文档库 最新最全的文档下载
当前位置:文档库 › 压敏电阻特性及选用

压敏电阻特性及选用

压敏电阻特性及选用
压敏电阻特性及选用

压敏电阻的原理、选型及设计实例分析压敏电阻的设计

与选型

2013/4/11 16:44:30

关键词:传感技术过电压压敏电阻器保护器

目前压敏电阻绝大多数为氧化锌压敏电阻,本文就不要以氧化锌压敏电阻来介绍原理、选型以及应用实例。

压敏电阻的原理

ZnO压敏电阻实际上是一种伏安特性呈非线性的敏感元件,在正常电压条件下,这相当于一只小电容器,而当电路出现过电压时,它的内阻急剧下降并迅速导通,其工作电流增加几个数量级,从而有效地保护了电路中的其它元器件不致过压而损坏。

它的伏安特性是对称的,如图(1)a 所示。这种元件是利用陶瓷工艺制成的,它的内部微观结构如图(1)b 所示。微观结构中包括氧化锌晶粒以及晶粒周围的晶界层。氧化锌晶粒的电阻率很低,而晶界层的电阻率却很高,相接触的两个晶粒之间形成了一个相当于齐纳二极管的势垒,这就是一压敏电阻单元,每个单元击穿电压大约为3.5V,如果将许多的这种单元加以串联和并联就构成了压敏电阻的基体。串联的单元越多,其击穿电压就超高,基片的横截面积越大,其通流容量也越大。压敏电阻在工作时,每个压敏电阻单元都在承受浪涌电能量,而不象齐纳二极管那样只是结区承受电功率,这就是压敏电阻为什么比齐纳二极管能承受大得多的电能量的原因。

图1 压敏电阻伏安特性

压敏电阻在电路中通常并接在被保护电器的输入端,如图(2)所示。

图2 压敏电阻在电路中通常并接在被保护电器的输入端

压敏电阻的Zv与电路总阻抗(包括浪涌源阻抗Zs)构成分压器,因此压敏电阻的限制电压为

V=VsZv/(Zs+Zv)。Zv的阻值可以从正常时的兆欧级降到几欧,甚至小于1Ω。由此可见Zv在瞬间流过很大的电流,过电压大部分降落在Zs上,而用电器的输入电压比较稳定,因而能起到的保护作用。图(3)所示特性曲线可以说明其保护原理。直线段是总阻抗Zs,曲线是压敏电阻的特性曲线,两者相交于点Q,即保护工作点,对应的限制电压为V,它是使用了压敏电阻后加在用电器上的工作电压。Vs为浪涌电压,它已超过了用电器的耐压值VL,加上压敏电阻后,用电器的工作电压V小于耐压值VL,从而有效地保护了用电器。不同的线路阻抗具有不同的保护特性,从保护效果来看,Zs越大,其保护效果就越好,若Zs=0,即电路阻抗为零,压敏电阻就不起保护作用了。图(4)所描述的曲线可以说明Zs与保护特性之间的关系。

图3 压敏电阻特性曲线

图4 Zs与保护特性之间的关系

压敏电阻的设计与选型

压敏电阻的选用原则:瞻前顾后,符合标准,折中考虑,实验为准。具体来说,瞻前需考虑到:系统电压正常波动范围的上限值,故障套件下的最高暂态电压及其持续时间;冲击源的冲击电压峰值和源阻抗(或冲击电流),冲击的时间宽度及频率等;顾后即考虑到:被保护对象的耐压水平;被保护对象允许的压敏电阻的固有电容和阻性漏电流。

瞻前顾后的基本要求为:在预期的冲击源的最大冲击电压下,压敏电阻的限制电压,应低于被保护对象的冲击耐压值;在系统电压正常波动范围的上限值和故障以及最高环境温度条件下,压敏电阻的预期工作寿命时间应大于设计要求值;压敏电阻的通流量,额定能量,功耗应大于冲击源预订的最大冲击电流,冲击能量和平均功耗,在规定条件下,压敏电阻的冲击寿命次数应大于寿命期内冲击源的冲击次数;在系统电压和冲击源发生超过预期值的异常情况时,压敏电阻不会起火,不会发生危及邻近元器件的爆裂,且没有导致点击的危险;压敏电阻的电容量和非线性电流对被保护对象或系统的影响,应在允许的范围内。

符合标准即符合相关的安规测试。折中考虑即在压敏电阻应用中,有些要求是互相矛盾的,因此要折中考虑,例如限制电压和电压寿命对压敏电压的要有时是矛盾的,保护的可靠度与保护的成本有时是矛盾的。

实验为准即在选定压敏电压后,还需在现场作用条件下或者尽可能的接近真实情况来模拟环境条件进行实验验证,在验证中需检测在正常工作条件下压敏电阻对被保护对象的影响程度是否在允许的范围,进行模拟冲击实验以检验过压保护性能是否满足设计要求。

一般地说,压敏电阻器常常与被保护器件或装置并联使用,在正常情况下,压敏电阻器两端的直流或交流电压应低于标称电压,即使在电源波动情况最坏时,也不应高于额定值中选择的最大连续工作电压,该最大连续工作电压值所对应的标称电压值即为选用值。

又如在AC220V线间使用(暂不考虑能量和耐量),设电源电压波动系数为0.8~1.3,在最坏情况下,压敏电阻器两端的电压可达220×1.3=286V,从额定值可以查出应选择的压敏电阻规格为471K。对于普通一次电源,如果输入电压范围Vin=85-264Vac,依照我司压敏电阻电压降额要求0.9,可知电压可达264/0.9=293Vac, 即至少选取300Vac(471K);

值得注意的是:第一,必须保证在电压波动最大的时候,连续工作电压也不允许超过最大允许值,否则将缩短了压敏电阻器的使用寿命;

第二,在电源线与大地使用压敏电阻时,有时由于接触不良而使线与地之间电压上升,所以通常采用比线与线间使用场合更高压敏电压的压敏电阻;

第三,压敏电阻的寿命特性有两项,一是连续工作电压寿命,即压敏电阻在规定环境温度和系统电压条件应能可靠地工作规定的时间(小时数)。二是冲击寿命,即能可靠地承受规定的冲击的次数;

第四,在应用中,压敏电阻器所吸收的浪涌电流要小于产品的最大通流量,以使产品有较长的工作寿命;

第五,压敏电阻介入系统后,除了起到"安全阀"的保护作用外,还会带入一些附加影响,这就是所谓"二次效应",它不应降低系统的正常工作性能。这时要考虑的因素主要有三项,一是压敏电阻本身的电容量(几十到几万PF),二是在系统电压下的漏电流,三是压敏电阻的非线性电流通过源阻抗的耦合对其他电路的影响。

对于过压保护方面的应用,压敏电压值应大于实际电路的电压值,一般应使用下式进行选择:

V1.0mA=av/bc

式中:a为电路电压波动系数,一般取1.2;v为电路直流工作电压(交流时为有效值);b为压敏电压误差,一般取0.85;c为元件的老化系数,一般取0.9;这样计算得到的V1.0mA实际数值是直流工作电压的1.5倍,在交流状态下还要考虑峰值,因此计算结果应扩大1.414倍。

另外,选用时还必须注意:必须保证在电压波动最大时,连续工作电压也不会超过最大允许值,否则将缩短压敏电阻的使用寿命;在电源线与大地间使用压敏电阻时,有时由于接地不良而使线与地之间电压上升,所以通常采用比线与线间使用场合更高标称电压的压敏电阻器;压敏电阻所吸收的浪涌电流应小于产品的最大通流量。

设计,选型,替代注意:设计选型时选取合适压敏电压,使用电压,通流量的压敏电阻,并需考虑到降额要求,目前我司的压敏电阻最大工作电压降额要求为90%.

压敏电阻的失效模式

压敏电阻的失效模式有三种方式:

第一种劣化,表现在漏电流增大,压敏电压显著下降,直至为零。

第二种炸裂,若过电压引起的浪涌能量太大,超过了选的压敏电阻器极限的承受能力,则压敏电阻器在抑制过电压时将会发生陶瓷炸裂现象。

第三种穿孔,若过电压峰值特别高,导致压敏电阻器的失效模式绝大部分表现为劣化各穿孔(短路),解决的办法为在使用压敏电阻器时,与之串联一个合适的断路器或者保险丝,避免短路引起事故。

总结来说,压敏电阻在吸收突波时,发生崩溃电压降低时,将使其工作电流过大直至烧毁;发生爆裂(封装层裂开,引线与陶瓷体分离)时,将断路,从而使保护失效;发生此片短路时将使其烧毁。当压敏电阻的使用环境或者湿度过高时,将使其劣化(崩溃电压降低),从而使其工作电流过大直至烧毁或短路。当压敏电阻的使用电压超过额定工作电压时,将使其劣化(崩溃电压降低),从而使其工作电流过大直至烧毁或短路。

对于压敏电阻起火燃烧的失效现象,大体上可分为老化失效和暂态过电压破坏两种类型。

①老化失效,这是指电阻体的低阻线性化逐步加剧,漏电流恶性增加且集中流入薄弱点,薄弱点材料融化,形1k左右的短路孔后,电源继续推动一个较大的电流灌入短路点,形成高热而起火。这种事故通常可以通过一个与压敏电阻串联的热熔接点来避免。热熔接点应与电阻体有良好的热耦合,当最大冲击电流流过时不会断开,但当温度超过电阻体上限工作温度时即断开。研究结果表明,若压敏电阻存在着制造缺陷,易发生早期失效,强度不大的电冲击的多次作用,也会加速老化过程,使老化失效提早出现。

②暂态过电压破坏,这是指较强的暂态过电压使电阻体穿孔,导致更大的电流而高热起火。整个过程在较短时间内发生,以至电阻体上设置的热熔接点来不及熔断。在三相电源保护中,N-PE线之间的压敏电阻器烧坏起火的事故概率较高,多数是属于这一种情况。相应的对策集中在压敏电阻损坏后不起火。一些压敏电阻的应用技术资料中,推荐与压敏电阻串联电流熔丝(保险丝)进行保护。

压敏电阻应用实例分析

电源系统的过电压防护依据线路绝缘结构理论及IEC61312、IEC664-1、IEC61643、GB50097-1994(2000年版)等标准,对建筑物和电气设备(如第三类防雷建筑物)进行感应过电压防护的绝缘结构,如图5所示。

图5 电源系统的过压防护

从图1可以看出,在220V/380V线路中的每一区域,都应该在其前面并联氧化锌压敏电阻器或过电压保护器,雷电感应过电压能量将通过逐级的防雷器件吸收和释放到大地中,达到保护线路和设备免受雷电破坏的目的;虽然应用于Ⅳ、Ⅲ区域的过电压保护器具有自身劣化断开电源的功能,但考虑到不同的接地状况,还应与过电压保护器串联合适的熔断器或空气开关。

信号线的过电压防护

随着信息技术的高速发展,通信网络、数据网络和计算机网络系统中的重要设备更易被雷电感应过电压破坏,因此数据信号线路的过电压防护迫在眉睫,随之产生了由线路结构决定的计算机串口、数据线和同轴电缆专用的过电压保护器。这些防护元件一般由三极放电管与快速嵌位二极管相结合的两级保护组成,额定脉冲电流大于5kA(8μs/20μs),响应时间小于1ns,具有很低的工作电压、很高的使用频率和传速频率、很低的插入损耗。

压敏电阻的型号及参数选用

压敏电阻的型号及参数选用 SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。 例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) >M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用 31——序号 1-1——序号

270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。(2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量 涠疃ㄈ萘渴保 姑舻缱杌嵋蚬 榷 鸹担 饕 硐治 搪贰⒖ 贰?br /> MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况) 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3× UC U1mA ---- 压敏电压 UC ---- 电路直流工作电压(交流时为有效值) K1 ---- 电源电压波动系数,一般取1.2 K2 ---- 压敏电压误差,一般取0.85 K3 ---- 老化系数,一般取0.9 交流状态下,应将有效值变为峰值,即扩大√2倍,实际应用中可参考此公式通过实验来确定压敏电压值。 2、通流量 实际应用中,压敏电阻器所吸收的浪涌电流应小于压敏电阻的最大峰值电流,以延长产品的使用寿命。

稳压管,TVS管,压敏电阻,FUSE的作用和原理

稳压管、TVS管、压敏电阻、FUSE 稳压管: 1、浪涌保护电路:稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜.图中的稳压二极管D是作为过压保护器件.只要电源电压VS超过二极管的稳压值D就导通,使继电器J吸合负载RL就与电源分开. 2、电视机里的过压保护电路:EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态. 3、电弧抑制电路:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了.这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它. 4、串联型稳压电路:在此电路中,串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发射极就输出恒定的12V电压了.这个电路在很多场合下都有应用 瞬态电压抑制二极管(TVS管) 瞬态电压抑制二极管(TVS管)常称为防雷管,是一种安全保护器件。这种器件在电路系统中起到分流、箝位作用,可以有效降低由于雷电、电路中开关通断时产生的高压脉冲,避免雷电、高压脉冲损坏其它器件。其工作原理是交流到直流震荡产生直流波,用TVS去掉尖峰,直接并接在次级被保护的设备之前。TVS是普遍使用的一种新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力。当它的两端经受瞬间的高能量冲击时,TVS能以极高的速度把两端间的阻抗值由高阻抗变为低阻抗,以吸收一个瞬间大电流,从而把它的两端电压箝制在一个预定的数值上,从而保护后面的电路元件不受瞬态高压尖峰脉冲的冲击。正因为如此,TVS可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。 TVS管有单向、双向两种。单向的图形符号与稳压管相似,TVS器件按极性可分为单极性和双极性两种;按用途可分为通用型和专用型;按封装和内部结构可分为轴向引线二极管、双列直插TVS阵列、贴片式和大功率模块等[1]。轴向引线的产品峰值功率可达400 W、500 W、600W、1500W和5 000W。其中大功率的产品主要用在电源馈线上,低功率产品主要用在高密度安装场合。对于高密度安装的场合,也可以选择双列直插和表面贴装等封装形式。 应用电路。当输入端有高压浪涌脉冲引入时,不论脉冲方向如何,TVS管能快速进入击穿状态,对输入电压进行箝位。在电源端用TVS比较好。电源主要保护有两种: AC/DC电源输入防雷过压保护: AC/DC电源输入过压保护: 常用的电能有二种AC,DC.国内电网供电通常为AC220/AC380V,但是由于电网通常不稳定,所以要在选型的时候考虑相应的浮动电压。当用于低压电源(通常属于次级保护)我们可以选用TVS。 常用的双向TVS管参数: 截止电压(V)击穿电压(Vmin)击穿电压(Vmax)测试电流(mA)最大箝位电压(V)最高脉冲电流(A)反向漏电流(uA) 在选用TVS时,应考虑以下几个主要因素: (1)若TVS有可能承受来自两个方向的尖峰脉冲电压(浪涌电压)冲击时,应当选用双极性的,否则可选用单极性。 (2)所选用TVS的Vc值应低于被保护元件的最高电压。Vc是二极管在截止状态的电压,也就是在ESD冲击状态时通过TVS的电压,它不能大于被保护回路的可承受极限电压,否则器件面临被损坏的危险。(3)TVS在正常工作状态下不要处于击穿状态,最好处于VR以下,应综合考虑VR和VC两方面的要求来

MOV(压敏电阻)选型和计算

压敏电阻器基础知识培训手册 (第一版) 孙丹峰编著 苏州中普电子有限公司 二〇〇五年三月

第一章通用型氧化锌压敏电阻器 1.1 什么是“压敏电阻器” “压敏电阻器”是中国大陆通用的名词,在中国台湾地区,它被称为“突波吸收器”;在日本,它被称为“變阻器”;国际电工委员会(IEC)在其标准中称之为“voltage dependent resistor”(简称VDR);而在业界和学术界最广泛使用的名词则是“varistor”(即由variable 和resistor两个英文单词组成的组合词)。从字面上理解,这些名词的含义为“电阻值随着外加电压敏感变化的电阻器”。 那么压敏电阻器的电阻值是如何随着外加电压变化敏感的呢?图1-1-1和表1-1-1可以给我们一个比较直观的说明。从中我们可以看到,型号为20D201K的压敏电阻器随着外加电压从180V上升到420V,其电阻值从18 MΩ下降为0.42Ω,在这个过程里,电压仅上升了2.33倍,而电阻值下降了4280多万倍。由此可见压敏电阻器的电阻值对外加电压的变化是非常“敏感”的。 表1-1-1 20D201K压敏电阻器的电阻值随外加电压的变化 压敏电阻的确切定义可从材料、特性和用途三个方面综合得出。从材料组成上看,压敏电阻是由电子级粉体材料-氧化锌、氧化铋、氧化锑、氧化钛、氧化钴、氧化锰、氧化镍、氧化铬等多种氧化物合成的,其中,氧化锌的含量最高(约90%),是主基料;其他各种过渡金属氧化物的含量相差很大,较多的占百分之几,较小的仅有十万分之几,被称为添加剂;压敏电阻就是由主基料和添加剂按照配方一一称好后,经球磨、喷雾造粒、干压成型、排胶、烧结、表面金属化、插片、包封、打标等一系列标准的精细电子陶瓷和通用元件工艺制造而成的。 从特性或功能上看,压敏电阻器是一种电阻值随着外加电压敏感变化的电阻器,因此它的主要用途是:异常过电压的感知、抑制和浪涌能量的吸收。 综上所述,我们可以给压敏电阻下这样一个定义: 压敏电阻是由在电子级ZnO粉末基料中掺入少量的电子级Bi2O3、Co2O3、MnO2、Sb2O3、TiO2、Cr2O3、Ni2O3 等多种添加剂,经混合、成型、烧结等工艺过程制成的精细电子陶瓷;它具有电阻值对外加电压敏感变化的特性,主要用于感知、限制电路中可能出现的各种瞬态

电子工程师必备基础知识手册(一):电阻教学教材

电子工程师必备基础知识手册(一):电阻

导电体对电流的阻碍作用称着电阻,用符号R 表示,单位为欧姆、千欧、兆欧,分别用Ω、kΩ、MΩ 表示。 一、电阻的型号命名方法: 国产电阻器的型号由四部分组成(不适用敏感电阻) 第一部分:主称,用字母表示,表示产品的名字。如R 表示电阻,W 表示电位器。 第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。 第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频、4-高阻、5-高温、6- 精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。 第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等。例如:R T 1 1 型普通碳膜电阻a1} 二、电阻器的分类

1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。 2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。 3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。 4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。 三、主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。 允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa 及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。

压敏电阻的选用原则

压敏电阻的选用原则 压敏电阻的选用可用16个字来概括:瞻前顾后,符合标准,折衷考虑,试验为准。 (1)瞻前顾后: 前面已经提及,压敏电阻是一个保护系统的中间环节,它的上游是冲击源和系统电压源,它的下游是保护对象,所以压敏电阻必须同时满足上下游两个方面对它的要求。 “瞻前”就是要确定: a.系统电压正常波动范围的上限值,故障条件下最高暂态电压及其持续时间。 b.冲击源的冲击电压峰值和源阻抗(或冲击电源),冲击波的时间宽度,冲击出现的频度。“顾后”就是要确定: a.被保护对象的耐压水平。 b.被保护对象允许的压敏电阻的固有电容和阻性漏电流。 “瞻前顾后”的基本要求是: ①在预期的冲击源的最大冲击电压(电流)下,压敏电阻的限制电压,应低于被保护对象的冲击耐压值。 ②在系统电压正常波动范围的上限值,和故障时,以及最高工作环境温度条件下,压敏电阻的预期工作寿命时间,应大于设计要求值。 ③压敏电阻的通流能量,额定能量,额定功耗,应大于冲击源预定的最大冲击电流,最大冲击能量,和最大平均功耗。在规定条件下,压敏电阻的冲击寿命次数,应大于寿命期内冲击源的冲击次数。 ④在系统电压和冲击源发生超过预期值的异常情况时,压敏电阻不会起火,不会发生危及邻近元器件的爆裂,且没有导致电机的危险。 ⑤压敏电阻的电容量和非线性电流对被保护对象或系统的影响,应在允许的范围内。 (2)符合标准: 使用压敏电阻的电路,装置或设备(下面简称“终端产品”)是各式各样的,这些终端产品的技术规范中,大多有防雷,防过电压保护的要求,压敏电阻器可根具这些技术标准的要求来选用。下面列举几个这样的技术标准: 美国安全标准UL1449。 这个标准,把压敏电阻分为两种应用类别:“软线接入/直接扦入式”(CC/DPI)和“固定连接式”(PC)。 所有通过一根电源软线接入交流电源的压敏电阻称为“CC”方式。 安装在扦头上,通过扦头直接接入点源的压敏电阻,称为“DPI”方式。 固定安装配电板或墙内扦座内的压敏电阻,称为“PC”方式。 UL1449规定用1.2/50-80/20组合波来测试压敏电阻的通流量,试验时的短路电流对CC/DPI 方式为3kA,对PC方式为10kA,因此前者只能选用直径不小于10mm,后者只能选用直径不小于20mm的压敏电阻器。 美国安全标准UL1414,加拿大安全标准CAN/CSA-60065-00 这些标准规定了跨接在电源线上的压敏电阻器的试验要求,这里列出其中两个项目: a.放电试验,即由充电到5000V的电容量为0.5μf的电容量对压敏电阻放电4次,相邻两次放电的时间间隔为5S,这就是说压敏电阻应能承受6.25J的能量。 b.热应力试验,试验电压为系统额定电压的2倍。这样220V 50HZ交流系统中的压敏电阻器,最好用UN≥680V的规格。 低压交流电源用电涌保护器中的压敏电阻器应符合IEC61643-1标准的要求。 信号系统用电涌保护器的压敏电阻器应符合IEC61643-21标准的要求。

气体放电管和压敏电阻组合构成的抑制电路原理

气体放电管和压敏电阻组合构成的抑制电路原理 上传者:dolphin 由于压敏电阻(VDR)具有较大的寄生电容,用在交流电源系统,会产生可观的泄漏电流,性能较差的压敏电阻使用一段时间后,因泄漏电流变大可能会发热自爆。为解决这一问题在压敏电阻之间串入气体放电管。图1 中,将压敏电阻与气体放电管串联,由于气体放电管寄生电容很小,可使串联支路的总电容减至几个pF。在这个支路中,气体放电管将起一个开关作用,没有暂态电压时,它能将压敏电阻与系统隔开,使压敏电阻几乎无泄漏电流。但这又带来了缺点就是反应时间为各器件的反应时间之和。例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图2 的R2、G、R3 的反应时间为150ns,为改善反应时间加入R1 压敏电阻,这样可使反应时间为25ns。 金属氧化物压敏电阻(MOV)的电压-电流特性见图3,金属氧化物压敏电阻(MOV)特性参数见表1。气体放电管(GDT)的电压-电流特性见图4,气体放电管(GDT)特性参数见表2。

金属氧化物压敏电阻(MOV)特性参数 由于浪涌干扰所致,一旦加在气体放电管两端的电压超过火花放电电压(图4 的u1)时,放电管内部气体被电离,放电管开始放电。放电管端的压降迅速下降至辉光放电电压(图4 的u2)(u2 在表2 中的数值为140V 或180V,与管子本身的特性有关),管内电流开始升高。随着放电电流的进一步增大,放电管便进入弧光放电状态。在这种状态下,管子两端电压(弧光电压)跌得很低(图4的u3)(u3 在表2 中数值为15V 或20V,与管子本身的特性有关),且弧光电压在相当宽的电流变动范围(从图4 的i1→i2 过程中)内保持稳定。因此,外界的高电压浪涌干扰,由于气体放电管的放电作用,被化解成了低电压和大电流的受保护情况(u3 和i2),且这个电流(从图4 的i2→i3)经由气体放电管本身流回到干扰源里,免除了干扰对灯具可能带来的危害。随着浪涌过电压的消退,流过气体放电管的电流降到维持弧光放电状态所需的最小值以下(约为10mA~100mA,与管子本身的特性关),弧光放电便停止,并再次通过辉光放电状态后,结束整个放电状态(熄弧)。

压敏电阻型号及选用

压敏电阻的型号及选用方法 SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。 例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用 31——序号 1-1——序号

270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数: 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。 (2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量超过其额定容量时,压敏电阻会因过热而损坏,主要表现为短路、开路。 MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况): 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3×UC U1mA ---- 压敏电压 UC ---- 电路直流工作电压(交流时为有效值) K1 ---- 电源电压波动系数,一般取1.2 K2 ---- 压敏电压误差,一般取0.85 K3 ---- 老化系数,一般取0.9 交流状态下,应将有效值变为峰值,即扩大√2倍,实际应用中可参考此公式通过实验来确定压敏电压值。 2、通流量 实际应用中,压敏电阻器所吸收的浪涌电流应小于压敏电阻的最大峰值电流,以延长产品的使用寿命。 压敏电阻的检测。用指针式万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。若所测电阻很小,说明压敏电阻已损坏,不能使用。 压敏电阻的先择与使用2007-03-12 10:42:18

热敏电阻在电源电路中的作用

本文以问答的形式介绍了NTC PTC热敏电阻在电源电路中的作用。 问题1: NTC电阻串联在交流电路中主要是起什么作用!它是怎样工作!请大侠指点!谢谢! 问题2: 压敏电阻并联在交流侧电路中主要是起什么作用!它是怎样工作!如果 没有以上两个元器件!会造成什么影响!谢谢!! NTC电阻串联在交流电路中主要是起“电流保险”作用. 压敏电阻并联在交流侧电路中主要是起“限制电压超高”作用. 为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施。 压敏电阻的工作原理:比如一个“标称300V”的压敏电阻在220V的工作中,突然220V上升到310V!这时压敏电阻被击穿,通过很大的电流,熔断了保险丝后,就保护了后面的电路,然后压敏电阻又恢复了原来的状态. 我的故事讲完了. 老人家:按照你说的意思是压敏电阻设计时最好是放在保险管后面咯,那样压敏电阻导通时不会对电网有什么危害吗而保险管一般都是慢断的! 是NTC没错. 没通电时,NTC的阻值高,一通电霎那,阻值仍高,限制了涌流,随着NTC有电流流过,温度增加,阻值下降到很低,可以忽略. 明白了,但是这样的话,正常工作时,电流小,阻值就小,那么突然来一个浪涌电流,或者电路那段路使得电流增大,那就起不了保护作用了吧,也就是说只能拿来防通电时的浪涌了吗 正常工作后基本就没有浪涌电流了吧只有浪涌电压.如果真有浪涌电流,例如电源短路了,由于NTC已经导通了,对它也无能为力,只有靠保险丝起作用.记住NTC 只是起开机保护的就可以了. 试想若电路已经正常上电,NTC已低阻,这时遭遇高压NTC是无能为力的 说的不错,在电源正常工作一段时间后,再进行频繁开关机,会对电源造成伤害的,因为这时由于NTC的温度上升,阻值下降,对浪涌的抑制能力已经及其有限了 说的对,采用NTC抑制开机浪涌的电源设备,不能够频繁的开关机.需要等NTC冷却,恢复至其冷态阻值后,才能再次开机.要不,安装NTC的意义就没有了.

压敏电阻选型指南

第一步1:确定电路的工作参数。 (尽可能将下列信息填写完全)。 1-a. 瞬变电流的来源和路径 ________ 来源________路径 1-b.受保护设备的正常工作电压 ________ (V AC),或________ (V)RMS DC 1-c. 正常工作电压公差(1-b) ________ (V)或________未知 1-d.受保护设备的最大允许电压 ________ (V AC)或________ (V)RMS DC 1-e. 最大允许浪涌电流及冲击次数 (请说明浪涌电流的8x20μs波形等效) ________ (A)________(冲击数量) 1-f. 浪涌发生时设备可经受的最大电能 ________ (焦)(E=1.4xVxIxT) 1-g. 浪涌发生时设备可经受的最大功率 ________ (W)(P=VxI) 1-h.压敏电阻最大允许电容(@1kHz;偏压0V DC)(不影响电路功能的压敏电阻设备最大允许电容)________ (pF) 1-i. 所需安全标准 (所需标准名称,如UL、CSA、VDE等等) 第2步:计算电压值。 2-a.所需压敏电阻电压值应等于:

受保护设备或器件的工作电压* + 工作电压公差。 如公差未知,则将受保护设备或器件的工作电压乘以 1.10到1.25(即将工作电压增加10—25% )。 如果工作电压是直流电压(V RMS),请转换为交流电压(V DC)。 ____ 交流工作电压(V)x 1.414 =______________________ 直流工作电压(V)RMS DC ________设备或器件的工作电压(V DC) + _________公差(V)=_____________________ 要求的压敏电阻电压(V) - 或者,- ____设备或器件的工作电压(V DC) x (1.10到1.25)= _____________ 要求的压敏电阻电压(V) 第3步:选择压敏电阻的准则 如果对下列任一问题的回答是“否”,请转至列表底部的矫正操作注释(A-F): 3-a.压敏电阻电压值—压敏电阻电压公差≥ 要求的压敏电阻电压值(2-a)______是______否(A) 3-b.压敏电阻最大箝位电压值:受保护设备或器件的最大允许电压(1-d)(最大电流应小于或等于测得最大箝位电压时的电流)。 ______是______否 (B)

压敏电阻器(VSR)结构原理、应用知识

压敏电阻器(VSR)结构原理、应用知识 压敏电阻器是一种具有瞬态电压抑制功能的元件,一般用于电路浪涌和瞬变防护电路。可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合。压敏电阻器可以对集成电路等重要元件以及其它电路和设备进行保护,防止因静电放电、浪涌及其它瞬态电流(如雷击等)而造成对它们的损坏。使用时只需将压敏电阻器并接于被保护的电路上,当电压瞬间高于某一数值时,压敏电阻器阻值迅速下降,导通大电流,阻止瞬间过压而起到保护元器件或电路的作用;当电压低于压敏电阻器工作电压值时,压敏电阻器阻值极高,近乎开路,因而不会影响器件或电器设备的正常工作。 压敏电阻器(VSR)是电压灵敏电阻器的简称,它是一种新型过压保护元件。压敏电阻器是以氧化锌为主要材料而制成的金属-氧化物-半导体陶瓷元件,构成压敏电阻的核心材料为氧化锌,氧化锌又包括氧化锌晶粒和晶粒周围的晶界层,氧化锌晶粒的电阻率很低,而晶界层电阻率很高,相接触的两个晶粒之间形成一个相当于齐纳二极管的势垒,成为一个压敏电阻单元,许多单元通过串联,并联组成压敏电阻器基体。压敏电阻器在工作时,每个压敏电阻单元都承担浪涌能量,而这些压敏电阻单元是大体上均匀分布在整个电阻体内的,也就是整个电阻体都承担能量,而不像齐纳二极稳压管那样只是结区承担电功率,这就是陶瓷压敏电阻器具有比齐纳二极稳压管大得很多的通流和能量定额的原因。其电阻值随端电压而变化。 压敏电阻器的主要特点是工作电压范围宽(6—3000伏,分若干档),对过压脉冲响应快(几至几十纳秒),耐冲击电流的能力强(可达100安培-20千安培),漏电流小(低于几至几十微安),电阻温度系数小,性优价廉,体积小,是一种理想的保护元件。由它可构成过压保护电路,消噪电路,消火花电路,吸收回路。压敏电阻的电路符号,外形和内部结构见图1。 压敏电阻的结构就象两个特性一致的背靠背联接的稳压管,其性质基本相同。压敏电阻的主要特性是,当两端所加电压在标称额定值以内时,它的电阻值几乎为无穷大,处于高阻状态,其漏电流<50微安,当它两端的电压稍微超过额定电压时,其电阻值急剧下降,立即处于导通状态,工作电流增加几个数量级,反应时间仅在毫微秒级。压敏电阻在国外俗称“斩波器”和”限幅器”,这是从它的实际作用而得名的。

压敏电阻型号及选用方法

2019-01-18压敏电阻的型号及选用方法 根据标准SJ1152-82《敏感元件型号命名方法》的规定,敏感电阻器的产品型号由下列四部分组成: 第一部分:主称(用字母表示); 第二部分:类别(用字母表示); 第三部分:用途或特征(用字母或数字表示); 第四部分:序号(用数字表示)。 (1)主称、类别部分的符号及意义如表1-5所示。 (2)用途或特征部分用数字表示时,应符合表1-6的规定;用字母表示时,应符合的规定。 (3)序号部分用数字表示。 表1-5 敏感电阻器型号中主称、类别部分的符号所表示的意义 表1-6敏感电阻器型号中用途或特征部分的数字所表示的意义 表1-7 敏感电阻器型号中用途或特征部分的数字所表示的意义

SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。

例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用 31——序号 1-1——序号 270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数: 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。 (2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量超过其额定容量时,压敏电阻会因过热而损坏,主要表现为短路、开路。 MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况): 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3×UC U1mA ---- 压敏电压

浪涌吸收元器件压敏电阻器电参数的选型

浪涌吸收元器件压敏电阻器电参数的选型 首先是标称电压的选择,压敏电压值选得过高,意味着增大了保护电路的动作电压,同 时压敏电压值越高,相对的残压会增高,则压敏电阻对电子镇流器可能起不到保护作用。如果压敏电压值选的太低,频繁的过电压冲击,会使压敏电阻器的性能有所下降,漏电流增大,当压敏电压低于电源电压的峰值时,造成压敏电阻器的劣化失效,不仅会影响电子镇流器的正常工作,甚至可能烧毁压敏电阻器本身。 一般情况下,为了保证线路的正常工作,同时又为了保证压敏电阻器在保护线路的同时,自己不受损害,压敏电压值的选择应确定在一定的范围内。通常情况下,在保护电路中,压敏电压的最小值确定应满足公式(1) 的要求。另外,压敏电压的最大值还应根据 保护线路的耐压水平满足公式(2) 的要求: V1 ≈2. 2Vac 或V1≈2. 0Vdc (1) 式中:V1 ———表示1mA 直流电流下的压敏电压值; Vac ———表示交流电压的有效值; Vp - p ———表示交流电压的峰- 峰值; Vdc ———表示直流电压值。 V1 ≤0. 9Vz/ Kp (2) 式中:Vz ———表示被保护设备(或元器件) 的脉冲绝缘耐压值;Kp ———限制 电压比,是一个与材料有关的常 数。

例如:某电子镇流器的交流电压为220Vac ,那么,压敏电阻器的最小电压值应为V1 = 115 × 2 ×220V = 467 V。按照IEC 的有关规定, 电子设备的防护等级为D 级防护, 其绝缘耐压值一般规定为115kV。实际上,对于具体的电子镇流器产品而言, 如果整流电路的脉冲耐电压为1 000 V~1 200 V ,普通0~10 KA 通流容量的压敏电阻,若Kp 值为117~118 ,通过计算,压敏电阻的最大压敏值应为V1 ≤019Vz/ K≈019 ×1200/ 117≈643 V。因此,对于供电电压相对稳定的220Vac 电源系统的电子镇流器产品,一般选用MYG3/ 300 (压敏电压为470 V) 型的压敏电阻器。对于电源电压为120Vac 的电子镇流器, 通常选用MYG3/ 150 (压敏电压为250 V) 型的压敏电阻器。当然,在电路设计已经确定的条件下,也可通过大量的试验确定实际电路的保护水平,选择更加合适的压敏电阻器。 通流量的确定 在选择压敏电阻器时,要充分考虑电子镇流器的实际工作环境因素,满足线路的安全防护要求。表1 为部分不同型号的压敏电阻器在不同浪涌电流峰值下的残压试验情况,从表中可以看出,选择的压敏电压值越高,残压越高(相同峰值电流情况下) ,同 一型号的压敏电阻器经受的峰值电流越大,残压也会有所加大。另外,表2 为一组Ф7、Ф10 或Ф14 等不同片径的压敏电阻器通流试验情况,从表中可以看出,对于不同片径的压敏电阻器,其所能承受的浪涌电流也不一样。通常,对于使用同一配方制作的压敏电阻器,片径越大,压敏电阻器能承受的最大峰值电流也就越大,相应的残压也会有所增加,但其增加的程度远远低于通流的增加幅度。因此,选型时, 应根据线路的耐压水平,外界可能产生的电涌电压,尽可能选择通流比较大的压敏电阻器,以保证线路长期持续的正常工作。

压敏电阻的响应时间

压敏电阻的响应时间 ZnO压敏电阻这种半导体材料,在电场下的导电过程,基本上是电子过程,因此,它对测量电压/电流的响应是很快的。美国GE公司的测量结果表明,ZnO压敏电阻抑制冲击过电压的时间小于1ns。按过冲定义计算的响应时间,对于 ZnO-Bi2O3配方系统,大体在(20~25)nS。但这种材料内部,还有一定程度的离子电导,这使得电阻体从一种电阻状态到另一种电阻状态的稳定时间,需要几时毫秒到10秒钟左右的时间。这就是说ZnO压敏电阻从"截止"到"导通",或从"导通"到"截止",不是瞬时完成的,它需要一段稳定时间。下述这些现象就是这一特性的表现。 压敏电阻冲击电流减额特性 通流量指标给定了压敏电阻能承受的8/20电流波冲击一次和二次的最大电流值。当电流波的时间宽度τ增大时,或冲击次数n增多试,允许的电流峰值Ip应随之减小。曲线 Ip=f(τ,n)称作冲击电流减额特性。 压敏电阻电容量 电容量压敏电阻器的固有电容量Co,随着规格的不同,大体在几个PF到104PF左右,它与压敏电阻的电阻成分相并联,对测试过程产生影响。测试信号刚一加上是首先对它充电,测试信号结束后,这个Co上存储的电荷要放电。为此,在测试过程中应注意:(1)在相同的加压比下,压敏电阻器的工频交流漏电流比直流漏电大。(2)施加在试样上的测量电压(电流),应保持足够的时间,使电容上的电荷状态稳定,然后才能读取测试结果。(3)若试样电容量较大,且测试电压较高,则在测试信号结束后,应使试样充分放电,以免试样在测量过程中储存的电荷对人体造成电击。 压敏电阻极性现象 极性现象极性是指压敏电阻两个方向的测试结果不一致,低压压敏电阻的这一现象尤为明显。从前面几章的讨论可以知道,产生这一现象的原因有两个:一是电阻体内正方向的势垒与反方向的势垒本来就不是完全相同的,二是压敏电阻经电流电压作用后产生了劣化,使得两

压敏电阻的特性与参数以及如何选用

压敏电阻的特性与参数以及如何选用 压敏电阻的特性与参数以及如何选用 如果电机是AC24V的,在电机方向线对地接一个470K压敏电阻;如果电机是AC220V,则加471K压敏电阻。意义重要是消除电机换相产生的尖峰高压。 压敏电阻的测量:压敏电阻一般并联在电路中使用,当电阻两端的电压发生急剧变化时,电阻短路将电流保险丝熔断,起到保护作用。压敏电阻在电路中,常用于电源过压保护和稳压。测量时将万用表置10k档,表笔接于电阻两端,万用表上应显示出压敏电阻上标示的阻值,如果超出这个数值很大,则说明压敏电阻已损 压敏电阻标称参数 压敏电阻用字母“MY”表示,如加J为家用,后面的字母W、G、P、L、H、Z、B、C、N、K分别用于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面。压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。压敏电阻的选用,一般选择标称压敏电压V1mA 和通流容量两个参数。 1、所谓压敏电压,即击穿电压或阈值电压。指在规定

电流下的电压值,大多数情况下用1mA直流电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10 -9000V不等。可根据具体需要正确选用。一般 V1mA=1.5Vp=2.2V AC,式中,Vp为电路额定电压的峰值。V AC为额定交流电压的有效值。ZnO压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命。如一台用电器的额定电源电压为220V,则压敏电阻电压值 V1mA=1.5Vp=1.5×1.414×220V=476V,V1mA=2.2V AC=2.2×220V=484V,因此压敏电阻的击穿电压可选在470-480V 之间。 2、所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过±10%时的最大脉冲电流值。为了延长器件的使用寿命,ZnO压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量。然而从保护效果出发,要求所选用的通流量大一些好。在许多情况下,实际发生的通流量是很难精确计算的,则选用2-20KA的产品。如手头产品的通流量不能满足使用要求时,可将几只单个的压敏电阻并联使用,并联后的压敏电不变,其通流量为各单只压敏电阻数值之和。要求并联的压敏电阻伏安特性尽量相同,否则易引起分流不均匀而损坏压敏电阻。 压敏电阻器的应用原理

氧化锌压敏电阻的电性能参数及添加剂的作用

氧化锌压敏电阻的电性能参数及添加剂的作用 压敏电阻是由在电子级ZnO 粉末基料中掺入少量的电子级Bi 2O 3、Co 2O 3、MnO 2、Sb 2O 3、TiO 2、Cr 2O 3、Ni 2O 3等多种添加剂,经混合、成型、烧结等工艺过程制成的精细电子陶瓷;它具有电阻值对外加电压敏感变化的特性,主要用于感知、限制电路中可能出现的各种瞬态过电压、吸收浪涌能量。 1 氧化锌压敏电阻电性能参数 1.1 压敏电压U 1mA 压敏电阻的电流为1mA 时所对应的电压作为I 随U 迅速上升的电压大小的标准,该电压用U 1mA 表示,称为压敏电压。压敏电压是ZnO 压敏电阻器伏安曲线中预击穿区和击穿区转折点的一个参数,一般情况下是1mA (Φ5产品为0.1mA )直流电流通过时,产品的两端的电压值,其偏差为±0.1%。 1.2 最大连续工作电压MCOV 最大连续工作电压MCOV 指的是压敏电阻在应用时能长期承受的最大直流电压U D C 或最大交流电压有效值 U RMS 。最大直流电压的值为80%~92%U 1mA ,或产品在85℃下,正常工作1000h ,施加的最大直流电压;最大交流电压的值为60%~65% U 1mA ,或产品在85℃下,正常工作1000h ,施加的最大交流电压。 1.3 漏电流 I L 漏电流(mA)也称等待电流,是指压敏电阻器在规定的温度和最大直流电压下,流过压敏电阻器电流。IEC 对漏电流 I L 较为普遍的定义是:环境温度25℃时,在压敏电阻上施加其所属规格的最大连续直流工作电压 U DC 时,流过压敏电阻的直流电流。 一般而言,在材料配方和烧结工艺固定的情况下,漏电流适中的压敏电阻具有较好的安全性和较长的寿命。 1.4 非线性指数α 非线性指数α指压敏电阻器在给定的外加电压作用下,其静态电阻值与动态电阻值之比。 它是一个元件的电阻值是否随电压或电流变化和变化是否敏感的标志。ZnO 压敏电阻器是一种非线性导电电阻。α在预击穿区和击穿区是不同的,一般所指是预击穿区的非线性系数。IEC 规定: )/l g (1 1.01mA mA U U =α(瓷片直径7mm 及以上的压敏电阻) )/lg(1 01.01.0mA mA U U =α(瓷片直径5mm 的压敏电阻) IEC 规定的非线性指数实际上只能表示压敏电阻在0.1mA~1mA 或0.01mA~0.1mA 之间的平均非线性指数。由于击穿区的特性接近于直线,而且上述电流区域处于击穿区内,因此IEC 规定的非线性指数可以近似地表示压敏电阻击穿后的整体非线性特性的好坏。 1.5 电压比 电压比指压敏电阻器的电流为1mA 时产生的电压值与压敏电阻器的电流为0.1mA 时产生的电压值之比。 1.6 残压 U R 残压 U R 是指特定波形的浪涌电流流入压敏电阻器时,它两端电压的峰值。一般来说,

电力电子技术实验指导书

电力电子技术实验指导书 河南机电职业学院 2010年4月

学生实验守则 一、学生进入实验室必须服从管理,遵守实验室的规章制度。保持实验室的安静和整洁,爱护实验室的一切设施,不做与实验无关的事情。 二、实验课前要按照教师要求认真预习实验指导书,复习教材中于实验有关的内容,熟悉与本次实验相关的在理论知识,同时写出实验预习报告,并经教师批阅后方可进行实验。 三、实验课上要遵守操作规程,线路连接好后,先自行检查,后须经指导教师检查后,才可接通电源进行实验。如果需更改线路,也要经过教师检查后才能接通电源继续实验。 四、学生实验前对实验所用仪器设备要了解其操作规程和使用方法,实验过程中按照要求记录实验数据。实验中有仪器损坏情况,应立即报告指导教师检查处理。凡因不预习或不按照使用方法误操作而造成设备损坏后,除书面检查外,还要按照规定进行赔偿。 五、注意实验安全,不要带电连接、更改或拆除线路。实验中遇到事故应立即关断电源并报告教师处理。 六、实验完成后,实验数据必须经教师签阅后,方可拆除实验线路。并将仪器、设备、凳子等按照规定放好,经教师同意后方可离开实验室。 七、实验室仪器设备不能擅自搬动、调换,更不能擅自带出实验室。 八、因故缺课的同学可以向实验室申请一次补做机会。无故缺课、无故迟到十五分钟以上或者早退的不予补做,该实验无成绩。

第一章电力电子技术实验的基本要求 和安全操作说明 《电子电力技术》是电气工程及其自动化、自动化等专业的三大电子技术基础课程之一,课程涉及面广,内容包括电力、电子、控制、计算机技术等。而实验环节是该课程的重要组成部分,通过实验,可以加深对理论的理解,培养和提高动手能力、分析和解决问题的独立工作能力。 1-1 实验的特点和要求 电力电子技术实验的内容较多、较新,实验系统也比较复杂,系统性较强。理论教学是实验教学的基础,要求学生在实验中应学会运用所学的理论知识去分析和解决实际系统中出现的各种问题,提高动手能力;同时通过实验来验证理论,促进理论和实际相结合,使认识不断提高、深化。通过实验,学生应具备以下能力: (1)掌握电力电子变流装置的主电路、触发和驱动电路的构成及调试方法,能初步设施和应用这些电路; (2)熟悉并掌握基本实验设备、测试仪器的性能和使用方法; (3)能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题; (4)能够综合实验数据,解释实验现象,编写实验报告。 1-2 实验前的准备 实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。每次实验前都应先进行预习,从而提高实验质量和效率,否则就有可能在实验时不知如何下手,浪费时间,完不成实验要求,甚至有可能损坏实验装置。因此,实验前应做到: (1)复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识。 (2)阅读本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;明确实验过程中应注意的问题。 (3)写出预习报告,其中应包括实验系统的详细接线图、实验步骤、数据记录表格等。 (4)进行实验分组,一般情况下,电力拖动自动控制系统实验的实验小组为每组2~3人。 1-3 实验实施 在完成理论学习、实验预习等环节后,就可进入实验实施阶段。实验时要做到以下几点: (1)实验开始前,指导教师要对学生的预习报告作检查,要求学生了解本次实验的目的、内容和方法,只有满足此要求后,方能允许实验。 (2)指导教师对实验装置作介绍,要求学生熟悉本次实验使用的实验设备、仪器,明确这些设备的功能与使用方法。 (3)按实验小组进行实验,实验小组成员应进行明确的分工,以保证实验操作协调,记录数据准确可靠,各人的任务应在实验进行中实行轮换,以便实验参加者能全面掌握实验技术,提高动手能力。 (4)按预习报告上的实验系统详细线路图进行接线,一般情况下,接线次序为先主电路,后控制电路;先串联,后并联。在进行调速系统实验时,也可由2人同时进行主电路和控制电路的接线。 (5)完成实验系统接线后,必须进行自查。串联回路从电源的某一端出发,按回路逐项

相关文档