文档库 最新最全的文档下载
当前位置:文档库 › 磁盘阵列(IPSAN)挂载Windows和Linux测试过程

磁盘阵列(IPSAN)挂载Windows和Linux测试过程

磁盘阵列(IPSAN)挂载Windows和Linux测试过程
磁盘阵列(IPSAN)挂载Windows和Linux测试过程

磁盘阵列(IPSAN)挂载Windows和Linux测试过程

测试设备型号:同有iSUM420G3,插入6块1T SATA硬盘。

步骤:

1.设置IP-SAN

2.配置Windows/Linux客户端

一、设置IP-SAN

通过IE输入IP-SAN管理口IP,192.168.0.200,用户名Administrator,密码:password。(1)创建磁盘阵列。

(2)创建逻辑驱动器(可创建多个,下图:LD0、LD1、LD2为SAN驱动器,LD3为NAS 驱动器)。

创建NAS驱动器

(3)LUN映射(点左边树的“存储服务”节点)

(NAS驱动器好像不用手动配置映射,自动设置好了)

------至此,iSCSI方式挂载设置完毕。

(4)NAS配置

●创建NAS用户

●在协议控制中可以启动所需的服务(若启用NAS,配置Windows(CIFS)协议即

可):

●文件共享中可设置共享文件夹。

(此时windows客户端直接用\\192.168.0.201访问共享目录即可)

二、Windows/Linux客户端设置

1、WinXP/2003中连接iSCSI

需要安装iSCSI Initiator(从微软网站上下载最新的,如Initiator-2.08-build3825-x86fre.exe)。

安装后启动:

(1)在Gereral中设置启动器名(Initiator Node Name)。※必须与IP-SAN里面配置的启动器名一致!

Windows iSCSI Initiator

(2)Discovery中输入IP-SAN数据口IP。

也可以点Advanced设置相关信息:

(3)在target页面中连接。

(4)在Windows管理→磁盘管理中可发现新的磁盘。(注意WinXP下无法挂载2T以上的驱动器,因此如果IPSAN里设置的驱动器大小超过2T,XP磁盘管理将无法发现新磁盘!)。

上面的磁盘分区类型为GPT磁盘,可转换为MBR磁盘(最大分区为2T)。

转换为MBR

也可以再次转换为GPT磁盘。

之后可以任意分区了:

2、Win7/2008中连接iSCSI

Win7/2008下无需安装iSCSI Initiator,系统已带:在开始菜单搜索程序框中输入iscsi即可找到“iSCSI发起程序”。

在目标中直接输入IP-SAN 数据口IP地址,其他操作跟XP类似。

3、Linux中连接iSCSI

(Red hat linux 5.5)

※安装Linux时必须选中“开发”和“服务器”选项,避免个别组件缺失。(至少保证服务器被选中)

详细安装方法参考我的另一个文档“Redhat linux挂载IP-SAN(iSCSI)”。

拷贝文件速度测试:

(1)iSCSI方式

Windows2003,采用直连方式(电脑网卡与ipsan数据口直接连接,不通过交换机),网速为千兆。源文件在管理电脑本地硬盘,目标位置为IP-SAN磁盘。

单文件,1.19G,耗时12秒,速率约:100M/s

2文件,1.12G,一起选中拷贝,耗时35秒,速率约:32M/s,网卡带宽占用率:6%~14% 2文件,1.12G,一个一个拷贝,耗时45秒,速率降低了!

12个文件,1.19G,一起选中拷贝,耗时1分钟,速率约:20M/s

12个文件,1.19G,一个一个拷贝(同时进行),耗时近3分钟!

【结论】:

单文件拷贝时速度最快,拷贝多个文件时选中多个拷贝比一个一个同时拷贝要快!

从IP-SAN驱动器的一个分区向另一个分区拷贝:1.19G单文件,耗时35s——由于读、写均在IP-SAN磁盘上进行,因此比从本地硬盘想IP-SAN磁盘拷贝要慢得多。

Linux、采用直连方式(网速为1G),从本地硬盘到IP-SAN磁盘,复制4.3G大小的1个文件,约1:06秒,速率约67M/s。

【结论】:Linux平台拷贝文件速度不如Windows。

(2)NAS方式(文件共享)

从Windows向NAS共享文件夹拷贝:

单文件,1.19G,耗时43秒,速率约:28M/s(比iSCSI方式慢很多,iSCSI下为12s)。

Raid教程:全程图解手把手教你做RAID磁盘阵列

Raid教程:全程图解手把手教你做RAID磁盘阵列 一、磁盘阵列实现方式 磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。磁盘阵列卡拥有一个专门的处理器,如Intel的I960芯片,HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。 二、几种磁盘阵列技术 RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID 级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。 RAID 0是无数据冗余的存储空间条带化,具有成本低、读写性能极高、存储空间利用率高等特点,适用于音、视频信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘的损坏都将带来灾难性的数据损失。这种方式其实没有冗余功能,没有安全保护,只是提高了磁盘读写性能和整个服务器的磁盘容量。一般只适用磁盘数较少、磁盘容易比较紧缺的应用环境中,如果在RAID 0中配置4块以上的硬盘,对于一般应用来说是不明智的。 RAID 1是两块硬盘数据完全镜像,安全性好,技术简单,管理方便,读写性能均好。因为它是一一对应的,所以它无法单块硬盘扩展,要扩展,必须同时对镜像的双方进行同容量的扩展。因为这种冗余方式为了安全起见,实际上只利用了一半的磁盘容量,数据空间浪费大。 RAID 0+1综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整

磁盘阵列(RAID)基础自测题

磁盘阵列(RAID)基础自测题 技术, 数据 本套自测集中考察主流的数据存储技术——RAID(独立冗余磁盘阵列)技术,内容包括RAID的种类、规范和应用特性等,供从事数据存储和数据安全的朋友们检测和巩固对RAID的掌握水平。 本套试题答案回复本帖子即可看到,希望你先把题做完在查看答案,这样才好查漏补缺。 第 1 题 下列RAID组中需要的最小硬盘数为3个的是:(选择两项) A. RAID 1 B. RAID 3 C. RAID 5 D. RAID 10 第 2 题 下列RAID技术中采用奇偶校验方式来提供数据保护的是:(选择两项) A. RAID 1 B. RAID 3 C. RAID 5 D. RAID 10 第 3 题 磁盘阵列的两大关键部件为(选择两项) A. 控制器 B. HBA卡 C. 磁盘柜 第 4 题 下列RAID技术中无法提高可靠性的是 A. RAID 0 B. RAID 1 C. RAID 10 D. RAID 0+1 第 5 题 下列RAID技术中可以允许两块硬盘同时出现故障而仍然保证数据有效的是 A. RAID 3 B. RAID 4 C. RAID 5 D. RAID 6 第 6 题 RAID技术可以提高读写性能,下面选项中,无法提高读写性能的是 A. RAID 0 B. RAID 1 C. RAID 3 D. RAID 5 第 7 题 下列说法中不正确的是(选择两项)

A. 由几个硬盘组成的RAID称之为物理卷 B. 在物理卷的基础上可以按照指定容量创建一个或多个逻辑卷,通过LVN (Logic Volume Number)来标识 C. RAID 5能够提高读写速率,并提供一定程度的数据安全,但是当有单块硬盘故障时,读写性能会大幅度下降 D. RAID 6从广义上讲是指能够允许两个硬盘同时失效的RAID级别,狭义上讲,特指HP的ADG 技术 第 8 题 以下哪些属于IX1500的RAID特性?(选择三项) A. RAID级别转换 B. RAID容量扩展 C. RAID缓存掉电72小时保护 D. RAID6支持 第 9 题 下面哪种功能或特性是IX1500目前不具备 A. 自适应复制功能 B. 声音告警 C. RAID50 D. 空闲空间热备 第 10 题 以下哪些属于IX1500的RAID特性?(选择三项) A. RAID级别转换 B. RAID容量扩展 C. RAID缓存掉电72小时保护 D. RAID6支持 答案回复即可看到 本帖隐藏的内容需要回复才可以浏览 第1题 B. RAID 3 C. RAID 5 第2题 B. RAID 3 C. RAID 5 第3题 A. 控制器C. 磁盘柜 第4题 A. RAID 0 第5题 D. RAID 6

磁盘阵列卡详细步骤

一、为什么要创建逻辑磁盘? 当硬盘连接到磁盘阵列卡上时,操作系统将不能直接看到物理的硬盘,因此需要创建成一个一个的被设置为RAID0,1和5等的逻辑磁盘(也叫容器),这样系统才能够正确识别它。 逻辑磁盘(Logic Drive)、容器(Container)或虚拟磁盘(Virtual Drive)均表示一个意思,他们只是不同阵列卡产商的不同叫法。 二、创建逻辑磁盘的方式 使用磁盘阵列卡本身的配置工具,即磁盘阵列卡的BIOS。(一般用于重装系统或没有安装操作系统的情况下去创建容器(Adaptec阵列卡)/逻辑驱动器(AMI/LSI阵列卡)。 使用第三方提供的配置工具软件去实现对阵列卡的管理。如Dell Array Manager。(这些软件用于服务器上已经安装有操作系统) 三、正确识别您的阵列卡的型号 识别您的磁盘阵列控制器(磁盘阵列控制器为可选项, 如果没有购买磁盘阵列控制器的话以该步骤可以省去) 如果您有一块AMI/LSI磁盘阵列控制器(PERC2/SC,PERC2/DC,PERC3/SC,PERC3/DC, PERC4/DI, PERC4/DC), 在系统开机自检的时候您将看到以下信息: Dell PowerEdge Expandable RAID Controller BIOS X.XX Jun 26.2001 Copyright (C) AMERICAN MEGATRENDS INC. Press CTRL+M to Run Configuration Utility or Press CTRL+H for WebBios 或者 PowerEdge Expandable RAID Controller BIOS X.XX Feb 03,2003 Copyright (C) LSI Logic Corp. Press CTRL+M to Run Configuration Utility or Press CTRL+H for WebBios 此款磁盘阵列卡的配置方法请参考如下: 在AIM/LSI磁盘阵列控制器上创建Logical Drive (逻辑磁盘) --- PERC2/SC,PERC2/DC,PERC3/SC,PERC3/DC,PERC3/DCL --- PERC4 DI/DC (略有不同,请仔细阅读下列文档) *注意:请预先备份您服务器上的数据,配置磁盘阵列的过程将会删除您的硬盘上的所有数据! 1) 在自检过程中,当提示按Ctrl+M键,按下并进入RAID的配置界面。 2) 如果服务器在Cluster 模式下,下列信息将会显示\"按任意键继续\"。

软件磁盘阵列实现过程详解

软件磁盘阵列RAID0实现过程详解 很多朋友在升级时安装两块或多块硬盘,这时候用多块硬盘组成RAID性能将会有很大提升;但是几百元一块的RAID控制卡并非所有人都能够接受,再加上受硬盘容量大小必须相同的限制,于是Windows 2000/XP自带的软RAID功能就成为了大家的最爱。怎样实现软RAID 呢?下面笔者将给大家一步一步介绍。一、简单认识软RAID 软RAID不需要RAID控制卡,它通过软件进行控制。Windows 2000/XP支持该功能。先给大家介绍一下软RAID的基本知识。 在Windows2000/XP中,物理硬盘分为两种类型,一种是基本磁盘,一种是动态磁盘。基本磁盘是包含主分区、扩展分区和逻辑驱动器的物理硬盘,可以被其他操作性访问;动态磁盘可通过Windows 2000/XP中的“磁盘管理”升级得到,只包含由“磁盘管理”创建的动态卷,并由“磁盘管理”程序管理,所以不能被其他操作系统访问。 软RAID被Windows 2000/XP称为卷。要在Windows 2000上使用软件RAID,必须把基本磁盘升级到动态磁盘,才能在动态磁盘上创建我们所需的带区卷(RAID0)。卷有多种格式,下面是我们组建软RAID 0涉及的几种。 1.简单卷:构成单个物理磁盘空间的卷。它可以由磁盘上的单个区域或同一磁盘上连接在一起的多个区域组成,可以在同一磁盘内扩展简单卷。安装操作系统的简单卷成为引导卷。 2.跨区卷:简单卷也可以扩展到其他的物理磁盘,这样由多个物理磁盘的空间组成的卷就称为跨区卷。简单卷和跨区卷都不属于RAID范畴。 3.带区卷:以带区形式在两个或多个物理磁盘上存储数据的卷。带区卷上的数据被交替、平均(以带区形式)地分配给这些磁盘,带区卷是所有Windows 2000/XP可用的卷中性能最佳的,但它不提供容错。如果带区卷上的任何一个磁盘数据损坏或磁盘故障,则整个卷上的数据都将丢失。带区卷可以看做硬件RAID中的RAID0。 二、建立带区卷(RAID0) 了解了有关知识后,让我们看看如何建立一个高性能的带区卷。下面已Windows 2000为例,给大家介绍。建立带区卷必须对硬盘重新格式化,数据将会丢失,所以建议将硬盘数据备份后,删除Windows 2000所在分区以外的所有分区。 接着以系统管理员身份登录Windows 2000,然后依次打开“我的电脑→控制面板→管理工具→计算机管理→存储→磁盘管理(本地)”(如图1)。在屏幕的上半部分显示的是分区或卷的详细情况,下半部分显示物理磁盘的状态,在这一部分的左边显示物理磁盘的两种类型。图中的磁盘0、1都是物理磁盘,并且现在都是基本磁盘,我们要把它们升级到动态磁盘并创建一个带区卷。 接着就是升级到动态磁盘。在磁盘0或磁盘1上点击鼠标右键,选择“升级到动态磁盘(U)”,出现对话框后在磁盘0和磁盘1前面打勾并确定,几秒钟后升级就完成了,此时在“磁盘管理”中磁盘0和磁盘1已经变成动态磁盘了,并且Windows 2000所在分区变成包含引导信息的简单卷,也就是引导卷。而其他空间则变成未指派空间。 然后创建带区卷。未指派空间可以创建简单卷或者带区卷,在磁盘0未指派空间上点右键并选择“创建卷”;点击“下一步”后选择“带区卷”,将磁盘0和磁盘1添加到右边的“选定的动态磁盘(S)”一栏中(如图2),按下一步后,Windows提示指派驱动器号(可以由Windows 指定也可手动分配,一般以系统默认即可),然后需要进行格式化.可以选择FAT32和NTFS 作为带区卷的文件系统,然后选择簇的大小和卷标,簇越大磁盘性能越高但造成的空间浪费

Raid教程:全程图解手把手教你做RAID

Raid教程:全程图解手把手教你做RAID 说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。本文要以一个具体的磁盘阵列配置方法为例向大家介绍磁盘阵列的一些基本配置方法,给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。当然为了使各位对磁盘阵列有一个较全面的介绍,还是先来简要回顾一下有关磁盘阵列的理论知识,这样可以为实际的配置找到理论依据。 一、磁盘阵列实现方式 磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。磁盘阵列卡拥有一个专门的处理器,如Intel 的I960芯片,HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。 二、几种磁盘阵列技术 RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。 RAID 0是无数据冗余的存储空间条带化,具有成本低、读写性能极高、存储空间利用率高等特点,适用于音、视频信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘的损坏都将带来灾难性的数据损失。这种方式其实没有冗余功能,

RAID检测指令

C:\WINNT\Profiles\Administrator>vxdisk list -v Name MediaName Diskgroup DiskStyle Size(MB) FreeSpace(MB) Status Port Target Channel LUN Harddisk0 RAW 502 7 Uninitialized 0 0 0 0 Harddisk1 Disk1 DataDisk MBR 140270 0 Imported 2 0 0 0 Harddisk2 Disk2 DataDisk MBR 140270 140270 Imported 2 4 0 0 Harddisk3 BasicGroup MBR 70135 7 Uninitialized 2 7 0 0 检测出target id. vxdisk list Name MediaName Diskgroup DiskStyle Size(MB) FreeSpace(MB) Status Harddisk0 BasicGroup MBR 502 7 Uninitialized Harddisk1 Disk1 DataDisk RAW 140270 0 Imported Harddisk2 Disk2 DataDisk RAW 140270 0 Imported Harddisk3 BasicGroup MBR 70135 7 Uninitialized C:\>vxdisk diskinfo Harddisk1 Disk information Device Name : Harddisk1 Media Name : Disk1 Disk Group : DataDisk Disk Style : RAW Length : 147084424704 FreeSpace : 0 BusType : 4 Port : 2 Target : 0 Channel : 0 LUN : 0 Signature : 0 Status : Imported Comment : Subdisks : Disk1-01 Disk1-02 C:\>vxdisk diskinfo Harddisk1 Disk information Device Name : Harddisk1 Media Name : Disk1 Disk Group : DataDisk Disk Style : RAW Length : 147084424704 FreeSpace : 0 BusType : 4 Port : 2 Target : 0 Channel : 0 LUN : 0 Signature : 0 Status : Imported

linux添加并挂载新磁盘或优盘的方法

Linux磁盘挂载操作手册 一、挂载单个分区小于2T的分区 1.查看系统当前分区情况 命令df –h 实例: Last login: Fri Oct 26 00:01:51 2012 from e10-3 E10-3:~ # df -h Filesystem Size Used Avail Use% Mounted on /dev/sda2 40G 4.7G 33G 13% / devtmpfs 12G 144K 12G 1% /dev tmpfs 3.9G 100K 3.9G 1% /dev/shm /dev/sda1 479M 72M 383M 16% /boot /dev/sda5 869G 201M 824G 1% /home /dev/sr0 2.9G 2.9G 0 100% /media/SLES-11-SP1-DVD-x86_64.0432..001 2.查看系统当前硬盘分区情况 命令:fdisk –l E10-3:~ # fdisk -l Disk /dev/sda: 999.0 GB, 998999326720 bytes 255 heads, 63 sectors/track, 121454 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0x00004cb7 Device Boot Start End Blocks Id System /dev/sda1 * 1 63 506016 83 Linux /dev/sda2 64 5284 41937682+ 83 Linux /dev/sda3 5285 6328 8385930 82 Linux swap / Solaris /dev/sda4 6329 121454 924749595 f W95 Ext'd (LBA) /dev/sda5 6329 121452 924733498+ 83 Linux Disk /dev/sdb: 999.0 GB, 998999326720 bytes 255 heads, 63 sectors/track, 121454 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0x00000000 Disk /dev/sdb doesn't contain a valid partition table

DELL服务器做RAID磁盘阵列图文教程

磁盘阵列可以在安装系统之前或之后产生,系统会视之为一个(大型)硬盘,而它具有容错及冗余的功能。磁盘阵列不单只可以加入一个现成的系统,它更可以支持容量扩展,方法也很简单,只需要加入一个新的硬盘并执行一些简单的指令,系统便可以实时利用这新加的容量。 ·RAID 的种类及应用 IDE和SCSI是计算机的两种不同的接口,前者普遍用于PC机,后者一般用于服务器。基于这两种接口,RAID分为两种类型:基于IDE接口的RAID应用,称为IDE RAID;而基于SCSI接口的RAID应用则相应称为SCSI RAID。 基于不同的架构,RAID 又可以分为: ● 软件RAID (软件RAID) ● 硬件RAID (硬件RAID) ● 外置RAID (External RAID) ·软件RAID很多情况下已经包含在系统之中,并成为其中一个功能,如Windows、Net ware及Linux。软件RAID中的所有操作皆由中央处理器负责,所以系统资源的利用率会很高,从而使系统性能降低。软件RAID是不需要另外添加任何硬件设备,因为它是靠你的系统——主要是中央处理器的功能——提供所有现成的资源。 ·硬件RAID通常是一张PCI卡,你会看到在这卡上会有处理器及内存。因为这卡上的处理器已经可以提供一切RAID所需要的资源,所以不会占用系统资源,从而令系统的表现可以大大提升。硬件RAID可以连接内置硬盘、热插拔背板或外置存储设备。无论连接何种硬盘,控制权都是在RAID卡上,亦即是由系统所操控。在系统里,硬件RAID P CI卡通常都需要安驱动程序,否则系统会拒绝支持。 ·外置式RAID也是属于硬件RAID的一种,区别在于RAID卡不会安装在系统里,而是安装在外置的存储设备内。而这个外置的储存设备则会连接到系统的SCSI卡上。系统没有任何的RAID功能,因为它只有一张SCSI卡;所有的RAID功能将会移到这个外置存储里。好处是外置的存储往往可以连接更多的硬盘,不会受系统机箱的大小所影响。而一

几种常见的RAID形式

几种常见的RAID形式 提起RAID,这里面包括两个含义:A代表array,也就是阵列;I代表independent,也 就是说要有一块以上的硬盘才能够实现RAID功能,总体说来,RAID的意思就是磁盘阵列,根据磁盘和RAID卡之间不同的组合方式来实现不同的磁盘性能。 RAID 0 最基本的RAID方式就是RAID 0模式,这个模式的目的是提供最快的存储速度,并没有考虑到安全性问题,RAID 0模式的工作原理如下: RAID 0利用一定的运算法则将一个文件按照用户自定义的大小分割成若干小部分,当文件被分割之后,RAID 0模式当中的每一块一盘都会存储一定数目的文件碎块。举例来说,如果RAID 0模式当中有两块硬盘,用户自定义的切割文件大小为64K,此时如果RAID控制器接收到一个指令来存储一个大小为128K的文件,这样的话这个文件就会被分割成两个64K 大小的文件碎块,然后这两个碎块被同时分别存储在硬盘1和硬盘2当中,存储过程到此完成。在RAID 0模式下读取一个文件的操作也是如此,还是用上面的那个例子来说,由于文件被分割存储在各个硬盘上,读取的时候只需要从两个硬盘当中各读取64K大小的文件碎块便可以完成读取,所以,在这个RAID 0模式当中读取128K大小的文件所需要的时间和在普通硬盘上读取64K大小的文件所需要的时间相同。在这个RAID 0模式当中,由于存储数据的时候动用的是不仅仅是一个硬盘,所以大大减少了存储和读取数据所需要的时间,理论上来讲,RAID 0能够实现写入和读取文件的速度加倍。 另外还有一种情况就是当所要存储的文件大小小于用户自定义的分割文件大小的时候,此时这个文件就不会被分割开来,当然也就不会被存储在RAID 0模式当中的每个硬盘之上,此时,存储(或者读取)这个文件所需要的时间比使用单个硬盘存储和读取这个文件所需要的时间并没有减少。 同样,如果用户将分割文件的大小设置的很小的话,将会使RAID 0工作效率变得十分低下,举个非常简单的例子来说,如果用户定义这个分割大小为1K的话,在存储(或者读取)一个大小为128K的文件的时候,那么每个硬盘都需要写入64次并且每次所写入的文件大小为1K,这就会造成一定的瓶颈效应。如果真的有人将分割文件大小设置的如此之小的话,还不如用一块硬盘存储数据好了。 在前面已经提到,RAID 0所能够提供的是快速的存储和读取的速度,并没有处于安全性考虑,实际上,如果RAID 0当中的一块硬盘损坏了,整体数据都会损坏,并且没有办法恢复数据。这使得RAID 0的安全性能非常的差,所以很多用户出于安全性能的考虑没有使用RAID 0模式。虽然如此,RAID 0毕竟是所有RAID方式当中速度最快的一种组合方式,如果RAID 0模式当中有两块硬盘的话,那么RAID 0的存储读取数据的速度会是单个硬盘的双倍,如果使用6快硬盘的话,那么理论速率就是单个硬盘的6倍。 如果在RAID 0模式当中使用不同的硬盘会造成两方面的问题,首先,RAID 0的有效硬盘容量会是最小的硬盘的容量乘上硬盘的个数,这是因为如果容量的最小的硬盘存满了之后,RAID 0依然会将文件平均分配到各个硬盘当中,此时便不能完成存储任务了;其次,如果RAID 0当中的硬盘速度不同,那么整体的速度会是速度最慢的硬盘的速度乘上硬盘的个数,这是因为RAID 0模式是需要将上一部的存储任务完成之后才能进行下一步的进程,这样,其它的速度快的硬盘会停下来等待速度慢的硬盘完成存储或者读取任务,使得整体性能有所下降。所以,在这里建议使用RAID 0模式的用户最好选择容量和速度相同的硬盘,最好是同一品牌的同种产品。

Linux磁盘挂载操作手册

Linux磁盘挂载操作手册 文章目录 一、挂载单个分区小于2T的分区 二、挂载单个分区大于2T的分区 一、挂载单个分区小于2T的分区 1.查看系统当前分区情况 命令df –h 实例: [211.139.10.178_Y1025_16:09:31] Last login: Fri Oct 26 00:01:51 2012 from e10-3 E10-3:~ # df -h Filesystem Size Used Avail Use% Mounted on /dev/sda2 40G 4.7G 33G 13% / devtmpfs 12G 144K 12G 1% /dev tmpfs 3.9G 100K 3.9G 1% /dev/shm /dev/sda1 479M 72M 383M 16% /boot /dev/sda5 869G 201M 824G 1% /home /dev/sr0 2.9G 2.9G 0 100% /media/SLES-11-SP1-DVD-x86_64.0432..001 2.查看系统当前硬盘分区情况 命令:fdisk –l E10-3:~ # fdisk -l Disk /dev/sda: 999.0 GB, 998999326720 bytes

255 heads, 63 sectors/track, 121454 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0x00004cb7 Device Boot Start End Blocks Id System /dev/sda1 * 1 63 506016 83 Linux /dev/sda2 64 5284 41937682+ 83 Linux /dev/sda3 5285 6328 8385930 82 Linux swap / Solaris /dev/sda4 6329 121454 924749595 f W95 Ext'd (LBA) /dev/sda5 6329 121452 924733498+ 83 Linux Disk /dev/sdb: 999.0 GB, 998999326720 bytes 255 heads, 63 sectors/track, 121454 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0x00000000 Disk /dev/sdb doesn't contain a valid partition table Disk /dev/sdc: 4994.0 GB, 4993981612032 bytes 255 heads, 63 sectors/track, 607150 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0x00000000 Disk /dev/sdc doesn't contain a valid partition table 3.创建新的硬盘分区 命令: fdisk /dev/sdb 注:这里的/dev/sdb是具体一个硬盘,此参数可改成fdisk –l显示的硬盘的序号。 实例: E10-3:~ # fdisk /dev/sdb Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel Building a new DOS disklabel with disk identifier 0xd3f0a6aa. Changes will remain in memory only, until you decide to write them. After that, of course, the previous content won't be recoverable.

磁盘阵列的关键技术

磁盘阵列的关键技术 黄设星 存储技术在计算机技术中受到广泛关注,服务器存储技术更是业界关心的热点。一谈到服务器存储技术,人们几乎立刻与SCSI(Small Computer Systems Interface)技术联系在一起。尽管廉价的IDE硬盘在性能、容量等关键技术指标上已经大大地提高,可以满足甚至超过原有的服务器存储设备的需求。但由于Internet的普及与高速发展,网络服务器的规模也变得越来越大。同时,Internet不仅对网络服务器本身,也对服务器存储技术提出了苛刻要求。无止境的市场需求促使服务器存储技术飞速发展。而磁盘阵列是服务器存储技术中比较成熟的一种,也是在市场上比较多见的大容量外设之一。 在高端,传统的存储模式无论在规模上,还是安全上,或是性能上,都无法满足特殊应用日益膨胀的存储需求。诸如存储局域网(SAN)等新的技术或应用方案不断涌现,新的存储体系结构和解决方案层出不穷,服务器存储技术由直接连接存储(DAS)向存储网络技术(NAS)方面扩展。在中低端,随着硬件技术的不断发展,在强大市场需求的推动下,本地化的、基于直接连接的磁盘阵列存储技术,在速度、性能、存储能力等方面不断地迈上新台阶。并且,为了满足用户对存储数据的安全、存取速度和超大的存储容量的需求,磁盘阵列存储技术也从讲求技术创新、重视系统优化,以技术方案为主导的技术推动期逐渐进入了强调工业标准、着眼市场规模,以成熟产品为主导的产品普及期。 磁盘阵列又叫RAID(Redundant Array of Inexpensive Disks——廉价磁盘冗余阵列),是指将多个类型、容量、接口,甚至品牌一致的专用硬磁盘或普通硬磁盘连成一个阵列,使其能以某种快速、准确和安全的方式来读写磁盘数据,从而达到提高数据读取速度和安全性的一种手段。因此,磁盘阵列读写方式的基本要求是,在尽可能提高磁盘数据读写速度的前提下,必须确保在一张或多张磁盘失效时,阵列能够有效地防止数据丢失。磁盘阵列的最大特点是数据存取速度特别快,其主要功能是可提高网络数据的可用性及存储容量,并将数据有选择性地分布在多个磁盘上,从而提高系统的数据吞吐率。另外,磁盘阵列还能够免除单块硬盘故障所带来的灾难后果,通过把多个较小容量的硬盘连在智能控制器上,可增加存储容量。磁盘阵列是一种高效、快速、易用的网络存储备份设备。 回顾磁盘阵列的发展历程,一直和SCSI技术的发展紧密关联,一些厂商推出的专有技术,如IBM的SSA(Serial Storage Architecture)技术等,由于兼容性和升级能力不尽如人意,在市场上的影响都远不及SCSI技术广泛。由于SCSI技术兼容性好,市场需求旺盛,使得SCSI技术发展很快。从最原始5MB/s传输速度的SCSI-1,一直发展到现在LVD接口的160MB/s传输速度的Ultra 160 SCSI,320MB/s传输速度的Ultra 320 SCSI接口也将在2001年出现(见表1)。从当前市场看,Ultra 3 SCSI技术和RAID(Redundant Array of Inexpensive Disks)技术还应是磁盘阵列存储的主流技术。 1SCSI技术 SCSI本身是为小型机(区别于微机而言)定制的存储接口,SCSI协议的Version 1 版本也仅规定了5MB/s传输速度的SCSI-1的总线类型、接口定义、电缆规格等技术标准。随着技术的发展,SCSI协议的Version 2版本作了较大修订,遵循SCSI-2协议的16位数据带宽,高主频的SCSI存储设备陆续出现并成为市场的主流产品,也使得SCSI技术牢牢地占

Raid教程:全程图解手把手教你做RAID

说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。本文要以一个具体的磁盘阵列配置方法为例向大家介绍磁盘阵列的一些基本配置方法,给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。当然为了使各位对磁盘阵列有一个较全面的介绍,还是先来简要回顾一下有关磁盘阵列的理论知识,这样可以为实际的配置找到理论依据。 一、磁盘阵列实现方式 磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。磁盘阵列卡拥有一个专门的处理器,如Intel的I960芯片, HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。 二、几种磁盘阵列技术 RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。

实战RAID5 手把手教你组磁盘阵列5

随着PC硬件的不断发展,以前多见于服务器等高端应用的RAID5技术也出现在PC机上。许多玩家开始接触到这种提升速同时也能确保数据安全性的良好的解决方案。 RAID 5 模式的入门知识 RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。它既能实现RAID 0的高速存储读取功能也能够实现RAID 1的数据恢复功能,可以说是RAID 0和RAID 1的折衷方案。 RAID 5为系统提供数据安全保障,但保障程度要比磁盘镜像低而磁盘空间利用率要比磁盘镜像高。同时RAID 5还具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,而且存储成本相对较低。 RAID 5至少需要三块硬盘才能实现阵列,在阵列当中有三块硬盘时,RAID控制器将会把需要存储的数据按用户定义的分割大小把文件分成碎片再分别存储到其中的两块硬盘上,此时另一块硬盘不接收文件碎片,只用来存储其它两块硬盘的校验信息,这个校验信息是通过RAID控制器上的单独的芯片运算产生的,而且可以通过这个校验信息来恢复存储在两块硬盘上的数据。 另外,这三块硬盘的任务也是随机的,也就是说在这次存储当中可能是1号硬盘和2好硬盘用来存储分割后的文件碎片,那么在下次存储的时候可能就是2号硬盘和3号硬盘来完成这个任务了。可以说,在每次存储操作当中,每块硬盘的任务是不一样的,不过,不管任务怎么随机分配也是两块硬盘用来存储数据信息,另一块硬盘用来存储校验信息。 RAID 5可以利用三块硬盘同时实现RAID 0的加速功能也实现RAID 1的数据备份功能,并且当其中的一块硬盘损坏之后,加入一块新的硬盘也可以实现数据的还原。 RAID 5模式并不是完全没有缺点,如果阵列当中某块硬盘上的信息发生了改变的话,那么就需要重新计算文件分割碎片,并且,校验信息也需要重新计算,这时,三个硬盘都需要重新调用那么整个系统性能将会降下来。如果要做RAID 5阵列的话,最好使用相同容量相同速度的硬盘,RAID 5模式的有效容量是阵列中容量最小的硬盘容量乘上阵列中硬盘数减一后的数目,这是因为其中有一块硬盘用来存放校验信息。 RAID 5既能够实现速度上的加倍,同时也能够保证数据的安全性,所以在很多高端系统当中都使用这种RAID模式。 如何实现 RAID 5:

linux挂载点

挂载点 linux、unix这类操作系统将系统中的一切都作为文件来管理。在windows中我们常见的硬件设备、磁盘分区等,在linux、unix中都被视作文件,对设备、分区的访问就是读写对应 的文件。 挂载点实际上就是linux中的磁盘文件系统的入口目录,类似于windows中的用来访问不同分区的C:、D:、E:等盘符。其实winxp也支持将一个磁盘分区挂在一个文件夹下面, 只是我们C:、D:这样的盘符操作用惯了,一般没有将分区挂到文件夹。 选择挂载点是必不可少的步骤,下面对各挂载点做一个简单介绍: / 根目录 唯一必须挂载的目录。不要有任何的犹豫,选一个分区,挂载它!(在绝大多数情况下,有10G的容量应该是够用了。当然了,很多东西都是多多益善的) /boot 它包含了操作系统的内核和在启动系统过程中所要用到的文件,建这个分区是有必要的,因为目前大多数的PC机要受到BIOS的限制,况且如果有了一个单独的/boot启动分区,即使主要的根分区出现了问题,计算机依然能够启动。这个分区的大小约在60MB—120MB 之间。 /home 是用户的home目录所在地,这个分区的大小取决于有多少用户。如果是多用户共同使用一台电脑的话,这个分区是完全有必要的,况且根用户也可以很好地控制普通用户使用计算机,如对用户或者用户组实行硬盘限量使用,限制普通用户访问哪些文件等。 /tmp 用来存放临时文件。这对于多用户系统或者网络服务器来说是有必要的。这样即使程序运行时生成大量的临时文件,或者用户对系统进行了错误的操作,文件系统的其它部分仍然是安全的。因为文件系统的这一部分仍然还承受着读写操作,所以它通常会比其它的部分更快地发生问题。 /usr 应用程序目录。大部分的软件都安装在这里。就像是Windows里面的Program Files。 /var

磁盘阵列初步图文教程

磁盘阵列初步图文教程 闲来无事,组了个raid 0,感觉还不错,速度有明显提高,加载游戏和启动程序速度有所改善先上对比图吧。 单碟速度下图: raid0 速度下图: 用的硬盘呢是这个,俩希捷500g单碟

步骤/方法 1. 1 下面说说步骤吧,因为板子不一样,进入和设置的方法有所区别,下面以我的P55A-UD3R为例,intel板子设置基本相同: 首先在电源开启后B I O S在进行P O S T时,按下键进入B I O S设置程序。若要制作R A I D,进入 「Integrated Peripherals」将「PCH SATA Control Mode」选项设为「RAID(XHD)」,退出BIOS程序设置并保存设置结果。 如下图 2. 2 然后需要进入RAID设置程序进行以下步骤设置: 步骤一: 在BIOS POST画面后,进入操作系统之前,会出现如下所示的画面,按+键进入 RAID设置程序。 步骤二: 按下+后会出现P55 RAID设置程序主画面。 建立磁盘阵列(Create RAID Volume) 在「Create RAID Volume」选项按键以制作RAID磁盘。 步骤三: 进入「CREATE VOLUME MENU」画面,可以在「Name」选项自定义磁盘阵列的名称,字数最 多可为16个字母,但不能有特殊字符,设置好后按键。选择要制作的R A I D模式(R A I D Level)。RAID模式选项有:RAID 0、RAID 1、Recovery、RAID 10及RAID 5 (可选择的RAID模 式视安装的硬盘总数而定)。选择好RAID模式后,按键继续执行后面的步骤。 步骤四: 在「D i s k s」选项选择要制作磁盘阵列的硬盘。若只安装了两块硬盘,则此两块硬盘将被自动设为磁盘阵列。 接下来请选择磁盘窗口大小(Strip Size) ,可调范围是从4 KB至128 KB。设置完成后,按键设置磁盘阵列容量(Capacity)。

各种RAID的工作原理

各种RAID的工作原理 通常称为:RAID 0, RAID1, RAID2, RAID3,RAID4, RAID5,RAID6。每一个RAID级别都有自己的强项和弱项。 "奇偶校验"定义为用户数据的冗余信息, 当硬盘失效时,可以重新产生数据。R AID 0: RAID 0 并不是真正的RAID结构,没有数据冗余。R AID 0 连续地分割数据并并行地读/写于多个磁盘上。 因此具有很高的数据传输率。 但RAID 0在提高性能的同时,并没有提供数据可靠性,如果一个磁盘失效,将影响整个数据。因此RAID 0 不可应用于需要数据高可用性的关键应用。R AID1: RAID1通过数据镜像实现数据冗余,在两对分离的磁盘上产生互为备份的数据。R AID1可以提高读的性能, 当原始数据繁忙时,可直接从镜像拷贝中读取数据。RAID1是磁盘阵列中费用最高的, 但提供了最高的数据可用率。 当一个磁盘失效,系统可以自动地交换到镜像磁盘上, 而不需要重组失效的数据。R AID2: 从概念上讲, RAID2 同RAID3类似, 两者都是将数据条块化分布于不同的硬盘上, 条块单位为位或字节。然而RAID2 使用称为"加重平均纠错码"的编码技术来提供错误检查及恢复。这种编

码技术需要多个磁盘存放检查及恢复信息, 使得RAID2技术实施更复杂。因此,在商业环境中很少使用、 RAID3: 不同于RAID2, RAID3使用单块磁盘存放奇偶校验信息。 如果一块磁盘失效, 奇偶盘及其他数据盘可以重新产生数据。 如果奇偶盘失效,则不影响数据使用。RAID3对于大量的连续数据可提供很好的传输率, 但对于随机数据, 奇偶盘会成为写操作的瓶颈。R AID4: 同RAID2, RAID3一样, RAID4, RAID5也同样将数据条块化并分布于不同的磁盘上, 但条块单位为块或记录。R AID4使用一块磁盘作为奇偶校验盘, 每次写操作都需要访问奇偶盘, 成为写操作的瓶颈、在商业应用中很少使用。R AID5: RAID5没有单独指定的奇偶盘, 而是交叉地存取数据及奇偶校验信息于所有磁盘上。在RAID5 上, 读/写指针可同时对阵列设备进行操作, 提供了更高的数据流量。RAID5更适合于小数据块, 随机读写的数据、RAID3 与RAID5相比, 重要的区别在于RAID3每进行一次数据传输,需涉及到所有的阵列盘。而对于RAID5来说, 大部分数据传输只对一块磁盘操作, 可进行并行操作。在RAID5 中有"写损失", 即每一次写操作,将产生四个实际的读/写操作, 其中两次读旧的数据及奇偶信息, 两次写新的数据及奇偶信息。R AID6: RAID6 与RAID5相比,增加了第二个独立的奇偶校验信息块。