–curvature curves are simulated for selected designs using the Monte Carlo method22and a sampling technique23.A computer program was developed to deter-mine the curvature corresponding to a given bending moment,material properties and dimensions. Simulations produced a large spectrum of possible moment–curvature relationships.The mean curves for pre-

Figure 7Moment–curvature relationship for prestressed con-crete girders

stressed concrete AASHTO girders type I,II and III are shown in Figure 7.

The shear capacity is modeled using the modi?ed com-pression ?eld theory 24.In this theoretical model,cracked concrete is treated as a new material with its own stress–strain characteristics.Equilibrium,compatibility and constitutive relationships are formulated in terms of average stresses and strains.Variability in the angle of inclination of the struts,and strain-softening effects in concrete are taken into account.Consideration is given to local stress conditions at crack locations.Therefore,the resulting theory is capable of predicting accurately not only the strength,but also the load–deformation response of con-crete members loaded in shear.The statistical parameters of shear resistance are also derived using the Monte Carlo simulation,including bias factors and coef?cients of vari-ation.

In Figure 8,the means of simulated shear–strain relationships are plotted for prestressed concrete AASHTO girders type I,II and III.

5.Summary of resistance models

For the considered materials and limit states,the bias fac-tors and coef?cients of variation are summarized in Table 2

.

Figure 8Shear force–shear strain relationship for prestressed concrete girders

Table 2Statistical parameters of resistance

Material

Limit state

Bias factor

Coef?cient of variation

Non-Moment 1.110.115composite Steel girder Shear 1.140.12Composite Moment 1.110.12Steel girder Shear 1.140.12Reinforced Moment 1.140.13Concrete Shear 1.1650.16Prestressed Moment 1.050.075Concrete

Shear

1.165

0.16

6.Conclusions

Statistical models for bridge load and resistance parameters are summarized.The derivations are based on the available data and special simulations.Bias factors and coef?cients of variation are calculated for dead load,live load,dynamic load,and resistance of steel girders,reinforced concrete T-beams and prestressed concrete AASHTO type girders.

Acknowledgements

The presented work on compilation of the load and resist-ance models has been partially supported by a NATO Col-laborative Research Grant which is gratefully acknowl-edged.Thanks are due to former doctoral students at the University of Michigan for their help in calculations,in particular,Young-Kyun Hong,Eui Seung Hwang,Sami Tabsh,Ahmed Yamani,Hani Nassif,Jeff Laman and Has-san El-Hor.

References

1Nowak,A.S.and Kulicki,J.M.,New generation of U.S.bridge design codes.In Proceedings,IABSE Colloquium on Eurocodes ,Vol.74,Delft,The Netherlands,March 1996,pp.535–540

2Nowak,A.S.and Grouni,H.N.,Calibration of the OHBDC-1991,Canadian Journal of Civil Engineering 1994,21,25–35

3

Nowak,A.S.,Calibration of LRFD bridge code,ASCE Journal of Structural Engineering 1995,121(8),1245–1251

4Thoft-Christensen,P.and Baker,M.J.,Structural Reliability Theory and Its Applications,Springer-Verlag,New York,1982,pp.2675AASHTO LRFD,AASHTO LRFD Bridge Design Speci?cations ,American Association of State Highway and Transportation Of?cials,Washington,DC,1994

6OHBDC,Ontario Highway Bridge Design Code ,Ministry of Trans-portation,Downsview,Ontario,Canada,1979

7OHBDC,Ontario Highway Bridge Design Code,Ministry of Trans-portation,Downsview,Ontario,Canada,1983

8OHBDC,Ontario Highway Bridge Design Code,Ministry of Trans-portation,Downsview,Ontario,Canada,1992

9Nowak,A.S.and Lind,N.C.,Practical bridge code calibration,ASCE Journal of Structural Division ,December,1979,pp.2497–2510

10Ellingwood,B.et al .,Development of a Probability Based Load Cri-terion for American National Standard A58,National Bureau of Stan-dards,NBS Special Publication 577,Washington,1980,p.22211Nowak,A.S.and Hong,Y.-K.,Bridge live load models,ASCE Jour-nal of Structural Engineering 1991,117(9),2757–2767

12Nowak,A.S.,Live load model for highway bridges,Journal of Struc-tural Safety 1993,13(1-2),53–66

13Nowak,A.S.,Load model for bridge design code,Canadian Journal of Civil Engineering 1994,21,36–49

14Benjamin,J.R.and Cornell, C. A.,Probability,Statistics,and Decision for Civil Engineers,McGraw-Hill Book Co.,New York,1970,p.684

15

AASHTO,Standard Speci?cations for Highway Bridges ,American Association of State Highway and Transportation Of?cials,Wash-ington,DC,1992

16Hwang,E.-S.and Nowak,A.S.,Simulation of dynamic load for bridges,ASCE Journal of Structural Engineering1991,117(5), 1413–1434

17Nassif,H.and Nowak,A.S.,Dynamic load spectra for girder bridges, Transportation Research Record1995,1476,69–83

18Siriaksorn,A.,Serviceability and reliability analysis of partially pre-stressed concrete beams,Ph.D.Thesis,University of Illinois at Chicago Circle,Chicago,IL,1980

19Tabsh,S.W.and Nowak,A.S.,Reliability of highway girder bridges, ASCE Journal of Structural Engineering1991,117(8),2373–2388 20Collins,M.P.and Mitchell,D.,Prestressed Concrete Structures, Prentice-Hall,Englewood Cliffs,NJ,199121Nowak,A.S.,Yamani,A.S.and Tabsh,S.W.,Probabilistic models for resistance of concrete bridge girders,ACI Structural Journal 1994,91(3),269–276

22Melchers,R.E.,Structural Reliability Analysis and Prediction,Ellis Horwood Limited,Chichester,England,1987

23Zhou,J.-H.and Nowak,A.,Integration formulas to evaluate func-tions of random variables.In Structural Safety,Elsevier Science Pub-lishers B.V.,Amsterdam,1988,pp.267–284

24Vechhio,F.J.and Collins,M.P.,The modi?ed compression?eld theory for reinforced concrete elements subjected to shear,ACI Jour-nal1986,83(2),00

英特尔i3_i5_i7处理器型号及参数总览表+CPU型号大全

英特尔i3/i5/i7处理器型号及参数总览表 请仔细看完本文,看完后你将会对笔记本芯片有一定了解,买笔记本才不会被JS坑骗。 ~~Kiong 前言:随着英特尔全新32nm移动处理器的推出,英特尔移动处理器大军的规模进一步膨胀。粗略地计算一下,现在市场上可以买到的Core i、酷睿2、 奔腾双核、赛扬双核、凌动处理器几大家族的成员已经超过了80款,即使是经常关注笔记本技术的达人,也很难记住每一款处理器的技术规格。 名词解释 前端总线:是指CPU与北桥芯片之间的数据传输总线,人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是Fr Bus,通常用FSB表示。 睿频:英特尔睿频加速技术。是英特尔酷睿i7/i5 处理器的独有特性。也是英特尔新宣布的一项技术。 英特尔官方技术解释如下:当启动一个运行程序后,处理器会自动加速到合适的频率,而原来的运行速度会提升10%~20% 以保证程运行;应对复杂应用时,处理器可自动提高运行主频以提速,轻松进行对性能要求更高的多任务处理;当进行工作任务切换时,如果存和硬盘在进行主要的工作,处理器会立刻处于节电状态。这样既保证了能源的有效利用,又使程序速度大幅提升。 三级缓存(L3):目前只有酷睿I系列才有,之前的都是L2(二级缓存)。是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU 有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。 制程:制程越小越好。越来越高的工艺制程可以提高芯片的集成度,增加晶体管的数量,扩展新的功能。同时随着晶体管尺寸的缩小,每颗的单位成本也有所降低。此外,更高的工艺制程可以帮助降低CPU的功耗,另外,降低CPU的成本以前扩大CPU产能也是新工艺制的积极影响。 TDP:TDP的英文全称是“Thermal Design Power”,中文直译是“散热设计功耗”。主要是提供给计算机系统厂商,散热片/风扇厂商,以及商等等进行系统设计时使用的。一般TDP主要应用于CPU,CPU TDP值对应系列CPU 的最终版本在满负荷(CPU 利用率为100%的理能会达到的最高散热热量,散热器必须保证在处理器TDP最大的时候,处理器的温度仍然在设计范围之内。 注意:由于CPU的核心电压与核心电流时刻都处于变化之中,这样CPU的实际功耗(其值:功率P=电流A×电压V)也会不断变化TDP值并不等同于CPU的实际功耗,更没有算术关系。

Intel(英特尔)、AMD(超微)所有CPU型号大全

Intel(英特尔)、AMD(超微)所有CPU型号大全 英特尔的处理器有以下品牌: ?英特尔? 酷睿? 处理器 ?英特尔? 奔腾? 处理器 ?英特尔? 赛扬? 处理器 ?英特尔? 凌动? 处理器 ?英特尔? 至强? 和安腾? 处理器 英特尔? 酷睿? i7-975 处理器至尊版 世界上性能最强的台式机处理器。1 借助英特尔? 酷睿? i7 处理器 975 至尊版的智能化表现,释放台式机计算潜能,轻松应对复杂的多线程游戏和应用。 英特尔? 酷睿? i7 处理器至尊版 用世界上最快的处理器征服极致游戏世界: 英特尔? 酷睿? i7 处理 器至尊版。1 更快速的智能多核技术,满足您的各类需求,带来难以 想象的突破性游戏体验。 英特尔? 酷睿? i7 处理器 智能多核技术速度更快,能够自动为最需要的应用提供处理能力。借助该技术, 新的英特尔? 酷睿? i7 处理器将能为您带来惊人的突破性计算性能。这是全 球最好的台式机处理家族。 英特尔? 酷睿? i5 处理器 智能特性,能够根据任务需求进行加速。英特尔? 酷睿? i5 处理器是一款出 色的解决方案,适用于多媒体多任务处理环境。 英特尔? 酷睿?2 至尊处理器 适用于超级计算。享受英特尔最新双核及四核技术带来的革命性性能 水准,获得逼真的高清晰度体验和多任务响应能力。 英特尔? 酷睿?2 至尊处理器 适用于超级计算。享受英特尔最新双核及四核技术带来的革命性性 能水准,获得逼真的高清晰度体验和多任务响应能力。 英特尔? 酷睿?2 四核处理器 多媒体发烧友们将迎来一次疯狂的体验。借助英特尔? 酷睿?2 四核

处理器,为台式机带来强大的四核性能。它是高度线程化娱乐应用和高效多任务处理的理想引擎。 英特尔? 酷睿?2 双核处理器 至尊威力,铸就优异性能。凭借能效优化的双核技术和优异的能源 使用效率,英特尔? 酷睿?2 双核处理器可以出色地运行要求最苛刻 的应用程序。 英特尔? 奔腾? 处理器 英特尔? 奔腾? 处理器可提供超强的台式机性能、更低的能耗以及更出色的日常计算多任务处理能力。 英特尔? 赛扬? 处理器 基于英特尔? 赛扬? 处理器的台式机平台可为您提供超凡的计算体验,以及源自英特尔的出色品质和可靠性。 -------------------------------------------------------------------- 在同一处理器等级或家族内,编号越高表示特性越多,包括: 高速缓存、时钟速度、前端总线、英特尔? 快速通道互联、新指令或其它英特尔技术1。拥有较高编号的处理器可能某一特性较强,而另一特性较弱。 一、英特尔? 酷睿? 处理器 英特尔? 酷睿? i7 品牌的处理器号由 i7 标识符加三字数字序列组成。

Intel处理器型号命名详解

Intel处理器型号命名详解  凭借着妇孺皆知的品牌效应和随处可见的广告宣传,Intel的CPU在国内拥有数量极其庞大的用户群。但是由于产品线频繁更新,别说是普通消费者,就连一些泡在卖场的商家都被其种类繁多的产品型号搅得一头雾水。下面笔者就将对这些CPU的型号命名进行讲解,以帮助读者选择自己钟意的产品。 Intel CPU产品介绍 从大的命名规则来看,Intel的CPU产品主要分为Pentium奔腾系列和Celeron赛扬系列处理器。而从架构上区分,目前市面上的Intel CPU产品既有最常见的Socket 478架构,也有老一代的Socket 370架构,还有极少量的Socket 423架构。 (Intel的Pentium 4和Celeron处理器) 一、早期的Socket 370架构: 这是Intel的早期产品,当前二手市场上能见到的有Coppermine铜矿核心的Pentium Ⅲ和Celeron Ⅱ,以及Tualatin图拉丁核心的Celeron Ⅲ。虽然看起来稍显过时,但其实这里面也有着性价比较高的产品。例如Tualatin图拉丁核心的Celeron Ⅲ,因为拥有 32KB的一级缓存和256KB的二级缓存,所以性能与同频的Pentium Ⅲ都有得一拼。并且由于采用了0.13微米制程,所以Tualatin图拉丁赛扬的超频潜力也不错。不过由于Intel的市场策略,Socket 370架构现已被彻底抛弃,基于该架构的主板和CPU产品也因此失去了任何升级潜力。所以这些CPU只适合老用户升级使用,并不推荐新装机的用户购买。 二、过渡型Socket 423架构: 这主要见于Intel第一批推出的Willamette核心Pentium 4产品。但它只不过是昙花一现,上市不久便立即被Socket 478架构所取代。其相应的处理器和主板产品也迅速被品牌机等市场消化,现在市场上已经几乎见不到它们了。所以如果您在逛市场时见到这样的CPU,估计都是不知道从哪翻出的仓底货或是二手产品,笔者奉劝大家尽量少碰为妙。三、主流的Socket 478架构: 这是当前Intel的主流产品,产品线中既包括有高端的Pentium 4处理器,也包括了低端的Celeron处理器。可就是同属Socket 478架构的Intel处理器,也有许多不同类型。这就是我们下面将要讲述的内容。 "ABCDE"含义释疑 我们知道,Intel的不少Pentium 4处理器在频率后面还带有一个字母后缀,不同的字母也代表了不同的含义。 "A"的含义: Pentium 4处理器有Willamette、Northwood和Prescott三种不同核心。其中Willamette核心属于最早期的产品,采用0.18微米工艺制造。因为它发热较大、频率提升困难,而且二级缓存只有256KB,所以性能颇不理想。于是Intel很快用Northwood核心取代了它的位置。Northwood核心Pentium 4采用0.13微米制程,主频有了很大的飞跃,二级缓存容量也翻了一番达到了512KB。为了与频率相同但只有256KB二级缓存的Pentium 4产品区别,Intel在其型号后面加了一个大写字母"A",例如"P4 1.8A",代表产品拥有 512KB二级缓存。这些产品均只有400MHz的前端总线(Front Side Bus,简称FSB)。"B"的含义: 同样频率的产品,在更高的外频下可具备更高的前端总线,因此性能也更高。为此Intel在提升CPU频率的同时,也在不断提高产品的前端总线。于是从可以支持533MHz FSB的845E等主板上市开始,市场上又出现了533MHz FSB的Pentium 4处理器。为了与主频相同但是只有400MHz FSB的Pentium 4产品区别开来,Intel又给它们加上了字母"B"作为后缀,例如"P4 2.4B"。 "C"的含义:

英特尔全线处理器型号及参数总览表

英特尔i3/i5/i7+全线处理器型号及参数总览表前言:随着英特尔全新32nm移动处理器的推出,英特尔移动处理器大军的规模进一步膨胀。粗略地计算一下,现在市场上可以买到的Core i、酷睿2、奔腾双核、赛扬双核、凌动处理器几大家族的成员已经超过了80款,即使是经常关注笔记本技术的达人,也很难记住每一款处理器的技术规格。 正是由于英特尔移动处理器的混乱,JS们才拥有了可趁之机,肆无忌惮的欺瞒消费者,经常以处理器的某项参数来忽悠消费者,让我们为本不需要的功能,或者被夸大的技术所买单。 下面是特尔主流移动处理器的技术参数,避免在选购笔记本时被JS商家忽悠,亲爱的网友们,你可要睁大眼睛看了。。。。。 *************************名词解释 ************************************ 前端总线:是指CPU与北桥芯片之间的数据传输总线,人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是Front Side Bus,通常用FSB表示。 睿频:英特尔睿频加速技术。是英特尔酷睿 i7/i5 处理器的独有特性。也是英特尔新宣布的一项技术。 英特尔官方技术解释如下:当启动一个运行程序后,处理器会自动加速到合适的频率,而原来的运行速度会提升 10%~20% 以保证程序流畅运行;应对复杂应用时,处理器可自动提高运行主频以提速,轻松进行对性能要求更高的多任务处理;当进行工作任务切换时,如果只有内存和硬盘在进行主要的工作,处理器会立刻处于节电状态。这样既保证了能源的有效利用,又使程序速度大幅提升。 三级缓存(L3):目前只有酷睿I系列才有,之前的都是L2(二级缓存)。是为读取二级缓存后

Intel_CPU型号规格大全

产品型号主频插槽核心前端总线外频制程 L2/L3缓存核数工作电压 Intel 赛扬II 800 800MHz Socket370 Coppermine 100MHz 0.18微米 128KB/-- 单 核 1.70V Intel 赛扬II 850 850MHz Socket370 Coppermine 100MHz 0.18微米 128KB/-- 单核1.70V Intel 赛扬II 900 900MHz Socket370 Coppermine 100MHz 0.18微米 128KB/-- 单核1.50V Intel 赛扬II 1G 1GHz Socket370 Coppermine 100MHz 0.18微米 128KB/-- 单核 1.50V Intel 赛扬II 1.1G 1.1GHz Socket370 Coppermine 100MHz 0.18微米 256KB/-- 单核1.50V Intel 赛扬II 1.2G 1.2GHz Socket370 Coppermine 100MHz 0.13微米 256KB/-- 单核1.50V Intel 赛扬II 1.3G 1.3GHz Socket370 Coppermine 100MHz 0.13微米 256KB/-- 单核1.50V Intel 赛扬III 1.1G 1.1GHz Socket370 Tualatin 100MHz 100MHz 0.13微米 256KB/-- 单核 1.475V Intel 赛扬III 1.2G 1.2GHz Socket370 Tualatin 100MHz 100MHz 0.13微米 256KB/-- 单核 1.475V Intel 赛扬III 1.3G 1.3GHz Socket370 Tualatin 100MHz 100MHz 0.13微米 256KB/-- 单核 1.45V Intel 赛扬III 1.4G 1.4GHz Socket370 Tualatin 100MHz 100MHz 0.13微米 256KB/-- 单核 1.45V Intel 赛扬4 1.7G 1.7GHz Socket478 Willamette 400MHz 100MHz 0.18微米 128KB/-- 单核 1.7V Intel 赛扬4 1.8G 1.8GHz Socket478 Willamette 400MHz 100MHz 0.18微米 128KB/-- 单核 1.7V Intel 赛扬4 2.0G 2.0GHz Socket478 Northwood 400MHz 100MHz 0.13微米 128KB/-- 单核 1.525V Intel 赛扬4 2.2G 2.2GHz Socket478 Northwood 400MHz 100MHz 0.13微米 128KB/-- 单核 1.525V Intel 赛扬4 2.4G 2.4GHz Socket478 Northwood 400MHz 100MHz 0.13微米 128KB/-- 单核 1.525V Intel 赛扬4 2.5G 2.5GHz Socket478 Northwood 400MHz 100MHz 0.13微米 128KB/-- 单核 1.525V Intel 赛扬4 2.6G 2.6GHz Socket478 Northwood 400MHz 100MHz 0.13微米 128KB/-- 单核 1.5V Intel Celeron D 310 2.13GHz Socket478 Prescott 533MHz 133MHz 0.09微米 256KB/-- 单核 1.4V Intel Celeron D 315 2.26GHz Socket478 Prescott 533MHz 133MHz 0.09微米 256KB/-- 单核 1.4V Intel Celeron D 320 2.40GHz Socket478 Prescott 533MHz 133MHz 0.09微米 256KB/-- 单核 1.4V

Cpu型号大全及其参数

Cpu大 ¥1280Intel Xeon E3-1230 v2 CPU频率:3.3GHz CPU核心:四核心八线程 接口类型:LGA 1155 制程工艺:22纳米 二级缓存:1MB 三级缓存:8MB 核心类型:Ivy Bridge 工作功率:69W 新品Intel 酷睿i5 3210M CPU频率:2.5GHz CPU核心:双核四线程 制程工艺:22纳米 三级缓存:3MB 核心类型:Ivy Bridge CPU说明:Intel Core i5-3210... 睿频加速频率:3.1 ¥761Intel 酷睿i3 3220 CPU频率:3.3GHz CPU核心:双核四线程 接口类型:LGA1155 制程工艺:22纳米 二级缓存:256KB 三级缓存:3MB 核心类型:Ivy Bridge

工作功率:45W ¥1979Intel 酷睿i7-3770 CPU频率:3.4GHz CPU核心:四核 接口类型:LGA 1155 制程工艺:22纳米 三级缓存:8MB 工作功率:77W CPU说明:Intel Core i7-3770... 睿频加速频率:3.9 ¥1239Intel 酷睿i5 3470(散) CPU频率:3.2GHz CPU核心:四核 接口类型:LGA 1155 制程工艺:22纳米 三级缓存:6MB 核心类型:ivy bridge 工作功率:77W 加入对比 ¥1239Intel 酷睿i5 3470(盒) CPU频率:3.2GHz CPU核心:四核 接口类型:LGA 1155 制程工艺:22纳米 三级缓存:6MB 核心类型:ivy bridge 工作功率:77W CPU说明:Intel 酷睿i5 3470 ..

intel cpu型号大全

intel cpu型号大全 2009年12月24日星期四 15:12 intel cpu型号大全 按照处理器支持的平台来分,Intel处理器可分为台式机处理器、笔记本电脑处理器以及工作站/服务器处理器三大类;下面我们将根据这一分类为大家详细介绍不同处理器名称的含义与规格。由于Intel产品线跨度很长,不少过往产品已经完全或基本被市场淘汰(比如奔腾III和赛扬II),为了方便起见,我们的介绍也主要围绕P4推出后Intel发布的处理器产品展开。 台式机处理器 Pentium 4(P4) 第一款P4处理器是Intel在2000年11月21日发布的P4 1.5GHz处理器,从那以后到现在近四年的时间里,P4处理器随着规格的不断变化已经发展成了具有近10种不同规格的处理器家族。在这里面,“P4 XXGHz”是最简单的P4 处理器型号。 这其中,早期的P4处理器采用了Willamette核心和Socket 423封装,具256KB二级缓存以及400MHz前端总线。之后由于接口类型的改变,又出现了采用illamette核心和Socket478封装的 P4产品。而目前我们所说的“P4”一般是指采用了Northwood核心、具有400MHz前端总线以及512KB二级缓存、基于Socket 478封装的P4处理器。虽然规格上不一样,不过这些处理器的名称都采用了“P4 XXGHz”的命名方式,比如P4 1.5GHz、P4 1.8GHz、P4 2.4GHz。 Pentium 4 A(P4 A) 有了P4作为型号基准,那么P4 A就不难理解了。在基于Willamette核心的P4处理器推出后不久,Intel为了提升处理器性能,发布了采用Northwood 核心、具有 400MHz前端总线以及512KB二级缓存的新一代P4。由于这两种处理器在部分频率上发生了重叠,为了便于消费者辨识,Intel就在出现重叠的、基于Northwood核心的 P4处理器后面增加一个大写字母“A”以示区别,于是就诞生了P4 1.8A GHz、P4 2.0A GHz这样的处理器产品。需要提醒大家的是,在这些新P4当中未与早期P4发生频率重叠的产品依旧沿用“P4”的名称,比如P4 2.4GHz。 Pentium 4 B(P4 B) 在Northwood核心全面推广以后,Intel决定再次对P4处理器进行改进,推出了基于Northwood核心、采用533MHz前端总线、具有512KB二级缓存的 P4处理器。尽管这些处理器在核心架构与二级缓存容量上都与P4 A相同,但由于前端总线被提升到了533MHz,性能也得到了提升。为了与主频相同的P4 A处理器区分开来,Intel又在处理器名称后面增加了字母“B”,未出现频率重叠

CPU品牌型号及Intel命名规则

Center Process Unit中央处理器,由运算器和控制器组成。 CPU厂商会根据CPU产品的市场定位来给属于同一系列的CPU产品确定一个系列型号以便于分类和管理,一般而言系列型号可以说是用于区分CPU性能的重要标识。 早期的CPU系列型号并没有明显的高低端之分,例如Intel的面向主流桌面市场的Pentium和Pentium MMX以及面向高端服务器生产的Pentium Pro;AMD的面向主流桌面市场的K5、K6、K6-2和K6-III以及面向移动市场的K6-2+和K6-III+等等。 随着CPU技术和IT市场的发展,Intel和AMD两大CPU生产厂商出于细分市场的目的,都不约而同的将自己旗下的CPU产品细分为高低端,从而以性能高低来细分市场。而高低端CPU系列型号之间的区别无非就是二级缓存容量(一般都只具有高端产品的四分之一)、外频、前端总线频率、支持的指令集以及支持的特殊技术等几个重要方面,基本上可以认为低端CPU产品就是高端CPU产品的缩水版。例如Intel方面的Celeron系列除了最初的产品没有二级缓存之外,就始终只具有128KB的二级缓存和66MHz以及100MHz的外频,比同时代的Pentium II/III/4系列都要差得多,而AMD方面的Duron也始终只具有64KB 的二级缓存,外频也始终要比同时代的Athlon和Athlon XP要低一个数量级。 CPU系列划分为高低端之后,两大CPU厂商分别都推出了自己的一系列产品。在桌面平台方面,有Intel面向主流桌面市场的Pentium II、Pentium III 和Pentium 4以及面向低端桌面市场的Celeron系列(包括俗称的I/II/III/IV 代);而AMD方面则有面向主流桌面市场Athlon、Athlon XP以及面向低端桌面市场的Duron和Sempron等等。在移动平台方面,Intel则有面向高端移动市场的Mobile Pentium II、Mobile Pentium III、Mobile Pentium 4-M、Mobile Pentium 4和Pentium M以及面向低端移动市场的Mobile Celeron和Celeron M;AMD方面也有面向高端移动市场的Mobile Athlon 4、Mobile Athlon XP-M和Mobile Athlon 64以及面向低端移动市场的Mobile Duron和Mobile Sempron 等等。 目前,CPU的系列型号更是被进一步细分为高中低三种类型。就以台式机CPU而言,Intel方面,高端的是双核心的Pentium EE以及单核心的Pentium 4 EE,中端的是双核心的Pentium D和单核心的Pentium 4,低端的则是Celeron D以及已经被淘汰掉的Celeron(即俗称的Celeron IV);而AMD方面,高端的是Athlon 64 FX(包括单核心和双核心),中端的则是双核心的Athlon 64 X2 和单核心的Athlon 64,低端就是Sempron。以笔记本CPU而言,Intel方面高端的是Core Duo,中端的是Core Solo和即将被淘汰的Pentium M,低端的则是Celeron M;而AMD方面,高端的则是Turion 64,中端的是Mobile Athlon 64,低端的则是Mobile Sempron。 但在购买CPU产品时需要注意的是,以系列型号来区分CPU性能的高低也只对同时期的产品才有效,任何事物都是相对的,今天的高端就是明天的中端、

CPU型号大全总结CPU型号查询一览表

一、X86时代的CPU CPU的溯源可以一直去到1971年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!!4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是INTEL公司X86系列CPU的发展历程,我们就通过它来展开我们的“CPU历史之旅”。 4004处理器核心架构图 1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在 i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。虽然以后Intel 又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel 的X86系列相同或相似的命名,只好另外为自己的586、686兼容CPU命名了。 1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000 个晶体管,时钟频率为4.77MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。 Intel 8086处理器 1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品棗80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU 的工作方式也演变出两种来:实模式和保护模式。 Intel 80286处理器 1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含27.5万个晶体管,时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。

Intel公司有那些CPU型号

Intel。对应不同的市场,Intel拥有不同级别的产品。其中Xeon(至强)和Itanium(安腾)面向的是服务器市场,这里就不做介绍了。 Intel的Xeon服务器CPU 而它的Pentium(奔腾)和Celeron(赛扬)系列,才是真正属于DIYer们的产品。Celeron 可以看作是Pentium的简化版本,一般情况下往往是二级缓存减半,现在还包括前端总线的降低、取消对超线程的支持等。 作为Intel高端产品的Pentium系列,性能强劲,但价格也十分“强大”,一颗主流的Pentium CPU,要价往往上千。因此,对于钱包不是很充裕的中国大陆DIYer来说,除了对多媒体方面(这是Intel的强项)有较高要求的DIYer,价格比较平易近人的Celeron系列CPU可能才是他们最关注的。 早期的Socket423接口的Willamette核心Pentium4 CPU 目前市场上的Celeron系列CPU主要有两个独立的分支:Celeron4和CeleronD系列,CeleronD 又分为Socket478和LGA775两种接口类型,另外市面上可能还有少量Celeron3系列的CPU,但那已经不是主流,就不介绍了。Celeron4刚推出的时候确实火了好一阵子,但不久人们就发现了它的软肋:高频低能。而价格并不昂贵,性能又可圈可点的CeleronD发布后,Celeron4更显得鸡肋。尽管如此,凭借着低廉的价格,Celeron4还是在市场占据了一席之地。对于这一系列的Celeron,从865PE到845PE,甚至是845D这样爷爷级的主板都能很好的支持。建议要求不高的办公用户、不想更换主板的升级用户购买。 现在来看看真正的主角:CeleronD。它采用了与Celeron4根本不同的Prescott核心,流水线高达31级。同时,相对于Celeron4,CeleronD的二级缓存由128KB提高到了256KB,这对提升它的性能来说,无疑是至关重要的。再一点就不能不提到最吸引DIYer们的一点:CeleronD极好的超频性能。主频为2.4GHz的CeleronD 320,一般情况下都能超到3.8GHz!!!达到这个水平的CeleronD,性能已经可以和Pentium4 2.8E比肩了。但这也是要付出小小代价的:DIYer不得不在散热器上投入更多的资金,过去那种二三十元的便宜货就可以对Celeron应付自如的时代一去不复返了。推荐超频用户、普通家庭用户购买 采用Socket478接口的CeleronD CPU 采用LGA775接口的CeleronD J系列CPU 同时还要提一点,由于CeleronD系列采用了90纳米制程的Prescott核心,它相对于采用130纳米制程的Northwood核心的Celeron4系列,对主板的供电部分的要求更高。一般地说,主板应该支持FMB 1.5和VRM10.0供电规范,才能完美地支持CeleronD系列的CPU,所以为CeleronD选择主板,最低也应该是848P芯片组的主板,至于某些大厂的845PE主板经修改后也宣称可以支持CeleronD,但供电部分的先天缺陷还是不能很好地支持CeleronD。同时由于845PE最高只支持DDR333,这会严重制约CeleronD性能的发挥,所以并不推荐使用这种主板搭配CeleronD Intel原厂865PE主板 VIA的PT880工程样板

英特尔 至强 处理器型号大全

英特尔至强处理器型号大全 第1页:双核至强UP:3000、3100系列 3000系列“Conroe” 2006年9月末英特尔发布了代号为“Conroe”(产品代码80557)的双核至强3000系列CPU,它只不过是英特尔主流“Conroe”的重新贴牌产品,商标采用了酷睿2 Duo(用于消费级的桌面产品),和其它大多数至强处理器不同,它们只支持单CPU运算,使用Socket T (LGA775),前端总线速度1066MHz,支持英特尔增强的自动降频和虚拟化技术,但不支持超线程。 3100系列“Wolfdale” 代号为“Wolfdale”(产品代码80570)3100系列双核至强CPU只是对英特尔主流产品Wolfdale进行了重新包装,采用相同的65纳米制造工艺和6MB二级缓存,和大多数至强不同,它们仅支持单CPU运算,使用Socket T (LGA775),前端总线1333MHz,支持增强的自动降频和虚拟化技术,但不支持超线程。 第2页:四核至强UP:3200、3300、3400和3500系列 英特尔的多核之路:四核六核至强 3200系列“Kentsfield” 2007年1月7日,英特尔发布了重新包装过的四核(2x2)酷睿2 Quad处理器,即至强3200系列(产品代码80562),2x2四核心包括两个独立的双核芯片,包括三个型号X3210、X3220和X3230,分别运行在2.13GHz、2.4GHz 和2.66GHz。和300系列类似,这些型号只支持单CPU运算,前端总线1066MHz,其目标定位于刀片服务器市场,X3220也当作Core2 Quad Q6600销售,X3230对应到Q6700。

英特尔处理器 cpu 型号规格表(附历史型号表)

Intel奔腾双核T4200处理器用的是酷睿2最新的P8400的Penryn架构,跟T3200比提升了前端总线和SSE4.1指令集和45nm新架构。跟T5800比缩水2级缓存至1M,增加了SSE4.1指令集(指令集待确定)和45nm架构。3个U的主频都是2.0G。 Intel T6400处理器作为T5800的替代产品 对处理器性能影响从大到小排序依次是:内核架构>核心频率>二级缓存>前端总线。 T5800用的是Merom架构,65纳米技术,不是45纳米! T5800和T4200想比唯一的优势就是缓存大,但是这有什么用?架构太旧了!老式的奔腾M单核处理器(不是目前的奔腾双核)还有3M二级缓存呢,能和现在的酷睿2比么? 我要澄清一下,Intel奔腾双核t4200处理器绝对比T5800好!作为新的核心,Intel奔腾双核t4200处理器的性能即使对T5800没有明显优势,但是至少绝对不会比T5800差!不要被“奔腾”和“酷睿”的名字给迷惑了,那只是个品牌的商标。 酷睿2、奔腾双核和赛扬双核是三个英特尔的系列,分别是高端、中端和低端。类似于以前的奔腾4和赛扬D。 奔腾双核不是过渡期产品,而且比酷睿2出来得还晚。目的是和廉价的AMD turion处理器竞争。 奔腾双核和酷睿双核用的是完全一样的核心架构,所不同的仅仅是二级缓存和前端总线。奔腾双核T20XX系列用的是酷睿1Yonah核心。奔腾双核T2310到T3400用的是酷睿2双核T5和T7系列的Merom架构。Intel奔腾双核t4200处理器用的是酷睿2最新的P8400的Penryn架构。 Intel奔腾双核t4200处理器的架构整整比T5800新了一代!虽然二级缓存少了1M,但是Intel奔腾双核t4200处理器采用的是最新的45纳米技术的Penryn 架构,比使用65纳米技术的T5800的MEROM架构省电每小时10瓦,支持SSE4指令集,也比仅仅支持SSE3指令集的t5800拥强大的性能。支持更新的DDR3内存。综合看来,T4200比T5800优秀得多了!就和T2390处理器比酷睿1代T2400更强一样。 不要被酷睿、奔腾、赛扬的名字给迷惑了,JS更不要用这些名字来误导消

英特尔移动处理器规格表

英特尔移动处理器规格表 03年,英特尔迅驰移动技术诞生。此后,英特尔以每年两次的频率发布新品移动处理器。绝大多数笔记本厂商的笔记本新品,都随着英特尔移动处理器的更新而换代。 每年的英特尔新品发布会或IDF 上,英特尔都会公布新的Roadmap(发展蓝图),给出最新移动处理器的详细信息,也让厂商与用户都能了解到未来一段时间内笔记本电脑的走势。不过,当新款笔记本上市时,我们经常会看到会有很多中低端笔记本,使用的移动处理器经常是Roadmap 之外的,个别处理器在英特尔官方也很难找到资料。 Roadmap 之外的处理器,在性能上通常有些缩水,但是价格非常低廉。如果是要购买高端产品,或者是企业客户购买,我们推荐您买Roadmap 内的产品,如果您追求性价比,Roadmap 外的处理器会让你觉得非常划算。英特尔的处理器,一般都是一个字母+四位数字作为搭配,通常最后两位是“00”的,都是Roadmap 之内的,此外都是Roadmap 之外的。 为此,我们定期整理出英特尔移动处理器规格参数表,把最全的信息带给读者,也尽量方便读者比较各款处理器。 型号 主频 L2FSB 制程TDP 核心 双核 64位虚拟 化 Santa Rosa Refresh 平台(搭配965芯片组) 英特尔酷睿2至尊移动处理器: Core 2 Extreme QX9300 2.53 GHz 12M 1066MHz 45nm 45W Penryn 四 核 √ √ Core 2 Extreme X9100 3.06 GHz 6M 1066MHz 45nm 44W Penryn √ √ √ Core 2 Extreme X9000 1000~ 2800MHz 6M 800MHz 45nm 44W Penryn √ √ √ 英特尔酷睿2双核移动处理器: Core 2 Duo T9500 1000~ 2600MHz 6M 800MHz 45nm 35W Penryn √ √ √ Core 2 Duo T9300 1000~ 2500MHz 6M 800MHz 45nm 35W Penryn √ √ √ Core 2 Duo T8300 1000~ 2400MHz 3M 800MHz 45nm 35W Penryn √ √ √ Core 2 Duo T8100 1000~ 2100MHz 3M 800MHz 45nm 35W Penryn √ √ √

部分CPU_目前种类大全

CPU 型号大 Intel。对应不同的市场,Intel拥有不同级别的产品。其中Xeon(至强)和Itanium(安腾)面向的是服务器市场,这里就不做介绍了。 Intel的Xeon服务器CPU 而它的Pentium(奔腾)和Celeron(赛扬)系列,才是真正属于DIYer们的产品。Celeron可以看作是Pentium的简化版本,一般情况下往往是二级缓存减半,现在还包括前端总线的降低、取消对超线程的支持等。 作为Intel高端产品的Pentium系列,性能强劲,但价格也十分“强大”,一颗主流的Pentium CPU,要价往往上千。因此,对于钱包不是很充裕的中国大陆DIYer 来说,除了对多媒体方面(这是Intel的强项)有较高要求的DIYer,价格比较平易近人的Celeron系列CPU可能才是他们最关注的。 早期的Socket423接口的Willamette核心Pentium4 CPU 目前市场上的Celeron系列CPU主要有两个独立的分支:Celeron4和CeleronD 系列,CeleronD又分为Socket478和LGA775两种接口类型,另外市面上可能还有少量Celeron3系列的CPU,但那已经不是主流,就不介绍了。Celeron4刚推出的时候确实火了好一阵子,但不久人们就发现了它的软肋:高频低能。而价格并不昂贵,性能又可圈可点的CeleronD发布后,Celeron4更显得鸡肋。尽管如此,凭借着低廉的价格,Celeron4还是在市场占据了一席之地。对于这一系列的Celeron,从865PE到845PE,甚至是845D这样爷爷级的主板都能很好的支持。建议要求不高的办公用户、不想更换主板的升级用户购买。 现在来看看真正的主角:CeleronD。它采用了与Celeron4根本不同的Prescott

INTER CPU 型号大全

INTER CPU 型号大全 Intel。对应不同的市场,Intel拥有不同级别的产品。其中Xeon(至强)和Itanium (安腾)面向的是服务器市场,这里就不做介绍了。 Intel的Xeon服务器CPU 而它的Pentium(奔腾)和Celeron(赛扬)系列,才是真正属于DIY er们的产品。Celeron可以看作是Pentium的简化版本,一般情况下往往是二级缓存减半,现在还包括前端总线的降低、取消对超线程的支持等。 作为Intel高端产品的Pentium系列,性能强劲,但价格也十分“强大”,一颗主流的Pentium CPU,要价往往上千。因此,对于钱包不是很充裕的中国大陆DIY er 来说,除了对多媒体方面(这是Intel的强项)有较高要求的DIY er,价格比较平易近人的Celeron系列CPU可能才是他们最关注的。 早期的Socket423接口的Willamette核心Pentium4 CPU 目前市场上的Celeron系列CPU主要有两个独立的分支:Celeron4和CeleronD 系列,CeleronD又分为Socket478和LGA775两种接口类型,另外市面上可能还有少量Celeron3系列的CPU,但那已经不是主流,就不介绍了。Celeron4刚推出的时候确实火了好一阵子,但不久人们就发现了它的软肋:高频低能。而价格并不昂贵,性能又可圈可点的CeleronD发布后,Celeron4更显得鸡肋。尽管如此,凭借着低廉的价格,Celeron4还是在市场占据了一席之地。对于这一系列的Celeron,从865PE到845PE,甚至是845D这样爷爷级的主板都能很好的支持。建议要求不高的办公用户、不想更换主板的升级用户购买。 现在来看看真正的主角:CeleronD。它采用了与Celeron4根本不同的Prescott核心,流水线高达31级。同时,相对于Celeron4,CeleronD的二级缓存由128KB 提高到了256KB,这对提升它的性能来说,无疑是至关重要的。再一点就不能不提到最吸引DIY er们的一点:CeleronD极好的超频性能。主频为2.4GHz的CeleronD 320,一般情况下都能超到3.8GHz!!!达到这个水平的CeleronD,性能已经可以和Pentium4 2.8E比肩了。但这也是要付出小小代价的:DIYer不得不在散热器上投入更多的资金,过去那种二三十元的便宜货就可以对Celeron应付自如的时代一去不复返了。推荐超频用户、普通家庭用户购买

Intel CPU型号规格大全

格大全 Intel CPU型号规格大全 规格术语 Processor Number: 处理器号 Architecture: 架构(制造工艺) Cache: 高速缓存 Clock Speed: 时钟速度 Power: 功耗 Front Side Bus: 前端总线 Intel(R)VT±: 英特尔虚拟化技术 Intel(R) 64Φ: 英特尔64位技术 Quad-core: 四核 Dual-core: 双核 Enhanced Intel SpeedStep(R) Technology: 增强的英特尔加速技术 Execute Disable Bit: 执行取消位 HT Technology: 超线程技术 nm: 纳米 HZ: 赫兹 G: 吉, 频率为10^9 M: 兆, 频率为10^6, CACHE为2^20 K: 千, 频率为10^3, CACHE为2^10 B: 字节 W: 瓦 UP: 单核 DP: 双核 QP: 四核 L3: 三级缓存 L2: 二级缓存 X: 具备该特性 0: 不具备该特性 1. 至强系列 All Intel(R) Xeon(R) processors feature: Intel(R) Virtualization Technology± Intel(R) Extended Memory 64 TechnologyΦ

格大全 Execute Disable Bit° Intel Xeon 至强 所有至强处理器都支持虚拟化技术, 64位和执行取消位 Processor Number Architecture Cache Clock Speed Front Side Bus Power System Type Quad-Core Dual-Core HT Technology 3070 65 nm 4 MB L2 2.66 GHz 1066 MHz 65W UP 0 X 0 3060 65 nm 4 MB L2 2.40 GHz 1066 MHz 65W UP 0 X 0 3050 65 nm 2 MB L2 2.13 GHz 1066 MHz 65W UP 0 X 0 3040 65 nm 2 MB L2 1.86 GHz 1066 MHz 65W UP 0 X 0 X3230 65 nm 8 MB L2 2.66 GHz 1066 MHz 95W UP X 0 0 X3220 65 nm 8 MB L2 2.40 GHz 1066 MHz 105W UP X 0 0 X3210 65 nm 8 MB L2 2.13 GHz 1066 MHz 105W UP X 0 0 7150N 65 nm 16 MB L3 2x1 MB L2 3.50 GHz 667 MHz 150W MP 0 X X 7140M 65 nm 16 MB L3 2x1 MB L2 3.40 GHz 800 MHz 150W MP 0 X X 7140N 65 nm 16 MB L3 2x1 MB L2 3.33 GHz 667 MHz 150W MP 0 X X 7130M 65 nm 8 MB L3 2x1 MB L2 3.20 GHz 800 MHz 150W MP 0 X X 7130N 65 nm 8 MB L3 2x1 MB L2 3.16 GHz 667 MHz 150W MP 0 X X 7120M 65 nm 4 MB L3 2x1 MB L2 3.00 GHz 800 MHz 95W MP 0 X X 7120N 65 nm 4 MB L3 2x1 MB L2 3.00 GHz 667 MHz 95W MP 0 X X 7110M 65 nm 4 MB L3 2x1 MB L2 2.60 GHz 800 MHz 95W MP 0 X X 7110N 65 nm 4 MB L3 2x1 MB L2 2.50 GHz 667 MHz 95W MP 0 X X 7041 90 nm 2x2 MB 3.00 GHz 800 MHz N/A MP 0 X X 7040 90 nm 2x2 MB 3.00 GHz 667 MHz N/A MP 0 X X 7030 90 nm 2x1 MB 2.80 GHz 800 MHz N/A MP 0 X X 7020 90 nm 2x1 MB 2.66 GHz 667 MHz N/A MP 0 X X

相关文档