文档库 最新最全的文档下载
当前位置:文档库 › 29.中考数学专题复习圆中有关切线的计算与证明解答题专练尖子生同步培优题典(解析版)

29.中考数学专题复习圆中有关切线的计算与证明解答题专练尖子生同步培优题典(解析版)

29.中考数学专题复习圆中有关切线的计算与证明解答题专练尖子生同步培优题典(解析版)
29.中考数学专题复习圆中有关切线的计算与证明解答题专练尖子生同步培优题典(解析版)

专题2.9圆中有关切线的计算与证明解答题专练

姓名:__________________ 班级:______________ 得分:_________________

注意事项:

答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.

一.解答题(共20小题)

1.(2019秋?金坛区期中)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=40°,BT交⊙O于点C,E 是AB上一点,延长CE交⊙O于点D.

(1)如图1,求∠T和∠CDB的度数;

(2)如图2,当BE=BC时,求∠CDO的度数.

【分析】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得∠TAB=90°,根据三角形内角和得∠T的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数;

(2)如图②,连接AD,根据等边对等角得:∠BCE=∠BEC=70°,利用同圆的半径相等知:OA=OD,同理∠ODA=∠OAD=70°,由此可得结论.

【解析】(1)如图①,连接AC,

∵AT是⊙O切线,AB是⊙O的直径,

∴AT⊥AB,即∠TAB=90°,

∵∠ABT=40°,

∴∠T=90°﹣∠ABT=50°,

由AB是⊙O的直径,得∠ACB=90°,

∴∠CAB=90°﹣∠ABC=50°,

∴∠CDB=∠CAB=50°;

(2)如图②,连接AD,

在△BCE中,BE=BC,∠EBC=40°,

∴∠BCE=∠BEC=70°,

∴∠BAD=∠BCD=70°,

∵OA=OD,

∴∠ODA=∠OAD=70°,

∵∠ADC=∠ABC=40°,

∴∠CDO=∠ODA﹣∠ADC=70°﹣40°=30°.

2.(2019秋?睢宁县期中)如图,在⊙O中,P A是直径,PC是弦,PH平分∠APB且与⊙O交于点H,过H作HB⊥PC交PC的延长线于点B.

(1)求证:HB是⊙O的切线;

(2)若HB=4,BC=2,求⊙O的直径.

【分析】(1)连接OH,由题意可得∠OHP=∠HP A=∠HPB,可证OH∥BP,则可得OH⊥BH,根据切线的判定可证HB是⊙O的切线;

(2)过点O作OE⊥PC,垂足为E,可证四边形EOHB是矩形,可得OE=BH=4,OH=BE,再根据勾股定理可求OP的长,即可求⊙O的直径.

【解答】证明:(1)如图,连接OH,

∵PH平分∠APB,

∴∠HP A=∠HPB,

∵OP=OH,

∴∠OHP=∠HP A,

∴∠HPB=∠OHP,

∴OH∥BP,

∵BP⊥BH,

∴OH⊥BH,

∴HB是⊙O的切线;

(2)如图,过点O作OE⊥PC,垂足为E,

∵OE⊥PC,OH⊥BH,BP⊥BH,

∴四边形EOHB是矩形,

∴OE=BH=4,OH=BE,

∴CE=OH﹣2,

∵OE⊥PC

∴PE=EC=OH﹣2=OP﹣2,

在Rt△POE中,OP2=PE2+OE2,

∴OP2=(OP﹣2)2+16

∴OP=5,

∴AP=2OP=10,

∴⊙O的直径是10.

3.(2019秋?泗阳县期中)如图,CD是⊙O的切线,切点为E,AC、BD分别与⊙O相切于点A、B.如果CD=6,AC=4,求DB的长.

【分析】由于CD、AC、BD是⊙O的切线,则可得AC=CE,ED=DB,由已知数据易求DE的长,进而可求出DB的长.

【解析】∵CD切⊙O点E,AC切切⊙O点A.

∴CE=AC=4,

∴ED=CD﹣CE=2,

∵CD切⊙O点E,BD切⊙O点B.

∴BD=ED=2.

4.(2019秋?扬州期中)如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠CDB=∠CAD,过点A作⊙O的切线,交CD的延长线于点E.

判定直线CD与⊙O的位置关系,并说明你的理由;

【分析】连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDB+∠BDO=90°,根据切线的判定推出即可;

【解答】(1)证明:连接OD,

∵OD=OB,

∴∠DBA=∠BDO,

∵AB是⊙O的直径,

∴∠ADB=90°,

∴∠DAB+∠DBA=90°,

∵∠CDB=∠CAD,

∴∠CDB+∠BDO=90°,

即OD⊥CE,

∵D为⊙O的一点,

∴直线CD是⊙O的切线;

5.(2019秋?兴化市期中)如图,AB是⊙O的直径,F是⊙O上一点,连接FO、FB.C为BF?中点,过点C 作CD⊥AB,垂足为D,CD交FB于点E,CG∥FB,交AB的延长线于点G.

(1)求证:CG是⊙O的切线;

(2)若∠BOF=120°,且CE=4,求⊙O的半径.

【分析】(1)连接OC.由点C为BF

?的中点,得到CF?=BC?,求得∠COB=∠COF,根据平行线的性质得到∠OCG=∠OMB=90°,于是得到CG是⊙O的切线;

(2)连接BC.由(1)知,∠COB=∠COF=1

2∠BOF=60°,推出△OBC为等边三角形.得到∠OCD

=30°,则EM=1

2CE=2,根据勾股定理得到CM=√CE

2?EM2=2√3,求得OM=CM=2√3,于是得

到结论.

【解答】(1)证明:连接OC.∵点C为BF

?的中点,∴CF

?=BC?,

∴∠COB=∠COF,

∵OB=OF,

∴OC⊥BF,

设垂足为M,则∠OMB=90°,

∵CG∥FB,

∴∠OCG=∠OMB=90°,

∴CG是⊙O的切线;

(2)解:连接BC.由(1)知,∠COB=∠COF=1

2∠BOF=60°,

∵OB=OC,

∴△OBC为等边三角形.

∵∠OCD=30°,则EM=1

2CE=2,

∴CM=√CE2?EM2=2√3,

∴OM=CM=2√3,

∴OC=4√3,

即⊙O的半径为4√3.

6.(2019秋?镇江期中)在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为秒,解答下列问题:

(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?

(2)如图2,以Q 为圆心,PQ 为半径作⊙Q .在运动过程中,是否存在这样的t 值,使⊙Q 正好与四边形DPQC 的一边(或边所在的直线)相切?若存在,求出t 值;若不存在,请说明理由.

【分析】(1)由题意可知P A =t ,BQ =2t ,从而得到PB =6﹣t ,BQ =2t ,然后根据△PQB 的面积=4cm 2列方程求解即可;

(2)当t =0时,点P 与点A 重合时,点B 与点Q 重合,此时圆Q 与PD 相切;当⊙Q 正好与四边形DPQC 的DC 边相切时,由圆的性质可知QC =QP ,然后依据勾股定理列方程求解即可; 【解析】(1)∵当运动时间为t 秒时,P A =t ,BQ =2t , ∴PB =5﹣t ,BQ =2t . ∵△PBQ 的面积等于4cm 2, ∴1

2PB ?BQ =1

2

(5﹣t )?2t .

∴12(5﹣t )?2t =4. 解得:t 1=1,t 2=4.

答:当t 为1秒或4秒时,△PBQ 的面积等于4cm 2; (2)(Ⅰ)由题意可知圆Q 与AB 、BC 不相切.

(Ⅱ)如图1所示:当t =0时,点P 与点A 重合时,点B 与点Q 重合.

∵∠DAB =90°, ∴∠DPQ =90°.

∴DP⊥PQ.

∴DP为圆Q的切线.

(Ⅲ)当⊙Q正好与四边形DPQC的DC边相切时,如图2所示.

由题意可知:PB=5﹣t,BQ=2t,PQ=CQ=10﹣2t.

在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(5﹣t)2+(2t)2=(10﹣2t)2.

解得:t1=﹣15+10√3,t2=﹣15﹣10√3(舍去).

综上所述可知当t=0或t=﹣15+10√3时,⊙Q与四边形DPQC的一边相切.

7.(2019秋?玄武区期中)如图,在?ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.

?=BD?;

(1)求证:AB

(2)若AB=5,AD=8,求⊙O的半径.

?=BD?;

【分析】(1)连接OB,交AD于点E,由已知条件易证OE⊥AD,由垂径定理进而可证明AB

(2)设⊙O的半径为r,则OE=r﹣3,在Rt△ABE中,∠OEA=90°,由勾股定理可得:OE2+AE2=OA2即(r﹣3)2+42=r2,解方程即可求出圆的半径r.

【解析】(1)证明:

连接OB,交AD于点E.

∵BC是⊙O的切线,切点为B,

∴OB⊥BC,

∴∠OBC=90°,

∵四边形ABCD是平行四边形,

∴AD∥BC,

∴∠OED =∠OBC =90°, ∴OE ⊥AD , ∴AB

?=BD ?; (2)∵OE ⊥BC ,OE 过圆心O ∴AE =1

2

AD =4,

在Rt △ABE 中,∠AEB =90°, ∴BE ═√52?42=3,

设⊙O 的半径为r ,则OE =r ﹣3 在Rt △ABE 中,∠OEA =90°, OE 2+AE 2=OA 2 即(r ﹣3)2+42=r 2, ∴r =256, ∴⊙O 的半径为

256

8.(2019秋?建邺区期中)如图,四边形ABCD 内接于⊙O ,∠DAB =90°,点E 在BC 的延长线上,且∠CED =∠CAB .

(1)求证:DE 是⊙O 的切线.

(2)若AC ∥DE ,当AB =8,DC =4时,求BD 的长.

【分析】(1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;

(2)先判断出AC ⊥BD ,进而求出BC =AB =8,再用勾股定理求出BD ,最后判断出△CFD ∽△BCD ,

即可得出结论.

【解析】(1)如图,

连接BD,∵∠BAD=90°,

∴点O必在BD上,即:BD是直径,∴∠BCD=90°,

∴∠DEC+∠CDE=90°,

∵∠DEC=∠BAC,

∴∠BAC+∠CDE=90°,

∵∠BAC=∠BDC,

∴∠BDC+∠CDE=90°,

∴∠BDE=90°,即:BD⊥DE,

∵点D在⊙O上,

∴DE是⊙O的切线;

(2)∵DE∥AC,

∵∠BDE=90°,

∴∠BFC=90°,

∴CB=AB=8,AF=CF=1

2AC,

在Rt△BCD中,BD=√BC2+CD2=4√5

9.(2019秋?玄武区期中)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,与AC、BC分别交于点M、N,与AB的另一个交点为E.过点N作NF⊥AB,垂足为F.

(1)求证:NF是⊙O的切线;

(2)若NF=2,DF=1,求弦ED的长.

【分析】(1)欲证明NF为⊙O的切线,只要证明ON⊥NF.(2)证明四边形ONFH是矩形,由勾股定理即可解决问题.【解答】(1)证明:连接ON.如图所示:

∵在Rt△ACB中,CD是边AB的中线,

∴CD=BD,

∴∠DCB=∠B,

∵OC=ON,

∴∠ONC=∠DCB,

∴∠ONC=∠B,

∴ON∥AB

∵NF⊥AB

∴∠NFB=90°

∴∠ONF=∠NFB=90°,

∴ON⊥NF

又∵NF过半径ON的外端

∴NF是⊙O的切线;

(2)解:过点O作OH⊥ED,垂足为H,如图2所示:

设⊙O的半径为r

∵OH⊥ED,NF⊥AB,ON⊥NF,

∴∠OHD=∠NFH=∠ONF=90°.

∴四边形ONFH为矩形.

∴HF=ON=r,OH=NF=2,

∴HD=HF﹣DF=r﹣1,

在Rt△OHD中,∠OHD=90°

∴OH2+HD2=OD2,即22+(r﹣1)2=r2,

∴r=5 2.

∴HD=3 2,

∵OH⊥ED,且OH过圆心O,

∴HE=HD,

∴ED=2HD=3.

10.(2019秋?江阴市期中)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E,BC=3,CD=3√2

(1)求证:直线CE是⊙O的切线;

【分析】(1)连结OD,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;

【解答】(1)证明:连接OD,如图,

∵AD平分∠EAC,

∴∠1=∠3,

∵OA=OD,

∴∠1=∠2,

∴∠3=∠2,

∴OD∥AE,

∵AE⊥DC,

∴OD⊥CE,

∴CE是⊙O的切线;

11.(2019春?建湖县期中)如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠COD=2∠BDC,过点A作⊙O的切线,交CD的延长线于点E.

(1)判定直线CD与⊙O的位置关系,并说明你的理由;

【分析】(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDB+∠BDO=90°,根据切线的判定推出即可;

【解答】(1)证明:连接OD,

∵OD=OB,

∴∠DBA=∠BDO,

∵AB是⊙O的直径,

∴∠DAB+∠DBA=90°,

∵∠CDB=∠CAD,

∴∠CDB+∠BDO=90°,

即OD⊥CE,

∵D为⊙O的一点,

∴直线CD是⊙O的切线;

12.(2019春?宿豫区期中)已知,⊙O是△ABC的外接圆,∠CAD=∠ABC.

(1)如图1,试判断直线AD与⊙O的位置关系,并说明理由;

(2)如图2,将直线AD沿直线AC翻折后交⊙O于点E,连接OA、OE、CE,若∠ABC=30°,求证:四边形ACEO是菱形.

【分析】(1)作直径AP,连接CP,根据圆周角定理得到∠CAD=∠APC,∠ACP=90°,求得∠DAP =90°,AD⊥AP,根据切线的判定定理即可得到结论;

(2)连接OC,根据圆周角定理得到∠CAE=∠CAD=∠ABC=30°,得到∠AOC=2∠ABC=60°,∠COE=2∠CAE=60°,推出△AOC、△COE都是等边三角形,得到OA=AC=CE=EO,于是得到结论.【解析】(1)直线AD与⊙O相切,

理由:作直径AP,连接CP,

∵∠APC=∠ABC,∠CAD=∠ABC,

∵AP是⊙O的直径,

∴∠ACP=90°,

∴∠CAP+∠APC=90°,

∴∠CAP+∠CAD=90°,

即∠DAP=90°,

∴AD⊥AP,

∴直线AD与⊙O相切;

(2)证明:连接OC,

∵∠ABC=30°,

∴∠CAE=∠CAD=∠ABC=30°,

∴∠AOC=2∠ABC=60°,∠COE=2∠CAE=60°,

∵OA=OC,OC=OE,

∴△AOC、△COE都是等边三角形,

∴OA=AC=CO,OC=CE=EO,

∴OA=AC=CE=EO,

∴四边形ACEO是菱形.

13.(2019秋?锡山区期中)如图,已知直角△ABC,∠C=90°,BC=3,AC=4.⊙C的半径长为1,已知点P是△ABC边上一动点(可以与顶点重合).

(1)若点P到⊙C的切线长为√3,则AP的长度为2√5或2;

(2)若点P到⊙C的切线长为m,求点P的位置有几个?(直接写出结果)

【分析】(1)由题意切线长为√3,半径为1,可得PC=2,所以点P只能在边BC或边AC上.分两种情形分别求解即可;

(2)首先求出三个特殊位置时切线的长,结合图形即可判断;

【解析】(1)由题意切线长为√3,半径为1,可得PC=2,所以点P只能在边BC或边AC上.

如图1中,连接P A.

在Rt△P AC中,P A=√AC2+PC2=√42+22=2√5.

如图2中,P A=AC=PC=4﹣2=2,

综上所述,满足条件的P A的长为2√5或2.

故答案为2√5或2.

(2)

如图3中,当CP ⊥AB 时.易知CP =AC?BC AB =12

5

, 此时切线长PE =√PC 2?EC 2=

√119

5

如图4中,当点P 与点B 重合时,切线长PE =√BC 2?EC 2=2√2, 如图5中,当点P 与点A 重合时,切线长PE =√AC 2?EC 2=√15, 观察图形可知:当0<m <√119

5

时,点P 的位置有2个位置;

当m =

√119

5

时,点P 的位置有3个位置;

当√119

5

<m <2√2时,点P 的位置有4个位置;

当m =2√2时,点P 的位置有3个位置; 当2√2<m <√15时,点P 的位置有2个位置; 当m =√15时,点P 的位置有1个位置.

14.(2019秋?灌云县期中)如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E . (1)求证:直线DE 是⊙O 的切线;

(2)若AE =8,⊙O 的半径为5,求DE 的长.

【分析】(1)连接OD ,由角平分线和等腰三角形的性质得出∠ODA =EAD ,证出EA ∥OD ,再由已知条

件得出DE ⊥OD ,即可得出结论.

(2)作DF ⊥AB ,垂足为F ,由AAS 证明△EAD ≌△F AD ,得出AF =AE =8,DF =DE ,求出OF =3,由勾股定理得出DF ,即可得出结果. 【解答】(1)证明:连接OD ,如图1所示: ∵AD 平分∠BAC , ∴∠EAD =∠OAD , ∵OA =OD , ∴∠ODA =∠OAD , ∴∠ODA =EAD , ∴EA ∥OD , ∵DE ⊥EA , ∴DE ⊥OD , ∵点D 在⊙O 上, ∴直线DE 与⊙O 相切.

(2)作DF ⊥AB ,垂足为F ,如图2所示: ∴∠DF A =∠DEA =90°, 在△EAD 和△F AD 中,

{∠DFA =∠DEA ∠EAD =∠FAD AD =AD

, ∴△EAD ≌△F AD (AAS ), ∴AF =AE =8,DF =DE , ∵OA =OD =5, ∴OF =3,

在Rt △DOF 中,DF =√OD 2?OF 2=√52?32=4, ∴DE =DF =4.

15.(2019秋?建邺区期末)如图,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圆,P为CO的延长线上一点,且AP=AC.

(1)求证:AP是⊙O的切线;

(2)若PB为⊙O的切线,求证:△ABC是等边三角形.

【分析】(1)连接OA,由圆心角等于2倍的圆周角得出∠AOC=120°,由OA=OC,得出∠OAC=∠

OCA=1

2(180°﹣∠AOC)=30°,由AP=AC,推出∠APC=∠ACP=30°,由三角形内角和定理得出

∠P AC=120°,则∠P AO=∠P AC﹣∠OAC=90°,即可得出结论;

(2)连接OB,由切线的性质得出P A=PB,由OA=OB,得出PO是AB的垂直平分线,则CB=CA,由又∠ABC=60°,即可得出结论.

【解答】证明:(1)连接OA,如图1所示:

∵∠ABC=60°,

∴∠AOC=120°,

∵OA=OC,

∴∠OAC=∠OCA=1

2(180°﹣∠AOC)=

1

2

×(180°﹣120°)=30°,

∵AP=AC,

∴∠APC=∠ACP=30°,

∴∠P AC=180°﹣30°﹣30°=120°,

∴∠P AO=∠P AC﹣∠OAC=120°﹣30°=90°,

∴AP⊥OA,

又∵OA是⊙O的半径,

∴AP是⊙O的切线;

(2)连接OB,如图2所示:

∵AP、PB为⊙O的切线,

∴P A=PB,

∵OA=OB,

∴PO是AB的垂直平分线,

∴CB=CA,

∵∠ABC=60°,

∴△ABC是等边三角形.

16.(2019秋?大名县期中)已知,△ABC中,∠ACB=90°,AC=BC=8,点A在半径为5的⊙O上,点O在直线l上.

中考数学-圆的切线证明方法

专题-------圆的切线证明 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M,求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B. ∴∠1=∠C. D ∴OD∥AC. ∵DM⊥AC, ∴DM⊥OD. ∴DM与⊙O相切 证明二:连结OD,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=AC,

∴∠1=∠2. ∵DM ⊥AC , ∴∠2+∠4=900 ∵OA=OD , ∴∠1=∠3. ∴∠3+∠4=900. 即OD ⊥DM. ∴DM 是⊙O 的切线 例2 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上. 求证:DC 是⊙O 的切线 证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300. ∴∠BOC=∠A+∠1=600. 又∵OC=OB , ∴△OBC 是等边三角形. ∴OB=BC. ∵OB=BD , ∴OB=BC=BD. ∴OC ⊥CD. ∴DC 是⊙O 的切线. 例3 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP . 求证:PC 是⊙O 的切线. C D

证明:连结OC ∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP , OC OP OD OC . 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线. 二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径” 例4 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 证明一:连结DE ,作DF ⊥AC ,F 是垂足.

圆的切线专题证明题

1、.已知:如图,CB 是⊙O 的直径,BP 是和⊙O 相切于点B 的切线,⊙O 的弦AC 平行于OP . (1)求证:AP 是⊙O 的切线.(2)若∠P=60°,PB=2cm ,求AC . 2、⊿ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于D ,D E ⊥AC 于E.求证:DE 为⊙O 的切线 3、、如图,AB=BC ,以AB 为直径的⊙O 交AC 于D ,作D E ⊥BC 于E 。(1)求证:DE 为⊙O 的切线(2)作DG ⊥AB 交⊙O 于G ,垂足为F ,∠A=30°.AB=8,求DG 的长 4、如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线. 5、如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO .求证:BD 是⊙O 的切线; 6 .如图,在中, ,以 为直径的分别交、于点、,点在的延长 线上,且 求证:直线 是⊙0的切线; O A B P E C

7、如图 9,直线n切⊙O于A,点P为直线n上的一点,直线PO交⊙O于C、B,D在线段AP上, 连接DB,且AD=DB。(1)判断DB与⊙O的位置关系,并说明理由。(2)若AD=1,PB=BO,求弦AC的长 8、如图10,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。(1)若∠CPA=30°,求PC的长(2)若P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的值。 9.如图,MN为⊙O的切线,A为切点,过点A作AP⊥MN,交⊙O的弦BC于点P. 若PA=2cm,PB=5cm,PC=3cm,求⊙O的直径. 10.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线. 11、如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O 的切线交AD的延长线于点F. (1)求证:DE是⊙O的切线; (2)若DE=3,⊙O的半径为5,求BF的长. F E D A C O B P M B D C O N

中考数学总复习专题六圆的有关证明与计算试题新人教版

专题六圆的有关证明与计算 圆的切线的判定与性质 【例1】(2016·临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点. (1)求证:AB是⊙O的直径; (2)判断DE与⊙O的位置关系,并加以证明; (3)若⊙O的半径为3,∠BAC=60°,求DE的长. 分析:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长. 解:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径 (2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF=错误!=3错误!,则DE=错误!BF=错误! 圆与相似 【例2】(2016·泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC. (1)求证:BE是⊙O的切线; (2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=2,DF=2BF,求AH的值. 分析:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得错误!=错误!,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC. 解:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△ CBG,∴BC BG =\f(AB,BC),即BC2=BG·BA=48,∴BC=4错误!,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF= \r(BC2-FB2)=42,∴CG=CF+FG=5错误!,在Rt△BFG中,BG=错误!=3错误!,∵

(完整版)证明圆的切线经典例题

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线I过O O上某一点A,证明I是O O的切线,只需连OA,证明OA丄I 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直? 例1 如图,在厶ABC中,AB=AC ,以AB为直径的O O交BC于D ,交AC于E, B为切点的切线交0D延长线于F. 求证:EF与O 0相切. 证明:连结OE, AD. ?/ AB是O 0的直径, ??? AD 丄BC. 又??? AB=BC , ???/ 3= / 4. —— ? BD=DE,/ 1 = / 2. 又??? OB=OE , OF=OF , ???△ BOF ◎△ EOF ( SAS) ???/ OBF= / OEF. ??? BF与O O相切, ?OB 丄BF. ???/ OEF=9O°. ?EF与O O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD 是/ BAC 的平分线, 求证:PA 与O O 相切. 证明一:作直径AE ,连结EC. ?/ AD 是/ BAC 的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2= / 1+ / DAC. ???/ 2= / B+ / DAB , ???/ 1 = / B. ?/ AE 是O O 的直径, ? AC 丄 EC ,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA 丄PA. ? PA 与O O 相切. ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, 证明二:延长AD 交O O 于E ,连结 ?/ AD 是/ BAC 的平分线, ? BE=CE , ? OE 丄 BC. ???/ E+/ BDE=90 0. ?/ OA=OE , ???/ E=/ 1. P P 为BC 延长线上一点,且 PA=PD.

6.中考数学圆的综合证明题

中考复习——圆的综合证明题 1.如图,在Rt△ABC中, ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O (1)求证:AB是⊙O的切线. (2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=1 2 ,求 AE AC 的值. (3)在(2)的条件下,设⊙O的半径为3,求AB的长. 4.如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点. (1)请直接写出∠COD的度数; (2)求AC?BD的值; 5.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B; (2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求tan∠CFE的值; 6.如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.

(1)判断BD 与⊙O 的位置关系,并说明理由; (2)若CD =15,BE =10,tanA=512 ,求⊙O 的直径. 7.如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与OD 交于点F ,连接DF , DC .已知OA =OB ,CA =CB ,DE =10,DF =6. (1)求证:①直线AB 是⊙O 的切线;②∠FDC =∠EDC ; (2)求CD 的长. 8.如图,在Rt ABC 中,∠C =90°,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,与AC ,AB 分别相 交于点E ,F ,连接AD 与EF 相交于点G . (1)求证:AD 平分∠CAB (2)若OH ⊥AD 于点H ,FH 平分∠AFE ,DG =1. ①试判断DF 与DH 的数量关系,并说明理由; ②求⊙O 的半径. 10.如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径, OD ⊥AB 于点O ,分别交AC 、CF 于点E 、 D ,且D E =DC . A B C D E F G H O

圆的切线判定证明题电子教案

圆的切线判定证明题

仅供学习与交流,如有侵权请联系网站删除 谢谢2 1.如图,在平面直角坐标系xOy 中,⊙O 交x 轴于A 、B 两点,直线FA ⊥x 轴于点A ,点D 在 FA 上,且DO 平行于⊙O 的弦MB ,连DM 并延长交x 轴于点C . (1)判断直线DC 与⊙O 的位置关系,并给出证明; (2)设点D 的坐标为(-2,4),试求MC 的长及直线DC 的解析式. 2.在Rt △ABC 中,BC =9, CA =12,∠ABC 的平分线BD 交AC 与点D , DE ⊥DB 交AB 于点E . (1)设⊙O 是△BDE 的外接圆,求证:AC 是⊙O 的切线; (2)设⊙O 交BC 于点F ,连结EF ,求EF AC 的值. (1)证明: (2)解: 3.如图,AB 是⊙O 的直径,AD 是弦,∠DAB =22.5o,延长AB 到点C ,使得∠ACD =45o. (1)求证:CD 是⊙O 的切线; (2)若AB =22,求BC 的长. 4.如图,四边形ABCD 内接于⊙O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分 BDE ∠.

仅供学习与交流,如有侵权请联系网站删除 谢谢3 5. 如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E ; (2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由. (3)当AB =5,BC =6时,求⊙O 的半径. 6. 如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD . (2)若E B =8cm ,CD =24cm ,求⊙O 的直径. 7. 如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC ,过点D 作DE ⊥ AC ,垂足为E . (1)求证:AB =AC ; (2)求证:DE 为⊙O 的切线; (3)若⊙O 的半径为5,∠BAC =60°,求DE 的长. E C A

中考中圆的切线证明习题集锦

中考中圆切线证明习题 1、如图, PA 为⊙ O 的切线, A 为切点,过 A 作OP 的垂线 AB ,垂足为点 C,交⊙O 于点 B,延长 BO 与⊙ O 交于点 D ,与 PA 的延长线交于点 E, 求证: PB 为⊙ O 的切线; 2、如图,AB=AC ,AB 是⊙ O 的直径,⊙ O 交BC 于D ,DM ⊥AC 于 M 求证:DM 与⊙O 相切. 3、如图,已知: AB 是⊙ O 的直径,点 C 在⊙ O 上,且∠ CAB=300 ,BD=OB ,D 在 AB 的延 长线上 . 求证:DC 是⊙O 的切线 4、已知:如图, A 是e O 上一点,半径 OC 的延长线与过点 1 AC OB . 2 (1)求证: AB 是e O 的切线; 2)若 ACD 45°, OC 2,求弦 CD 的长. P D BC , A

5、已知:如图,在Rt△ABC中, C 90o,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E ,且CBD A. 1)判断直线BD与e O的位置关系,并证明你的结论; 2)若AD:AO 8:5 ,BC 2,求BD的长. B 6、已知:如图,在△ ABC 中,AB=AC,AE 是角平分线,BM 平分∠ ABC 交AE 于点M,经过B,M 两点的⊙ O 交BC 于点G,交AB 于点F,FB 恰为⊙O的直径. (1)求证:AE 与⊙ O 相切; 1 (2)当BC=4,cosC=1时,求⊙ O的半径. 3 7、已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,DOC=2 ACD=90 。

求证:CD 是⊙O 的切线. 10、如图,等腰三角形 ABC 中,AC =BC =10,AB =12。以 BC 为直径作⊙ O 交AB 于点 D , 交 AC 于点 G ,DF ⊥AC ,垂足为 F ,交 CB 的延长线于点 E (1)求证:直线 EF 是⊙O 的切线; (2)求 CF:CE 的值。 11、如图, AB 是⊙O 的直径, AC 是弦,∠ BAC 的平分线 AD 交⊙O 于点 D ,DE ⊥AC ,交 AC 的 延 长线于点 E ,OE 交AD 于点 F .⑴求证: 12、如图, Rt △ ABC 中, ABC 90°,以AB 为直径作⊙O 交AC 边于点 D ,E 是边BC 的中 点,连接 DE . (1)求证:直线 DE 是⊙O 的切线; 2)连接 OC 交DE 于点 F ,若OF CF ,求 tan ACO 的值. 13、如图,点 O 在∠APB 的平分线上,⊙ O 与PA 相切于点 C . (1) 求证:直线 PB 与⊙O 相切; F G E O E B

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

中考复习专题_圆切线证明

中考复习专题 --------圆的切线的判定与性质 知识考点: 1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。 精典例题: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.

例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线 例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线. 例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F. 求证:CE与△CFG的外接圆相切.

二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径” 例7 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 例8 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900 . 求证:CD 是⊙O 的切线. [习题练习] 例1如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上两点,并且OC=OD ,求证:AC=BD . 例2已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,与AC?交于点E ,求证:△ DEC

中考数学专题圆的切线精华习题

中考数学专题圆的位置关系 第一部分真题精讲 【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线; (2)若DE=2,tan C=1 2 ,求⊙O的直径. A 【思路分析】本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。对于此题来说,自然连接OD,在△ABC中OD就是中位线,平行于BC。所以利用垂直传递关系可证OD⊥DE。至于第二问则重点考察直径所对圆周角是90°这一知识点。利用垂直平分关系得出△ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。 【解析】(1)证明:联结OD.∵ D为AC中点, O为AB中点, A ∴ OD为△ABC的中位线.∴OD∥BC. ∵ DE⊥BC,∴∠DEC=90°. ∴∠ODE=∠DEC=90°. ∴OD⊥DE于点D. ∴ DE为⊙O的切线. (2)解:联结DB.∵AB为⊙O的直径, ∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°. ∵ D为AC中点,∴AB=AC. 在Rt△DEC中,∵DE=2 ,tanC=1 2 ,∴EC=4 tan DE C =. (三角函数的意义要记牢) 由勾股定理得:DC= 在Rt △DCB 中, BD=tan DC C ?= BC=5. ∴AB=BC=5. ∴⊙O的直径为5. 【例2】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥ 于点D.(1)求证:DA为⊙O的切线;(2)若1 BD=, 1 tan 2 BAD ∠=,求⊙O的半径.

圆切线证明的方法

切线证明法 切线的性质定理: 圆的切线垂直于经过切点的半径 切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径. 【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD = OB ,点C 在圆上,∠CAB =30o.求证:DC 是⊙O 的切线. 思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90o即可. 证明:连接OC ,BC . ∵AB 为⊙O 的直径,∴∠ACB =90o. ∵∠CAB =30o,∴BC =21 AB =OB . ∵BD =OB ,∴BC =2 1 OD .∴∠OCD =90o. ∴DC 是⊙O 的切线. 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接 OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 图1 图2

思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明 CD 是⊙O 的切线,只要证明∠ODC =90o即可. 证明:连接OD . ∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC , ∴△OBC ≌△ODC .∴∠OBC =∠ODC . ∵BC 是⊙O 的切线,∴∠OBC =90o.∴∠ODC =90o. ∴DC 是⊙O 的切线. 【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB . 思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径. 证明:连接OC . ∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB . 【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直 图3

圆的切线专题复习

2、如图,AB 是O O 的直径,/ A = 30°,延长 OE 到D,使BD= OB (OCB 是否是等边三角形?说明你的理由; 圆与特殊角度 1.已知,如图,在△ ADC 中, 长线 上,连接BF,交AD 于点E (1)求证:BF 是eO 的切线; ADC 90,以DC 为直径作半圆eO ,交边AC 于点F ,点B 在CD 的延 BED 2 C . (2)若BF FC , AE 3,求eO 的半径. 3 .如图,AB 是O O 的直径,点 D 在O O 上,OC/ AD 交O O 于E , (1)求证: ; 2)求证:CD 是O O 的切线? 证明: 点F 在CD 延长线上,且 BOC ADf =90 . 4.如图,在O O 中,弦 AE BC 于 D, BC 6 , AD 7 , BAC 45 (1) 求O O 的半径。 (2) 求DE 的长。 19.如图,已知直线 PA 交O O 于A 、B 两点,AE 是O O 的直径,C 为O O 上一 点, 且AC 平分/ PAE 过点C 作CDL PA 于D. (1) 求证:CD 是O O 的切线; (2) 若 AD DG 1: 3, AB=8,求O O 的半径. C B O P ZI C O D A B E

32?已知:如图,AB 是O O 的直径,BD 是O O 的弦,延长BD 到点C,使DGBR 连结AC 过点D 作D 巳 AC,垂足为E . 21?如图,已知 △ ABC ,以BC 为直径,O 为圆心的半圆交 AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点 M , AD ABC 勺角平分线,且 AD BE ,垂足为点H . (1) 求证:AB 是半圆O 的切线; (2) 若 AB 3, BC 4,求 BE 的长. 圆与三角函数 22.如图,在△ ABC 中,/ 0=90° , AD 是/ BAC 的平分线, (1) 求证:B0是O O 切线; (2) 若 BB 5, DO3,求 AC 的长. 解: O 是AB 上一点,以OA 为半径的O O 经过点D (1)求证:ABAC ⑵求证:DE 为O O 的切线; A A A

中考数学圆的证明讲义

【2017】23.如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时. (1)求弦AC的长; (2)求证:BC∥PA. 【2016】23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF ∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G. 求证: (1)FC=FG; (2)AB2=BC?BG.

【2014】23、(本题满分是8分) 如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C. (1)求证:AD平分∠BAC; (2)求AC的长。 A B D O C (第23题图)

【2013】23、(本题满分8分)如图,直线l 与⊙O 相切于点D ,过圆心O 作EF ∥l 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF,并分别延长交直线l 于B 、C 两点, (1)求证:∠ABC+∠ACB=0 90 (2)当⊙O 得半径R=5,BD=12时,求tan ACB 的值. 【2012】23.(8分)如图,PA 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N . (1)求证:OM=AN ; (2)若⊙O 的半径R=3,PA=9,求OM 的长. (第23题图)

【2011】23.(本题满分8分)如图,在△ABC 中,0 60B =∠,⊙O 是△ABC 外接圆,过点A 作的切线,交CO 的延长线于P 点,CP 交⊙O 于D (1) 求证:AP=AC (2) 若AC=3,求PC 的长 【2010】23.如图,在RT △ABC 中∠ABC=90°,斜边AC 的垂直平分线交BC 与D 点,交AC 与E 点,连接BE (1)若BE 是△DEC 的外接圆的切线,求∠C 的大小? (2)当AB=1,BC=2是求△DEC 外界圆的半径

圆切线证明题

圆切线证明题 1.如图,PA为O O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交O O于点B,延长B0与O O交于点D,与PA的延长线交于点E, 求证:PB为O 0的切线; 2如图,AB=AC AB是O 0的直径,O O交BC于D, DML AC于M 求证:DM与O O相切.

3如图,已知:AB是O 0的直径,点C在O O上,且/ CAB=30, BD=OB D在AB的延长线上 求证:DC是O 0的切线 3.已知:如图,A是LI 0上一点,半径0C的延长线与过点A的直线交于B点,OC=BC , 1 AC OB ? 2 (1)求证:AB是L O的切线;一一 (2 )若丄ACD=45°OC=2,求弦CD 的长. / \ 4.知:如图,在Rt A ABC中,? C=90〃,点O在AB上,以O为圆心,OA长为半径的

圆与AC, AB 分别交于点D, E ,且.CBD A . (1 )判断直线BD 与LI O 的位置关系,并证明你的结论; 已知:如图,在 △ ABC 中, D 是AB 边上一点,圆 0过D B C 三点,.DOC2. ACD 90。 (1) 求证:直线AC 是圆0的切线; ,如图,AB=AC D 为BC 中点,O D 与AB 切于E 点. 求证:AC 与O D 相切. 如图,等腰三角形 ABC 中,AC= BC= 10,AB= 12。以BC 为直径作O O 交AB 于点D,交AC C B

于点G DF 丄AC 垂足为F ,交CB 的延长线于点 E 。 ⑴求证:直线EF 是O O 的切线; 如图,Rt △ ABC 中,N ABC = 90°以AB 为直径作O O 交AC 边于点D ,E 是边BC 的中点,连接DE . (1)求证:直线DE 是O O 的切线; 如图,点 O 在/ APB 的平分线上,O O 与PA 相切于点 C. (1) 求证:直线 PB 与O O 相切; 23.(2008年南充市)如图,已知]的直径』垂直于弦二 于点二,过」点作’ 交;的延长线于点 」,连接并延长交J U 于点;,且_[「__[」 . E B

圆的切线的证明专题学案

第1题 B 第2题 A 第3题第4题 圆的切线的证明 圆的切线的证明题,从直线与圆有无公共点来看,有两大类型:一是直线与圆有公共点; 二是直线与圆没有公共点。从具体的证明方法来看又分为多种类型 一、直线与圆有公共点 总体思路:“连”(连接圆心与公共点),证垂直。 (一)利用相似证垂直 1.如图,AB 是圆O 的直径,点P 在BA 的延长线上,弦CD ⊥AB 与点E,且PC 2=PE ×PO. (1)求证:PC 是圆O 的切线. (二)利用全等证垂直 2.如图Rt △ABC 中,∠ACB=90°,以BC 为直径的圆O 交AB 于点D,E 、F 是圆O 上的两点, 连接AE 、CF 、DF ,满足EA=CA. (1)求证:AE 圆O 的切线. (三)利用勾股定理证垂直 3.如图,圆O 的直径AB=12,点P 是AB 延长线上一点,且PB=4,点C 是圆O 上一点,PC=8. 求证:PC 是圆O 的切线. (四)利用平行线证垂直 4.如图,△ABC 内接于圆O,CD 平分∠ACB 交于圆O 于D,过点D 作PQ ∥AB 分别交CA 、CB 的延长线于P 、Q. 求证:PQ 是圆O 的切线.

B B (五)利用角的转化证垂直 5.如图,△ABC 是圆O 的内接三角形,E 是弦BD 的中点,点C 是圆O 外一点,且∠DBC=∠A, 连接OE 并延长与圆相交于点F ,与BC 相交于点C. (1)求证:BC 是圆O 的切线. 二、直线与圆的公共点未知 总体思路:“作”垂直(圆心到直线的垂线),证相等(垂线与半径). (一)利用角平分线证相等 1.如图,梯形ABCD 中,AD ∥BC,AE ⊥BC 于E,∠ADC 的平分线交AE 于O,以点O 为圆心,OA 为半径的圆经过点B. 求证:CD 与圆O 相切. (二) 利用面积法证相等 2.如图,已知△ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,半径为作圆C. 求证:圆C 与AB 相切. 练习: 1.(2017*乐山改编)如图,以AB 边为直径的圆O 经过点P ,且∠ACP=60°,D 是 AB 延长线上一点,PA=PD. 求证:PD 是圆O 的切线.

中考数学 圆的证明及计算

圆的证明与计算 1、如图,以AB为直径的⊙O经过AC的中点D,DE⊥BC于点E. (1)求证:DE是⊙O的切线; (2)当DE=1,∠C=30°时,求图中阴影部分的面积. 2、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC. (1)求证:PA是⊙O的切线; (2)若⊙O的半径为3,求阴影部分的面积. 3、如图,以AB为直径作半圆O,点C为半圆上与A,B不重合的一动点,过点C作CD⊥AB 于点D,点E与点D关于BC对称,BE与半圆交于点F,连CE. (1)判断CE与半圆O的位置关系,并给予证明. (2)点C在运动时,四边形OCFB的形状可变为菱形吗?若可以,猜想此时∠AOC的大小,并证明你的结论;若不可以,请说明理由.

4、已知:如图,△ABC中,内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE. (1)求证:BF与⊙O相切; (2)若BF=5,cosC=,求⊙O的半径. 5、如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B. (1)求证:DA是⊙O切线; (2)求证:△CED∽△ACD; (3)若OA=1,sinD=,求AE的长. 6、如图所示,AB为半圆O的直径,点D是半圆弧的中点,半径OC∥BD,过点C作AD 的平行线交BA延长线于点E. (1)判断CE与半圆OD的位置关系,并证明你的结论. (2)若BD=4,求阴影部分面积.

7、如图,△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F. (1)求证:AC是⊙O的切线. (2)若∠C=30°,连接EF,求证:EF∥AB; (3)在(2)的条件下,若AE=2,求图中阴影部分的面积. 8、如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D. (1)判断直线BC与⊙O的位置关系,并说明理由; (2)若AC=3,∠B=30°. ①求⊙O的半径; ②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)

2018届中考数学复习专题题型(七)--圆的有关计算与证明

(2017浙江衢州第19题)如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D 。连结OD ,作BE ⊥CD 于点E ,交半圆O 于点F 。已知CE=12,BE=9[来源:学#科#网Z#X#X#K] (1)求证:△COD ∽△CBE ; (2)求半圆O 的半径r 的长 : 试题解析: (1)∵CD 切半圆O 于点D , ∴CD ⊥OD , ∴∠CDO=90°, ∵BE ⊥CD , ∴∠E=90°=∠CDO , 又∵∠C=∠C , ∴△COD ∽△CBE . (2)在Rt △BEC 中,CE=12,BE=9, ∴22CE BE +=15, ∵△COD ∽△CBE . ∴OD OC BE BC =,即15915r r -=, 解得:r= 458. 考点:1. 切线的性质;2.相似三角形的判定与性质. 2.(2017山东德州第20题)如图,已知Rt ΔABC,∠C=90°,D 为BC 的中点.以AC 为直径的圆O 交AB 于点E. (1)求证:DE 是圆O 的切线. (2)若AE:EB=1:2,BC=6,求AE 的长.

(1)如图所示,连接OE,CE ∵AC是圆O的直径 ∴∠AEC=∠BEC=90° ∵D是BC的中点 ∴ED=1 2 BC=DC ∴∠1=∠2 ∵OE=OC ∴∠3=∠4 ∴∠1+∠3=∠2+∠4,即∠OED=∠ACD ∵∠ACD=90° ∴∠OED=90°,即OE⊥DE 又∵E是圆O上的一点 ∴DE是圆O的切线.

考点:圆切线判定定理及相似三角形 3.(2017甘肃庆阳第27题)如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线. (1)∵A 的坐标为(0,6),N (0,2), ∴AN=4, ∵∠ABN=30°,∠ANB=90°, ∴AB=2AN=8, ∴由勾股定理可知:223AB AN -=, ∴B (32). (2)连接MC ,NC ∵AN 是⊙M 的直径, ∴∠ACN=90°, ∴∠NCB=90°,

九年级数学证明圆的切线专题

证明圆的切线专题 证明一条直线是圆的切线,主要有两个思路: 1是证这条直线到圆心的距离等于这个圆的半径: 2,是利用切线的判判定定理,证明这条直线经过一条半径的外端,并且和这条半径垂直. 1不常用,一般常用2. 1. 如图,在Rt ABC ?中, 90C ?∠=,点D 是AC 的中点,且90A CDB ?∠+∠=,过点,A D 作O ,使圆心O 在AB 上,O 与AB 交于点E . (1)求证:直线BD 与O 相切; (2)若:4:5,6AD AE BC ==,求O 的直径. 2.如图,在Rt △ABC 中,∠C=90o,O 、D 分别为AB 、BC 上的点,经过A 、D 两点的⊙O 分别交AB 、AC 于点E 、F ,且D 为EF 的中点。 (1)(4分)求证:BC 与⊙O 相切 (2)(4分)当,∠CAD=30o时,求AD 的长。 3. 如图,已知CD 是ΘO 的直径,AC ⊥CD ,垂足为C ,弦DE ∥OA ,直线AE 、CD 相交于点B . (1)求证:直线AB 是OO 的切线; (2)如果AC =1,BE =2,求tan ∠OAC 的值.

4. 如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)如果BC =8,AB =5,求CE 的长。 5.如图,在△ABC 中,∠C=90°,∠ACB 的平分线交AB 于点O ,以O 为圆心的⊙O 与AC 相切于点D . (1)求证:⊙O 与BC 相切; (2)当AC=3,BC=6时,求⊙O 的半径 6. 如图,AB 是⊙O 的直径,AM ,BN 分别切⊙O 于点A ,B ,CD 交AM ,BN 于点D ,C ,DO 平分∠A DC . (1)求证:CD 是⊙O 的切线; (2)若AD=4,BC=9,求⊙O 的半径R . 7.如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是?AB 的中点,连接P A ,PB ,PC . (1)如图①,若∠BPC =60°,求证: AP AC 3=; (2)如图②,若2524sin = ∠BPC ,求PAB ∠tan 的值.

[全]中考数学有关圆的证明与计算题型解析

中考数学有关圆的证明与计算题型解析 有关圆的证明与计算涉及到的主要知识点有圆周角定理、垂径定理、解直角三角形、 特殊四边形的判定与性质、特殊三角形的性质、全等与相似三角形的判定与性质等. 本节主要对其相应的题型总结归纳如下: 类型一、切线的性质 【例题1】如图,已知AB 是⊙O 的直径,P 是AB 延长线上一点,PC 与⊙O 相切于点C, 过点C 作CE⊥AB,交⊙O 于点E,垂足为点D. (1) 求证:∠PCB=∠BAC; (2) 过点B 作BM∥PC 交⊙O 于点M,交CD 于点N,连接AM . ①求证:CN=BN; ②若cos P = 4/5 , CN = 5 , 求AM 的长 .

例题1图 【参考答案】 (1)证明:如解图1 所示,连接OC,交BM 于点F . 解图1 ∵PC 是⊙O 的切线, ∴OC⊥PC . ∴∠PCO=90°. ∴∠PCB+∠BCO=90°. ∵AB是⊙O的直径, ∴∠ACB=90°. ∴∠ACO+∠BCO=90°.

∴∠PCB=∠ACO. ∵OC=OA, ∴∠ACO=∠BAC. ∴∠PCB=∠BAC. (2) 例题1图①证明: ∵BM∥PC, ∴∠CBM=∠PCB. ∵CE⊥AB, ∴︵BC=︵BE . ∴∠BAC=∠BCE. ∵∠PCB=∠BAC, ∴∠BCE=∠PCB=∠CBM.

∴CN=BN. ②解: 例题1图∵BM∥PC, ∴∠MBA=∠P. ∴cos ∠MBA=cos P=4/5 . 在Rt △BDN 中, cos ∠MBA=BD / BN=4/5,BN=CN=5,∴BD=4. ∴CD=CN+ND=8. 在Rt △OCD 中,设OC=r, 则OD=OB-BD=r-4.

相关文档