文档库 最新最全的文档下载
当前位置:文档库 › 焊接缺欠

焊接缺欠

焊接缺欠

焊接未焊透和未熔合的危害及防止

1、未焊透

未焊透的危害:减少了焊缝的有效截面积,使焊接接头的强度下降;因未焊透引起的应力集中严重降低焊缝的疲劳强度;未焊透可能成为裂纹源,从而造成堆焊缝的破坏。

未焊透的产生原因:焊接的参数选择不当,如焊接电流太小、运行速度太快、焊条角度不当、电弧发生偏吹、对接间隙太小以及坡口角度不当等,未焊透与焊接冶金因素关系不大;操作失误,如在不开坡口的双面埋弧自动焊中,双面焊时中心对偏等;坡口加工不良,如钝边太厚或一侧厚、一侧薄,加上焊接电流太小等。

未焊透防止措施:使用较大电流焊接是防止未焊透缺陷的基本方法。角焊缝时,用交流代替直流可防止磁偏吹。另外,合理设计坡口并保持坡口清洁、用短弧焊等措施可以有效防止未焊透的产生。

2、未熔合

未熔合是一种面积型缺陷,坡口侧未熔合和根部未熔合明显减少了承载截面积,应力集中比较严重,其危害型仅次于裂纹。

未熔合的产生原因:焊接面未清理干净,有油污或铁锈;坡口形状不合理,有死角;焊接电流太小;焊枪没有充分摆动;焊工擅自提高电流以加快焊接速度等。

未熔合防止措施:采用较大焊接电流,正确进行施焊操作并保持坡口的清洁。

焊接过程中的其它工艺因素,如坡口尺寸,间隙大小,电极倾角,工件的斜度,接头的空间位置等对焊缝成形有影响。

1,坡口和间隙坡口或间隙的尺寸增大,则焊缝熔深略有增加,而余高和熔合比显著减小,因此通常用开坡口的方法控制焊缝的余高和调整熔合比。

2,电极(焊丝)倾角

焊丝倾角的方法和大小不同,电弧对熔池的力和热的作用就不同,从而对焊缝成形的影响各异。前倾焊时,电弧力后排熔池金属的作用减弱,熔池底部液体金属增厚,熔深减小,而电弧对熔池前方的母材的预热作用加强,故熔宽增大。焊丝倾角a越大,这一作用越明显。后倾焊时,情况则相反。实际工作中,后倾焊只有在某些特殊情况下使用。例如焊接小直径圆筒形工作的环焊缝等。

3,工作斜度

焊接倾斜的工件时,有上坡焊和下坡焊两种情况。上坡焊时,液体的重力有助于熔池金属排向熔池尾部,因而熔深余高增加,而熔宽减小。若斜角β大于六度至十二度,则焊缝余高过大,两侧出现咬边,成形明显恶化。下坡的情况与上坡焊相反,当β小于六度至八度时,焊缝的熔深和余高均减小,而熔宽略有增加,焊缝成形得到改善,继续增大β角,将会产生未焊透,焊瘤等缺陷。

常见的焊接缺陷及缺陷图片

常见的焊接缺陷(1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

(机械)(焊接)焊接冶金学(基本原理)习题

焊接冶金学(基本原理)习题 绪论 1.试述焊接、钎焊和粘接在本质上有何区别? 2.怎样才能实现焊接,应有什么外界条件? 3.能实现焊接的能源大致哪几种?它们各自的特点是什么? 4.焊接电弧加热区的特点及其热分布? 5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响? 6.试述提高焊缝金属强韧性的途径? 7.什么是焊接,其物理本质是什么? 8.焊接冶金研究的内容有哪些 第一章焊接化学冶金 1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同? 2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分? 3.焊接区内气体的主要来源是什么?它们是怎样产生的? 4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度? 5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? 6.手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律? 7.氢对焊接质量有哪些影响? 8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少? 9. 综合分析各种因素对手工电弧焊时焊缝含氢量的影响。 10.今欲制造超低氢焊条([H]<1cm3/100g),问设计药皮配方时应采取什么措施? 11. 氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量? 12.保护焊焊接低合金钢时,应采用什么焊丝?为什么? 13.在焊接过程中熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么? 14.测得熔渣的化学成分为:CaO41.94%、28.34%、23.76%、FeO5.78%、7.23%、3.57%、MnO3.74%、4.25%,计算熔渣的碱度和,并判断该渣的酸碱性。 15.已知在碱性渣和酸性渣中各含有15%的FeO,熔池的平均温度为1700℃,问在该温度下平衡时分配到熔池中的FeO量各为多少?为什么在两种情况下分配到熔池中的FeO量不同?为什么焊缝中实际含FeO量远小于平衡时的含量? 16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低? 17.为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅? 18. 综合分析熔渣中的CaF2在焊接化学冶金过程是所起的作用。 19.综合分析熔渣的碱度对金属的氧化、脱氧、脱硫、脱磷、合金过渡的影响。 20.什么是焊接化学冶金过程,手工电弧焊冶金过程分几个阶段,各阶段反应条件有何不同,主要进行哪些物理 化学反应? 21.什么是熔合比,其影响因素有哪些,研究熔合比在实际生产中有什么意义?

焊接缺陷分类及预防措施

一、焊接缺陷的分类 焊接缺陷可分为外部缺陷和内部缺陷两种 1.外部缺陷 1)外观形状和尺寸不符合要求; 2)表面裂纹; 3)表面气孔; 4)咬边; 5)凹陷; 6)满溢; 7)焊瘤; 8)弧坑; 9)电弧擦伤; 10)明冷缩孔; 11)烧穿; 12)过烧。 2.内部缺陷 1)焊接裂纹:a.冷裂纹;b.层状撕裂;c.热裂纹;d.再热裂纹。 2)气孔; 3)夹渣; 4)未焊透; 5)未熔合; 6)夹钨; 7)夹珠。 二、各种焊接缺陷产生原因、危害及防止措施 1、外表面形状和尺寸不符合要求 表现:外表面形状高低不平,焊缝成形不良,焊波粗劣,焊缝宽度不均匀,焊缝余高过高或过低,角焊缝焊脚单边或下凹过大,母材错边,接头的变形和翘曲超过了产品的允许范围等。 危害:焊缝成形不美观,影响到焊材与母材的结合,削弱焊接接头的强度性能,使接头的应力产生偏向和不均匀分布,造成应力集中,影响焊接结构的安全使用。

产生原因:焊件坡口角度不对,装配间隙不匀,点固焊时未对正,焊接电流过大或过小,运条速度过快或过慢,焊条的角度选择不合适或改变不当,埋弧焊焊接工艺选择不正确等。 防止措施:选择合适的坡口角度,按标准要求点焊组装焊件,并保持间隙均匀,编制合理的焊接工艺流程,控制变形和翘曲,正确选用焊接电流,合适地掌握焊接速度,采用恰当的运条手法和角度,随时注意适应焊件的坡口变化,以保证焊缝外观成形均匀一致。 2、焊接裂纹 表现:在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏形成的新界面所产生的缝隙,具有尖锐的缺口和大小的长宽比特征。按形态可分为:纵向裂纹、横向裂纹、弧坑裂纹、焊趾裂纹、焊根裂纹、热影响区再热裂纹等。 危害:裂纹是所有的焊接缺陷里危害最严重的一种。它的存在是导致焊接结构失效的最直接的因素,特别是在锅炉压力容器的焊接接头中,因为它的存在可能导致一场场灾难性的事故的发生,裂纹最大的一个特征是具有扩展性,在一定的工作条件下会不断的“生长”,直至断裂。 产生原因及防止措施: (1)冷裂纹:是焊接头冷却到较低温度下(对于钢来说是Ms温度以下)时产生的焊接裂纹,冷裂纹的起源多发生在具有缺口效应的焊接热影响区或有物理化学不均匀的氢聚集的局部地带,裂纹有时沿晶界扩展,也有时穿晶扩展。这是由于焊接接头的金相组织和应力状态及氢的含量决定的。(如焊层下冷裂纹、焊趾冷裂纹、焊根冷裂纹等)。 产生机理:钢产生冷裂纹的倾向主要决定于钢的淬硬倾向,焊接接头的含氢量及其分布,以及接头所承受的拘束应力状态。 产生原因: a.钢种原淬硬倾向主要取决于化学成分、板厚、焊接工艺和冷却条件等。钢的淬硬倾向越大,越易产生冷裂纹。 b.氢的作用,氢是引起超高强钢焊接冷裂纹的重要因素之一,并且有延迟的特征。高强钢焊接接头的含氢量越高,则裂纹的敏感性越强。 c.焊接接头的应力状态:高强度钢焊接时产生延迟裂纹的倾向不仅取决于钢的淬硬倾向和氢的作用,还决定于焊接接头的应力状态。焊接时主要存在的应力有:不均匀加热及冷却过程中所产生的热应力、金属相变时产生的组织应力、结构自身拘束条件等。

焊接冶金学-材料焊接性-课后答案 李亚江版

焊接冶金学材料-焊接性课后习题答案 第一章:概述 第二章:焊接性及其实验评定 1.了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 答:焊接性是指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。影响因素:材料因素、设计因素、工艺因素、服役环境。 第三章:合金结构钢 1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题? 答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以

上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接。 2.分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。 答:Q345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火

焊接理论基础试题整理南昌航空大学

一、名词解释 必背: 碳当量:把钢中合金元素(包括碳)按其对淬硬(包括冷裂、脆化等)的影响程度折合成碳的相当含量。 线能量:焊接过程中,电弧在单位焊缝长度上放出的能量。 融合比:在焊缝金属中局部融化的母材所占的比例。 拘束度:单位长度焊缝,在根部间隙产生单位长度的弹性位移所需要的力。 温度场:焊件上(包括内部)某瞬时的温度分布称为“温度场”。 注:老师说考4-5个名词解释,这5个一定要背。 可能考: 短渣、长渣:当两种渣的粘度都变化△η时,凝固时间短的叫短渣,凝固时间长的叫长渣。 热循环:焊接过程中热源沿焊件移动时。焊件上某点温度由低而高,达到最高值后,又由高而低随时间的变化称为焊接热循环。 焊接热影响区:在焊接热源作用下,焊缝两侧发生组织和性能变化的区域。 合金过渡系数:合金元素在熔敷金属中的实际含量和它的原始含量之比。 残余氢:不能在焊缝金属的晶格中自由扩散的那部分氢,称为“残余氢”。 扩散氢:可以在焊缝金属的晶格中自由扩散的那部分氢,称为“扩散氢”。 碱度:熔渣中碱性氧化物的摩尔分数之和与熔渣中酸性性氧化物的摩尔分数之和之比。 焊条金属的熔敷系数:单位时间内单位电流所能熔敷在焊件上的金属重量。 比热流:单位时间内通过单位面积流入焊件的热能。 药皮重量系数: 单位长度焊条上,药皮与焊芯的重量比(不保括夹持部分)。 合金过渡:把所需要的合金元素通过焊接材料过渡到焊缝金属(或堆焊金属)中去的过程。 二、知识点 1.药皮焊条焊接时,熔滴过渡形式:1)短路过渡2)颗粒状过渡3)附壁过渡 2.熔焊的保护方式:1)熔渣2)气体3)熔渣和气体4)真空5)自保护 3.熔渣的作用1)机械保护2)改善焊接工艺性能3)冶金处理 4.焊接材料种类:焊条、焊丝、焊接、气体 5.偏析种类:显微偏析、区域偏析、层状偏析。 6.熔池结晶形态:平面结晶、胞状结晶、胞状树枝结晶、树枝状结晶、等轴结晶。 7.气孔类型:氢气孔、氮气孔、CO气孔。 8.焊缝的结晶裂纹主要发生在固相线附近温度范围,裂纹具有延原奥氏体晶界 断裂性质。低熔共晶形成的液态薄膜是产生结晶裂纹的内因,焊缝收缩产生的拉伸应力是产生结晶裂纹的必要条件。 9.焊接传热的基本形式有:热传导对流传热辐射传热。 10. 焊条药皮的主要作用是:机械保护冶金处理使焊条具有良好的工艺性能。 手弧焊时,焊接化学冶金过程分为下述区域:药皮反应区熔滴反应区熔池反应区。 11.在熔渣中FeO含量相同情况下,碱性渣时焊缝含氧量比酸性渣时高。分子理论的解释 是:碱性渣中SiO2、TiO2等酸性氧化物少,FeO的活度大,容易向焊缝扩散。

焊接常见缺陷

焊接缺陷及其成因常见的焊接外部缺陷有:尺寸不符合要求、咬边、焊瘤、弧坑及表面飞溅等。常见的焊缝内部缺陷有:夹渣及气孔等。产生焊缝缺陷的原因可用人、机、料、法、环五大因素查找。其中人是最活跃的因素。有些缺陷是焊工施焊时的习惯性动作所致,或与其尚未克服的瘤疾有关,这主要是电焊工的技术素质及责任心问题。从设备上看,我厂的电焊机均无电流表及电压表,调节手柄的数值只能作参考,因此要严格地执行焊接工艺要求是困难的。从材料上看,钢板无除锈除油工序,焊条夹头不除锈;工艺评定覆盖面不大,因我厂的材料代用较多,如可代Q2352A 钢的就有SM41B、SS41 、BCT3Cπ、RST37 等, 有时自焊, 有时互焊。虽然这些材料成分及性能相近,但是有些还存在较大差异,因此工艺参数应有相应的变化。施焊环境如空气的相对湿度、温度、风速等,都会影响焊接质量,然而有的电焊工却忽视了一点。产生焊接缺陷的原因很多,但只要严格执行焊接工艺就能够最大限度地避免这些缺陷。为了保证焊接质量,焊缝的检验是必不可少的,如焊缝的外观检查、射线探伤及机械性能试验。经验表明,前两者的合格与否都不是后者合格与否的必要条件,只是概率的大小而已。 2. 1 焊缝尺寸不符合要求 2. 1. 1 焊缝宽度过窄这主要是焊接电流较小、焊弧过长或焊速较快造成的。由于形成的金属熔池较小或保持时间较短,不利于钢水流动。我厂进口钢代替Q2352A 钢时常出现这一问题。这是由于进口钢一般比Q2352A 含合金元素要高些,熔点高,需要的熔化热也多。2. 1. 2 焊缝余高过高有时它与前一个问题同时出现。有的焊工片面地认为焊缝高点没关系,所以不习惯于0~1. 5mm 的焊缝余高,多数为上限或超高。但过高会产生应力集中,其主要原因是倒数第二层焊道接头过高,造成盖面层焊道局部超高,有时各层焊接参数不合适,各层累计超高。 2. 1. 3 角焊缝单边或下陷量过大角焊缝单边或下陷量过大造成单位面积上承力过大,使焊接强度降低。在我厂这是个老问题。其原因是坡口不规则、间隙不均匀、焊条与工件夹角不合适以及焊接参数与工艺要求不一致等。 2. 2 弧坑焊接弧坑多出现在列管式换热器管头焊缝或部分角焊缝,有部分弧坑在试水压时渗漏。产生弧坑的原因是熄弧时间过短或电流较大。 2. 3 咬边在我厂大多是局部深度超标的咬边,连续咬边超标的不多。咬边使焊接强度减弱,造成局部应力集中。其主要原因是电弧热量太高,如焊接电流过大,运条速度不当,焊条角度不当等,使电弧将焊缝边缘熔化后没有得到熔敷金属的补充所留下的缺口。 2. 4 焊瘤熔化金属流到加热不足的母材上形成了焊瘤,主要原因是焊接电流过大,焊接熔化过慢或焊条偏斜。 2. 5 严重飞溅比较严重的是那些无探伤要求的设备,直接原因是没按规定使用焊条。受潮或变质的焊条因水分或氧化物在焊接时分解产生大量气体,部分气体溶解在金属熔滴中,在电弧高温作用下,金属熔滴中的气体发生剧烈膨胀,使熔滴炸裂形成飞溅小滴散落在焊缝两侧。 2. 6 夹渣由于焊接电流过小或运条速度过快,金属熔池温度较低,液态金属和熔渣不易分开,或熔渣未来得及浮出,熔池已开始凝固,有时也存在清根不彻底问题。 2. 7 气孔产生气孔的原因很多,但在我厂产生气孔的主要原因是焊材及环境因素。钢板坡口两侧不做除锈处理,Fe3O4 除本身含氧外,还含有一定的结晶水,另外在空气相对湿度较大情况下也有微小的水珠,在熔池冶金过程中,非金属元素形成非金属氧化物,由于气体在金属中的溶解度随温度降低而减少,在结晶过程中部分气体来不及逸出,气泡残留在金属内形成了气孔。 3 克服焊接缺陷应采取的措施 (1) 增强有关人员的责任心,严格执行工作标准和焊接工艺要求。 (2) 经常进行技术培训,提高操作人员及有关人员的技术素质。 (3) 保证焊接设备及附件完好,为执行焊接工艺要求提供先决条件。 (4) 增大工艺评定覆盖面,保证工艺的

常见的焊接缺陷及危害(DOC)

常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态

可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,两侧线状夹渣 钢板对接焊缝X射线照相底片 V型坡口,钨极氩弧焊打底+手工电弧焊,夹钨 (5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。 焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性

焊接冶金学试题

(适用于材料成型与控制工程专业焊接模块) 一、概念或解释(每题2分共10分) 1、联生结晶: 2、熔合比: 3、焊条药皮重量系数: 4、金属焊接性: 5、电弧热焊: 二、选择填空(可以多个选择,每题1分,共15分) 1、焊接区内的气体主要来源于( ) 。 ①焊接材料②母材③焊条药皮 2、焊接时, 不与氮气发生作用的金属,即不能溶解氮又不形成氮化物的金属,可用N 作为保护气体, 这种金属是( ) 。 ①铜②铝③镍 3、焊接熔渣的作用有( ) ①机械保护作用②冶金处理作用③改善工艺性能 4、焊接熔池的结晶时, 熔池体积小,冷却速度大,焊缝中以( ) 为主。 ①柱状晶②等轴晶③平面晶

5、熔合区的化学不均匀性主要是体现于(

①凝固过渡层的形成 ②碳迁移过渡层的形成 ③合金分层现象 6、焊缝中的气孔和夹杂主要害处是 ( ) 。 ①焊缝有效截面下降 ②应力集中,疲劳强度下降 ③抗氧化性下降 气孔,使致 密性下降。 7、 打底焊道最易产生热裂纹 , 也最易产生冷裂纹 , 其主要原因是 ( ) 。 ①冷却速度快 ②应力集中 ③过热 8、 焊接结构钢用熔渣的成分是由 ( ) 等组成。 ①氧化物 ②氟化物 ③氯化物 ④硼酸盐 9、 焊接冷裂纹按产生原因可分为 ( ) 。 ①淬硬脆化裂纹 ②低塑性脆化裂纹 ③层状撕裂 ④应力腐蚀开裂 裂纹 10、 有利于改善焊缝抗热裂纹性能因素主要有 ( ) 。 ①细化晶粒 ②减少 S 、P ③结晶温度大 ④加入锰脱硫 11、 热扎、正火钢焊接时,过热区性能的变化取决于 ( ) 等因素。 ①高温停留时间 ②焊接线能量 ③钢材类型 ④冷裂倾向 12、 铸铁焊接时,影响半熔化区冷却速度的因素有: ( ) 。 ①焊接方法 ②预热温度 ③焊接热输入 ④铸件厚度 13、下列哪些钢种具有一定的热应变脆化倾向。 ( ①低碳钢 ②16Mn ③15 MnV 14、焊缝为铸铁型时,影响冷裂纹的因素有 ( ) 。 ①基体组织 ②石墨形状 ③焊补处刚度,体积及焊缝长短 ④深透性 ⑤延迟

焊接理论基础习题及答案

第一章焊接化学冶金 1、什么是焊接化学冶金?它的主要研究内容和学习的目的是什么? 答:焊接化学冶金指在熔焊过程中,焊接区内各种物质之间在高温下的相互作用反应。它主要研究各种焊接工艺条件下,冶金反应与焊缝金属成分、性能之间的关系及变化规律。研究目的在于运用这些规律合理地选择焊接材料,控制焊缝金属的成分和性能使之符合使用要求,设计创造新的焊接材料。 2、调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分? 答:调控焊缝化学成分的两种手段: 1)、对熔化金属进行冶金处理;2)、改变熔合比。 怎样影响焊缝化学成分: 1)、对熔化金属进行冶金处理,也就是说,通过调整焊接材料的成分和性能,控制冶金反应的发展,来获得预期要求的焊接成分; 2)、在焊缝金属中局部熔化的母材所占比例称为熔合比,改变熔合比可以改变焊缝金属的化学成分。 3、焊接区内气体的主要来源是什么?它们是怎样产生的? 答:焊接区内气体的主要来源是焊接材料,同时还有热源周围的空气,焊丝表面上和母材坡口附近的铁皮、铁锈、油污、油漆和吸附水等,在焊接时也会析出气体。 产生: ①、直接输送和侵入焊接区内的气体。 ②、有机物的分解和燃烧。 ③、碳酸盐和高价氧化物的分解。 ④、材料的蒸发。 ⑤、气体(包括简单气体和复杂气体)的分解。 4、氮对焊缝质量有哪些影响?控制焊缝含氮量的主要措施是什么? 答:氮对焊接质量的影响: a在碳钢焊缝中氮是有害的杂质,是促使焊缝产生气孔的主要原因之一。 b氮是提高低碳钢和低合金钢焊缝金属强度、降低塑性和韧性的元素。 c氮是促进焊缝金属时效脆化的元素。

控制焊缝含氮量的主要措施: a、控制氮的主要措施是加强保护,防止空气与金属作用; b、在药皮中加入造气剂(如碳酸盐、有机物等),形成气渣联合保护,可使 焊缝含氮量下降到0.02%以下; c、采用短弧焊(即减小电弧电压)、增大焊接电流、采用直流反接均可降低 焊缝含氮量; d、增加焊丝或药皮中的含碳量,可降低焊缝中的含氮量。 5、综合分析各种因素对手工电弧焊时焊缝含氢量的影响? 答:(1)焊接工艺参数对焊缝含氢量有一定的影响:手工电弧焊时,增大焊接电流使熔滴吸收的氢量增加;增大电弧电压使焊缝含氢量有某些减少。 电弧焊时,电流种类和极性对焊缝含氢量也有影响。 (2)制造焊条时,适当提高烘烤温度可以降低焊接材料的含水量,因而也就相应地降低了焊缝中的含氢量。 (3)焊件坡口附近表面上的铁锈、油污、吸附水等是增加焊缝含氢量的原因之一,焊前应仔细清除。 6、氧对焊接质量有哪些影响?应采用什么措施减少焊缝含氧量? 答:氧对焊接质量的影响:氧在焊缝中无论以何种形式存在,对焊缝的性能都有很大影响。随着含氧量的增加,焊缝强度、塑性、韧性都有明显下降,尤其是低温冲击韧度急剧下降。此外,它还一起热脆、冷脆和时效硬化。另外,氧烧损钢中的有益元素使焊缝性能变化。熔滴中含氧和碳多时,它们相互作用生成CO受热膨胀,使熔滴爆炸,造成飞溅,影响焊接过程的稳定性。 减少焊缝含氧量的措施: 1)纯化焊接材料,在焊接某些要求比较高的合金钢、合金和活性金属时,应尽量用不含氧或氧少的焊接材料。 2)控制焊接工艺参数,为了减少焊缝含氧量,应采用短弧焊。 3)脱氧:用控制焊接工艺参数的方法减少焊缝含氧量是受限制的,所以必须用冶金的方法进行脱氧,比如硅锰联合脱氧。 7、 CO保护焊焊接低合金钢时,应采用什么焊丝?为什么? 2 答:用普通焊丝(H08A)进行 CO保护焊时,由于碳的氧化在焊缝中产生气体, 2

焊接缺陷及产生的原因

常见的气焊焊接缺陷及产生的原因 字体: 小中大| 打印发布: 2009-04-29 12:00 作者: webmaster 来源: 本站原创查看: 58次 常见的气焊焊接缺陷可分为外部缺陷和内部缺陷两大类。外部缺陷位于焊缝的外表面,一般用肉眼或低倍放大镜即可以发现。常见的外部缺陷包括焊缝尺寸不符合要求、表面气孔、裂纹、咬边、未焊满、凹坑、烧穿和焊瘤等;内部缺陷位于焊缝内部,需用破坏性试验或无损探伤等方法才能发现,如内部气孔、裂纹、夹渣、未焊透、未熔合等。 一、焊缝尺寸不符合要求 焊缝的尺寸与设计上规定的尺寸不符,或者焊缝成型不良,出现高低、宽窄不一、焊波粗劣等现象。焊缝尺寸不符合要求,不仅影响焊缝的美观,还会影响焊缝金属与母材的结合,造成应力集中,影响焊件的安全使用。 焊缝尺寸不符合要求产生的原因主要有:接头边缘加工不整齐、坡口角度或装配间隙不均匀;焊接工艺参数不正确,如火焰能率过大或过小、焊丝和焊嘴的倾角配合不当、气焊焊接速度不均匀等;操作技术不当,如焊嘴或焊丝横向摆动不一致等。 防止焊缝高低、宽窄不一、焊波粗劣的措施有:正确调整火焰能率:将焊件接头边缘调整齐;气焊过程中焊嘴、焊丝的横向摆动要一致;焊接速度要均匀且不要向熔池内填充过多的焊丝。 二、未焊透 焊接时接头根部未完全熔透的现象称为未焊透,详见图7—1。 未焊透不仅降低了焊接接头的机械性能,而且在未焊透的缺口及末端处形成应力集中,进一步引起裂纹的产生。在重要的焊缝中,若发现有未焊透缺陷,必须铲除,重新补焊。 产生未焊透的原因较多,通常有焊接接头在气焊前未经清理干净,如存在氧化物、油污等;坡口角度过小、接头间隙太小或钝边过厚;焊嘴号码过小,火焰能率不够或焊接速度过快;焊件的散热速度过快,使得熔池存在的时间短,以致填充金属与母材之间不能充分地熔合。 防止未焊透采取的措施,除了选择合理的坡口型式和装配间隙外,应在焊前进行清理,消除坡口两侧的氧化物和油污;根据板厚正确选用相应的焊嘴和焊丝直径;在焊接时选择合理的火焰能率和焊接速度;尤其是对导热快、散热面积大的焊件,要进行焊前预热和在焊接过程中加热焊件。 三、未熔合 熔焊时,焊道与母材之间或焊道与焊道之间,未完全熔化结合的部分称为未熔 合,详见图7—2。

陶瓷衬垫焊接工艺流程【详解】

陶瓷衬垫焊接工艺 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 对接平焊、立焊、横焊和平角焊的坡口型式如下图。 【焊接规范】 CO2单面焊双面成型工艺的焊接规范是比较灵活的,它与焊工的技能和熟练程度有关。选择焊接规范时应注意焊接电流和电压的匹配,确保焊缝的良好成型。

熟练的焊工,能够使用较大电流的焊接规范,以提高劳动生产率。焊接电流最大不宜超过230A(焊丝直径ф1.2)。表4、表5所列焊接参数,可供参考选择。 【操作要领】

CO2单面焊是一种技术性很强的焊接方法。尽管影响焊缝双面成型的因素很多,如设备性能、气候、施工空间环境、网路电压、人员素质等,但更重要的是人员素质。焊工素质表现在认知面(理论水平)、技能技巧、熟练程度和工作态度等方面。因此,即便使用了合适的焊接规范参数,想要获得满意的焊缝质量,还必须掌握准确的操作方式和技术要领。 【燃弧点位置】 采用单面焊时,燃弧的位置十分重要,如图3所示。由于进行CO2单面焊时,电弧的电流密度较大,在熔池前端的母材上形成半圆孔,随着电弧的前进,熔化金属不断填满此半圆孔。操作时必须使燃弧点处于熔池中心,如果燃弧点太靠前,如图3中B点的位置,则会使铁水过早前淌,使熔宽减小,严重时导致两底边未熔合。若燃弧点太靠后,如图3中A点,使铁水前淌过缓,会增加熔宽,焊缝下垂过多,且容易使焊缝正面形成中间高、两边低的形式,这样在上面一层焊接时会导致两边夹渣。正常的打底焊成形应是焊缝反面增高适当,焊缝正面为中间低,两边成弧状过渡,如图4所示。

焊接冶金学(基本原理)

绪论 一、焊接过程的物理本质 1.焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。 物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合。 2.怎样才能实现焊接,应有什么外界条件? 从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。这样,就会阻碍金属表面的紧密接触。 为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施: 1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 二、焊接热源的种类及其特征 1)电弧热:利用气体介质放电过程所产生的热能作为焊接热源。 2)化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。3)电阻热:利用电流通过导体时产生的电阻热作为热源。 4)高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接。如高频焊管等。 5)摩擦热:由机械摩擦而产生的热能作为热源。 6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接。 7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。 8)激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。 三、熔焊加热特点及焊接接头的形成 (一)焊件上加热区的能量分布 热源把热能传给焊件是通过焊件上一定的作用面积进行的。对于电弧焊来讲,这个作用面积称为加热区,加热区又可分为加热斑点区和活性斑点区; 1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能; 2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。在该区内热量的分布是不均匀的,中心高,边缘低,如同立体高斯锥体. (二)焊接接头的形成: 熔焊时焊接接头的形成,一般都要经历加热、熔化、冶金反应、凝固结晶、固态相变,直至形成焊接接头。 (l)焊接热过程:熔焊时被焊金属在热源作用下发生局部受热和熔化,使整个焊接过程自始至终都是在焊接热过程中发生和发展的。它与冶金反应、凝固结晶和固态相变、焊接温度场和应力变形等均有密切的关系。

焊接的六大缺陷产生原因和预防措施大汇总

一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 防止咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。 C、凹坑 凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。

常见焊接缺陷产生原因及处理办法

以下是焊接缺陷方面的浅析 缺陷产生原因及防止措施 一、缺陷名称:气孔(Blow Hole) 焊接方式发生原因防止措施 手工电弧焊(1)焊条不良或潮湿。 (2)焊件有水分、油污或锈。 (3)焊接速度太快。 (4)电流太强。 (5)电弧长度不适合。 (6)焊件厚度大,金属冷却过速。 (1)选用适当的焊条并注意烘干。 (2)焊接前清洁被焊部份。 (3)降低焊接速度,使内部气体容易逸出。 (4)使用厂商建议适当电流。 (5)调整适当电弧长度。 (6)施行适当的预热工作。 CO2气体保 护焊(1)母材不洁。 (2)焊丝有锈或焊药潮湿。 (3)点焊不良,焊丝选择不当。 (4)干伸长度太长,CO2气体保护不周密。 (5)风速较大,无挡风装置。 (6)焊接速度太快,冷却快速。 (7)火花飞溅粘在喷嘴,造成气体乱流。 (8)气体纯度不良,含杂物多(特别含水分)。 (1)焊接前注意清洁被焊部位。 (2)选用适当的焊丝并注意保持干燥。 (3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊 丝尺寸要适当。 (4)减小干伸长度,调整适当气体流量。 (5)加装挡风设备。 (6)降低速度使内部气体逸出。 (7)注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以 延长喷嘴寿命。 (8)CO2纯度为99.98%以上,水分为0.005%以下。 埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂质。 (2)焊剂潮湿。 (3)焊剂受污染。 (4)焊接速度过快。 (5)焊剂高度不足。 (6)焊剂高度过大,使气体不易逸出(特别在焊剂 粒度细的情形)。 (7)焊丝生锈或沾有油污。 (8)极性不适当(特别在对接时受污染会产生气 孔)。 (1)焊缝需研磨或以火焰烧除,再以钢丝刷清除。 (2)约需300℃干燥 (3)注意焊剂的储存及焊接部位附近地区的清洁,以免 杂物混入。 (4)降低焊接速度。 (5)焊剂出口橡皮管口要调整高些。 (6)焊剂出口橡皮管要调整低些,在自动焊接情形适当 高度30-40mm。 (7)换用清洁焊丝。 (8)将直流正接(DC-)改为直流反接(DC+). 设备不良(1)减压表冷却,气体无法流出。 (2)喷嘴被火花飞溅物堵塞。 (3)焊丝有油、锈。 (1)气体调节器无附电热器时,要加装电热器,同时检 查表之流量。 (2)经常清除喷嘴飞溅物。并且涂以飞溅附着防止剂。 (3)焊丝贮存或安装焊丝时不可触及油类。 (2)焊丝突出长度过短。(2)依各种焊丝说明使用。

Q460低合金高强度钢的焊接工艺分析

Q460低合金高强度钢的焊接工艺分析 蔺云峰(山西焦煤霍煤电集团机电总厂,山西霍州,031412) 摘要:介绍了Q460低合金结构钢的主要成分、力学性能,给出了焊接Q460低合金高强度钢的焊接应选用的焊接材料和焊接设备,对焊接过程中存在的主要问题提出了解决的办法。关键词:Q460;焊接工艺;焊接性能 液压支架的作用是有效地支撑工作面的顶板,隔离采空区,防止矸石进入回采工作面和推进输送机。它与采煤机和输送机配套使用,实现采煤综合机械化。其使用寿命取决于本身结构的质量。由于支架结构件工作环境恶劣,使用过程中承受动、静载荷,存在应力腐蚀现象等。为了保证支架结构件在使用过程中动作可靠,支架尺寸稳定性的要求,以及预防焊接过程中产生冷裂纹、热裂纹及气孔现象,我公司液压支架结构件大多采用Q460低合金高强度钢。经过反复试验,我们完善了Q460低合金高强度钢的焊接工艺。 1.Q460低合金结构钢主要成分及力学性能 (1)Q460低合金高强度钢是在16Mn钢的基础上加入Cr,Ni,V,Ti等合金元素炼制而成。钒和钛的加入,能使钢材强度增高,同时又能细化晶粒,减少钢材的过热倾向。Q460低合金高强度结构钢的力学性能见表1,Q460低合金高强度结构钢的成分见表2。 (2)焊接性分析。低合金钢焊接具有热裂纹、冷裂纹、淬硬倾向及氢致裂纹敏感性强等主要特点。碳当量是判断焊接性最简便的方法之一。碳当量是指把钢中合金元素(包括碳的含量)按其作用换算成碳的相当含量。随着碳当量的增加,钢的塑性急剧下降,并且在高应力的作用下,产生焊接裂纹的倾向也大为增加,焊接时有明显的淬硬倾向。因此焊接时,需较小的热输入。同时,氢致裂纹是低合金结构钢焊接接头最危险的缺陷,所以需要采取适当预热,控制线能量等工艺措施。 表1 Q460低合金高强度结构钢的力学性能 牌号屈服强度σs/MPa 抗拉强度/MPa 伸长率δ5/% Q460 460 550~720 17 表2 Q460低合金高强度结构钢的成分(%) w(C)w(Si)w(Mn)w(S)w(P)5w(Cr)w(Ni)w(Ti)w(Nb) ≤0.2 ≤0.55 1.0~1.7 ≤0.035 ≤0.03 ≤0.7 ≤0.7 0.02~0.2 0.015~0.06 2.焊接材料及焊接设备的选用 (1)结合性能与使用性能是选用焊材的决定因素。对焊缝的力学性能要求,抗拉强度就是由结合性能与使用性能决定的。同时,考虑等强度的原则,选择H08MnMoA焊丝. (2)点焊时选用E5515碱性焊条,此焊条熔敷金属抗拉强度最小值为550MPa,适用于全位置焊接,药皮为低氢钠型。采用直流反接焊接。用此焊条,由于脱氧完全,合金过渡容易,能有效地降低焊缝中的氢、氧、硫;焊缝中的力学性能和抗裂性能均比酸性焊条好。焊接时采用短弧焊。 (3)焊接设备选用OTC500CO2气体保护焊机。采用CO2气体保护焊的焊接方法,其焊接效率高,没有熔渣,熔池可见度好,热量集中,焊接热影响区窄,焊接变形小,焊接接头含氢量低。焊接工艺参数见表4 焊接焊丝直径/焊丝伸出长度/焊接电流/电弧电压气体流量/ 层次mm mm A /V (L/min) 打底焊 1.2 20 90~110 18~20 10~15 填充焊 1.2 20 220~240 24~26 20

常见的焊接缺陷及处理办法

常见的焊接缺陷及处理办法 一、外部缺陷 一)、焊缝成型差 1、现象 焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。 2、原因分析 焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。 ⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。 ⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。 ⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。 4、治理措施 ⑴加强焊后自检和专检,发现问题及时处理; ⑵对于焊缝成型差的焊缝,进行打磨、补焊; ⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊; ⑷加强焊接验收标准的学习,严格按照标准施工。 二)、焊缝余高不合格 1、现象 管道焊口和板对接焊缝余高大于 3 ㎜;局部出现负余高;余高差过大;角焊缝高度不够或 焊角尺寸过大,余高差过大。 2、原因分析 焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数; ⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢; ⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀; ⑷注意保持正确的焊条(枪)角度。 4、治理措施 ⑴加强焊工操作技能培训,提高焊缝盖面水平; ⑵对焊缝进行必要的打磨和补焊; ⑶加强焊后检查,发现问题及时处理; ⑷技术员的交底中,对焊角角度要求做详细说明。 三)、焊缝宽窄差不合格 1、现象 焊缝边缘不匀直,焊缝宽窄差大于 3 ㎜。 2、原因分析 焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。

焊接缺陷及产生原因

焊接缺陷产生原因及防止措施 一、焊接缺陷定义 焊接接头的不完整性称为焊接缺陷,主要有焊接裂纹、未焊透、夹渣、气孔和焊缝外观缺陷等。这些缺陷减少焊缝截面积,降低承载能力,产生应力集中,引起裂纹;降低疲劳强度,易引起焊件破裂导致脆断。其中危害最大的是焊接裂纹和气孔。

二、焊接缺陷的分类 焊接生产中产生焊接缺陷的种类是多种多样的,按其在焊接接头中所处的位置和表现形式的不同,可以把焊接缺陷大致分为两类:一类是外部缺陷;另一类是内部缺陷。焊接缺陷的详细分类如图1所示。 图1 焊接缺陷分类图 焊接缺陷示意图如图2所示: (a)裂纹(b)焊瘤(c)焊穿 (d)弧坑(e)气孔(f)夹渣

(g )咬边 (h )未融合 (i )未焊透 图2 焊接缺陷示意图

三、影响焊接缺陷的因素 1. 材料因素 所谓材料因素是指被焊的母材和所使用的焊接材料,如焊丝、焊条、焊剂及保护气体等。这些材料在焊接时都直接参与熔池或熔合区的物理化学反应,其中,母材本身的材质对热影响区的性能起着决定性的作用,当然,所采用的焊接材料对焊缝金属的成分和性能也是关键因素。如果焊材与母材匹配不当,不仅可能引起焊接区内的裂纹、气孔等各种缺陷,也可能引起脆化、软化等性能变化。所以,为了保证得到良好的焊接接头,必须对材料因素予以重视。 2.工艺因素 同一种母材,在采用不同的焊接方法和工艺措施的条件下,其焊接质量会表现出很大的差别。 焊接方法对焊接质量的影响主要在两个方面:首先是焊接热源的特点,其可以直接改变焊接热循环的各项参数,如线能量、高温停留时间、冷却速度等;其次是对熔池和接头附近区域的保护方式,如渣保护、气保护等。焊接热过程和冶金过程必然对接头的质量和性能会有决定性的影响。 3.结构因素 焊接接头的结构设计影响其受力状态,其既可能影响焊接时是否发生缺陷,又可能影响焊后接头的力学性能。设计焊接结构时,应尽量使接头处于拘束度较小、能自由伸缩的状态,这样有利于防止焊接裂纹的产生。 4.使用条件 焊接结构必须符合使用条件的要求,如载荷的性质、工作温度的高低、工作介质有无腐蚀性等,其必然会影响到接头的使用性能。 例如,焊接接头在高温下承载,必须考虑到合金元素的扩散整个结构发生蠕变的问题;承受冲击载荷或在低温下使用时,要考虑到脆性断裂的可能性;接头如需在腐蚀介质中工作时,又要考虑应力腐蚀的问题……。 综上所述,影响焊接缺陷的因素是多方面的,如材料、工艺、结构和使用条件等,必须综合考虑上述因素的影响。

相关文档